Search results for: disintegration time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17808

Search results for: disintegration time

16218 Self-Calibration of Fish-Eye Camera for Advanced Driver Assistance Systems

Authors: Atef Alaaeddine Sarraj, Brendan Jackman, Frank Walsh

Abstract:

Tomorrow’s car will be more automated and increasingly connected. Innovative and intuitive interfaces are essential to accompany this functional enrichment. For that, today the automotive companies are competing to offer an advanced driver assistance system (ADAS) which will be able to provide enhanced navigation, collision avoidance, intersection support and lane keeping. These vision-based functions require an accurately calibrated camera. To achieve such differentiation in ADAS requires sophisticated sensors and efficient algorithms. This paper explores the different calibration methods applicable to vehicle-mounted fish-eye cameras with arbitrary fields of view and defines the first steps towards a self-calibration method that adequately addresses ADAS requirements. In particular, we present a self-calibration method after comparing different camera calibration algorithms in the context of ADAS requirements. Our method gathers data from unknown scenes while the car is moving, estimates the camera intrinsic and extrinsic parameters and corrects the wide-angle distortion. Our solution enables continuous and real-time detection of objects, pedestrians, road markings and other cars. In contrast, other camera calibration algorithms for ADAS need pre-calibration, while the presented method calibrates the camera without prior knowledge of the scene and in real-time.

Keywords: advanced driver assistance system (ADAS), fish-eye, real-time, self-calibration

Procedia PDF Downloads 232
16217 Drone On-Time Obstacle Avoidance for Static and Dynamic Obstacles

Authors: Herath M. P. C. Jayaweera, Samer Hanoun

Abstract:

Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GME′s velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use, and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks, including their tendency to generate longer routes when the obstacles are sideways of the drone′s route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilized on most types of drones that have basic distance measurement sensors and autopilot-supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS-supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.

Keywords: drones, force field methods, obstacle avoidance, path planning

Procedia PDF Downloads 65
16216 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network

Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz

Abstract:

Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.

Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle

Procedia PDF Downloads 224
16215 Well-Being Inequality Using Superimposing Satisfaction Waves: Heisenberg Uncertainty in Behavioral Economics and Econometrics

Authors: Okay Gunes

Abstract:

In this article, for the first time in the literature for this subject we propose a new method for the measuring of well-being inequality through a model composed of superimposing satisfaction waves. The displacement of households’ satisfactory state (i.e. satisfaction) is defined in a satisfaction string. The duration of the satisfactory state for a given period of time is measured in order to determine the relationship between utility and total satisfactory time, itself dependent on the density and tension of each satisfaction string. Thus, individual cardinal total satisfaction values are computed by way of a one-dimensional form for scalar sinusoidal (harmonic) moving wave function, using satisfaction waves with varying amplitudes and frequencies which allow us to measure well-being inequality. One advantage to using satisfaction waves is the ability to show that individual utility and consumption amounts would probably not commute; hence it is impossible to measure or to know simultaneously the values of these observables from the dataset. Thus, we crystallize the problem by using a Heisenberg-type uncertainty resolution for self-adjoint economic operators. We propose to eliminate any estimation bias by correlating the standard deviations of selected economic operators; this is achieved by replacing the aforementioned observed uncertainties with households’ perceived uncertainties (i.e. corrected standard deviations) obtained through the logarithmic psychophysical law proposed by Weber and Fechner.

Keywords: Heisenberg uncertainty principle, superimposing satisfaction waves, Weber–Fechner law, well-being inequality

Procedia PDF Downloads 425
16214 The Use of YouTube and Its Relation to Changing the Kuwaiti Children’s Social Values from Parents’ Perspectives: Field Study

Authors: Laila Alkhayat

Abstract:

In this study, the researcher explored the positive and negative effects of children watching YouTube on changing social values from the perspective of parents in Kuwait. This study also explored whether any correlation exists between changed values from watching YouTube and the following variables: relationship with a child, social situation, school level, gender, and age. The researcher collected data from 286 questionnaires distributed randomly to parents in Kuwait. The results of the study show that parents face many disadvantages when dealing with children watching YouTube, such as children spending too much time in front of screens, inability to organize bedtime, and children’s social isolation. However, the researcher found some positives come from watching YouTube, such as learning new information, enabling children to search for new information, and introducing children to the culture of their society and other cultures around them. Moreover, this study found that boys are more likely to have negative viewing habits than girls. Given the results, this study shows that the biggest impact on social values from children watching YouTube is that they are preoccupied with watching YouTube and they waste time, which makes them feel disturbed, and this affects the value of time management and delays children’s sleeping times. This study concludes that watching YouTube simultaneously has negative and positive effects on changing social values, but it plays a negative role in changing social values of children from the parents’ perspective.

Keywords: YouTube, children, social value, social media effects

Procedia PDF Downloads 142
16213 Maximizing Bidirectional Green Waves for Major Road Axes

Authors: Christian Liebchen

Abstract:

Both from an environmental perspective and with respect to road traffic flow quality, planning so-called green waves along major road axes is a well-established target for traffic engineers. For one-way road axes (e.g. the Avenues in Manhattan), this is a trivial downstream task. For bidirectional arterials, the well-known necessary condition for establishing a green wave in both directions is that the driving times between two subsequent crossings must be an integer multiple of half of the cycle time of the signal programs at the nodes. In this paper, we propose an integer linear optimization model to establish fixed-time green waves in both directions that are as long and as wide as possible, even in the situation where the driving time condition is not fulfilled. In particular, we are considering an arterial along whose nodes separate left-turn signal groups are realized. In our computational results, we show that scheduling left-turn phases before or after the straight phases can reduce waiting times along the arterial. Moreover, we show that there is always a solution with green waves in both directions that are as long and as wide as possible, where absolute priority is put on just one direction. Compared to optimizing both directions together, establishing an ideal green wave into one direction can only provide suboptimal quality when considering prioritized parts of a green band (e.g., first few seconds).

Keywords: traffic light coordination, synchronization, phase sequencing, green waves, integer programming

Procedia PDF Downloads 100
16212 Body Fluids Identification by Raman Spectroscopy and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Authors: Huixia Shi, Can Hu, Jun Zhu, Hongling Guo, Haiyan Li, Hongyan Du

Abstract:

The identification of human body fluids during forensic investigations is a critical step to determine key details, and present strong evidence to testify criminal in a case. With the popularity of DNA and improved detection technology, the potential question must be revolved that whether the suspect’s DNA derived from saliva or semen, menstrual or peripheral blood, how to identify the red substance or aged blood traces on the spot is blood; How to determine who contribute the right one in mixed stains. In recent years, molecular approaches have been developing increasingly on mRNA, miRNA, DNA methylation and microbial markers, but appear expensive, time-consuming, and destructive disadvantages. Physicochemical methods are utilized frequently such us scanning electron microscopy/energy spectroscopy and X-ray fluorescence and so on, but results only showing one or two characteristics of body fluid itself and that out of working in unknown or mixed body fluid stains. This paper focuses on using chemistry methods Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to discriminate species of peripheral blood, menstrual blood, semen, saliva, vaginal secretions, urine or sweat. Firstly, non-destructive, confirmatory, convenient and fast Raman spectroscopy method combined with more accurate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method can totally distinguish one from other body fluids. Secondly, 11 spectral signatures and specific metabolic molecules have been obtained by analysis results after 70 samples detected. Thirdly, Raman results showed peripheral and menstrual blood, saliva and vaginal have highly similar spectroscopic features. Advanced statistical analysis of the multiple Raman spectra must be requested to classify one to another. On the other hand, it seems that the lactic acid can differentiate peripheral and menstrual blood detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, but that is not a specific metabolic molecule, more sensitivity ones will be analyzed in a forward study. These results demonstrate the great potential of the developed chemistry methods for forensic applications, although more work is needed for method validation.

Keywords: body fluids, identification, Raman spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Procedia PDF Downloads 118
16211 A Two-Pronged Truncated Deferred Sampling Plan for Log-Logistic Distribution

Authors: Braimah Joseph Odunayo, Jiju Gillariose

Abstract:

This paper is aimed at developing a sampling plan that uses information from precedent and successive lots for lot disposition with a pretention that the life-time of a particular product assumes a Log-logistic distribution. A Two-pronged Truncated Deferred Sampling Plan (TTDSP) for Log-logistic distribution is proposed when the testing is truncated at a precise time. The best possible sample sizes are obtained under a given Maximum Allowable Percent Defective (MAPD), Test Suspension Ratios (TSR), and acceptance numbers (c). A formula for calculating the operating characteristics of the proposed plan is also developed. The operating characteristics and mean-ratio values were used to measure the performance of the plan. The findings of the study show that: Log-logistic distribution has a decreasing failure rate; furthermore, as mean-life ratio increase, the failure rate reduces; the sample size increase as the acceptance number, test suspension ratios and maximum allowable percent defective increases. The study concludes that the minimum sample sizes were smaller, which makes the plan a more economical plan to adopt when cost and time of production are costly and the experiment being destructive.

Keywords: consumers risk, mean life, minimum sample size, operating characteristics, producers risk

Procedia PDF Downloads 119
16210 Effects of Strain-Induced Melt Activation Process on the Structure and Morphology Mg₂Si in Al-15%Mg₂Si Composite

Authors: Reza Eslami-Farsani, Mohammad Alipour

Abstract:

The effect of deformation on the semisolid microstructure and degree of globularity of Al–15%Mg₂Si composite produced by the strain induced melt activation (SIMA) process was studied. Deformation of 25% was used. After deformation, the samples were heated to a temperature above the solidus and below the liquidus point and maintained in the isothermal conditions at three different temperatures (560, 580 and 595 °C) for varying time (5, 10, 20 and 40 min). The microstructural study was carried out on the alloy by the use of optical microscopy. It was observed that strain induced deformation and subsequently melt activation has caused the globular morphology of Mg₂Si particles. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 595 °C and 40 min respectively.

Keywords: deformation, semisolid, SIMA, Mg₂Si phase, modification

Procedia PDF Downloads 257
16209 Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers

Authors: M. H. Abedi, A. Jalilvand

Abstract:

The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost.

Keywords: renewable energy, wind farm, optimization, planning

Procedia PDF Downloads 513
16208 Percentile Norms of Heart Rate Variability (HRV) of Indian Sportspersons Withdrawn from Competitive Games and Sports

Authors: Pawan Kumar, Dhananjoy Shaw

Abstract:

Heart rate variability (HRV) is the physiological phenomenon of variation in the time interval between heartbeats and is alterable with fitness, age and different medical conditions including withdrawal/retirement from games/sports. Objectives of the study were to develop (a) percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity (b) percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity. The study was conducted on 430 males. Ages of the sample ranged from 30 to 35 years of same socio-economic status. Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with percentile from one to hundred. The finding showed that the percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely, NN50 count (ranged from 1 to 189 score as percentile range). pNN50 count (ranged from .24 to 60.80 score as percentile range). SDNN (ranged from 17.34 to 167.29 score as percentile range). SDSD (ranged from 11.14 to 120.46 score as percentile range). RMMSD (ranged from 11.19 to 120.24 score as percentile range) and SDANN (ranged from 4.02 to 88.75 score as percentile range). The percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely Low Frequency (Normalized Power) ranged from 20.68 to 90.49 score as percentile range. High Frequency (Normalized Power) ranged from 14.37 to 81.60 score as percentile range. LF/ HF ratio(ranged from 0.26 to 9.52 score as percentile range). LF (Absolute Power) ranged from 146.79 to 5669.33 score as percentile range. HF (Absolute Power) ranged from 102.85 to 10735.71 score as percentile range and Total Power (Absolute Power) ranged from 471.45 to 25879.23 score as percentile range. Conclusion: The analysis documented percentile norms for time domain analysis and frequency domain analysis for versatile use and evaluation.

Keywords: RMSSD, Percentile, SDANN, HF, LF

Procedia PDF Downloads 405
16207 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 113
16206 Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province

Authors: N. Sopipan

Abstract:

In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12.

Keywords: ARIMA Models, exponential smoothing, Holt-Winter model

Procedia PDF Downloads 283
16205 Preparation and Quality Control of a Novel Radiolabeled Complex of 166ho for the Treatment of Somatostatin Receptor Expressing Tumours

Authors: H. Yousefnia, A. Golabi Dezfuli, S. Zolghadri, M. Hosntalab

Abstract:

Peptide receptor radionuclide therapy is nowadays used for the treatment of various abnormalities with somatostatin receptors. In this study, 166Ho-DOTATOC was prepared and the best conditions for its radiolabeling was obtained. For this purpose, a certain of DOTATOC was added to a vial containing 166Ho. various experiments by varying ligand concentration, pH, temperature and time were performed to determine the best conditions. Radiochemical purity of the complex was assessed by instant thin layer chromatography method utilizing 0.9% NaCl as the mobile phase. 166Ho-DOTATOC was prepared with radiochemical purity of higher than 95% at the optimized condition (pH=4, temperature: 95° C, time:30 min). In 0.9% NaCl, free Ho cation was developed at Rf of 0.8 while the complex was remained at the front of the paper.

Keywords: Ho-166, neuroendocrine, octreotide, quality control

Procedia PDF Downloads 373
16204 Optimal Opportunistic Maintenance Policy for a Two-Unit System

Authors: Nooshin Salari, Viliam Makis, Jane Doe

Abstract:

This paper presents a maintenance policy for a system consisting of two units. Unit 1 is gradually deteriorating and is subject to soft failure. Unit 2 has a general lifetime distribution and is subject to hard failure. Condition of unit 1 of the system is monitored periodically and it is considered as failed when its deterioration level reaches or exceeds a critical level N. At the failure time of unit 2 system is considered as failed, and unit 2 will be correctively replaced by the next inspection epoch. Unit 1 or 2 are preventively replaced when deterioration level of unit 1 or age of unit 2 exceeds the related preventive maintenance (PM) levels. At the time of corrective or preventive replacement of unit 2, there is an opportunity to replace unit 1 if its deterioration level reaches the opportunistic maintenance (OM) level. If unit 2 fails in an inspection interval, system stops operating although unit 1 has not failed. A mathematical model is derived to find the preventive and opportunistic replacement levels for unit 1 and preventive replacement age for unit 2, that minimize the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. Numerical example is provided to illustrate the performance of the proposed model and the comparison of the proposed model with an optimal policy without opportunistic maintenance level for unit 1 is carried out.

Keywords: condition-based maintenance, opportunistic maintenance, preventive maintenance, two-unit system

Procedia PDF Downloads 183
16203 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: multiclass classification, convolution neural network, OpenCV

Procedia PDF Downloads 158
16202 Comparison of College Students and Full-Time Employees on Emerging Adulthood Dimensions and Identity Statuses in Turkey

Authors: Ebru Ergi̇n, Funda Kutlu

Abstract:

Emerging adulthood is a developmental period and the formation of identity is crucial task of emerging adults in this period. In this frame, the main aim of the study was to compare college students and full-time workers on emerging adulthood dimensions and identity statuses in relation to some demographic variables in Turkey. The participants of the study were university students studying in Ankara and the employees working full-time in Ankara and Bursa. The mean age of the sample was 20.84 (sd=1.84), ranging from 18 to 25. The measurement instruments of the study were Inventory of Dimensions of Emerging Adulthood and Extended Objective Measure of Ego Identity Status (EOMEIS-II). The participants’ data (N=313) were analyzed to test the research questions and hypotheses of the study. A series of MANOVA were performed to test the group differences for some demographic characteristics (such as: employee/student, male/female, living with family/living apart from family) on scores of emerging adulthood dimensions and identity status. The results of the MANOVAs indicated that students, females and participants who live apart from their families had higher scores on emerging adulthood dimensions. The results of the identity status scores differences depending on the demographic characteristic pointed out that there were a significant group differences for identity foreclosure identity scores between employees and students. Employees’ foreclosure identity scores were higher than students. Furthermore, the identity scores were differed significantly according to gender of the participants. Male participants had higher scores in moratorium and foreclosure identity and female participants have higher achievement identity scores than males. Also, the participants who live with their family scored higher in foreclosure identity and the participants who live apart from their family scored higher in identity achievement status.

Keywords: college students, emerging adulthood, full-time employees, identity statuses

Procedia PDF Downloads 390
16201 The Optimization Design of Sound Absorbing for Automotive Interior Material

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Nonwoven fabric such as an automobile interior material becomes consists of several material layers required for the sound-absorbing function. Because several material layers, many experimental tuning is required to achieve the target of sound absorption. Therefore, a lot of time and money is spent in the development of the car interior materials. In this study, we present the method to predict the sound-absorbing performance of the various layers with physical properties of each material. and we will verify it with the measured value of a prototype. If the sound absorption can be estimated, it can be optimized without a number of tuning tests of the interiors. So, it can reduce the development cost and time during development

Keywords: automotive interior material, sound absorbing, optimization design, nonwoven fabric

Procedia PDF Downloads 815
16200 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection

Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld

Abstract:

In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.

Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation

Procedia PDF Downloads 240
16199 Effect of Solution Heat Treatment on Intergranular Corrosion Resistance of Welded Stainless Steel AISI 321

Authors: Amir Mahmoudi

Abstract:

In this investigation, AISI321 steel after welding by Shilded Metal Arc Welding (SMAW) was solution heat treated in various temperatures and times, and then was sensitizied. Results indicated, increasing of temperature in solution heat treatment raises the sensitization and creates the cavity structure in grain boundaries. Besides, in order to examine the effect of time on solution heat treatment, all samples were solution heat treated at different times and fixed temperature (1050°C). By increasing the time, more chrome carbides were created due to dissolution of delta ferrite phase and reproduce titanium carbides. Additionally, the best process for solution heat treatment for this steel was suggested.

Keywords: stainless steel, solution heat treatment, intergranular corrosion, DLEPR

Procedia PDF Downloads 507
16198 Management of Tibial Bone Defects Following Grade Three Injury in Adults

Authors: Rajendra Kumar Kanojia

Abstract:

Background; Massive bone gaps are common following road side accidents and injury to the tibia, specially open grade three fractures. It has been seen that the diaphyseal fractures in the tibia are prone to non-union, there are certain reasons known very well, like less soft tissues around the lower third tibia, less vascularity, less options of fixation of the fractures after trauma and prolonged surgical time, operation theatre time and special surgical means. Aim of study; To know the suitability of the ilizarov ring fixators in staged treatment of the fracture of the both bones leg, including tibia, we wish to see the role of ilizarov in management of open grade three fractures which have been operated and debrided, for getting the length use of ilizaorv ring in a tertiary canter is the aim of the study.

Keywords: open fracture, staged management, ilizarov, bone grafting, lengthening

Procedia PDF Downloads 294
16197 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument

Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki

Abstract:

According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.

Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test

Procedia PDF Downloads 286
16196 Analysis of an High Voltage Direct Current (HVDC) Connection Using a Real-Time Simulator Under Various Disturbances

Authors: Mankour Mohamed, Miloudi Mohamed

Abstract:

A thorough and accurate simulation is necessary for the study of a High Voltage Direct Current (HVDC) link system during various types of disturbances, including internal faults on both converters, either on the rectifier or on the inverter, as well as external faults, such as AC or DC faults on both converter sides inside the DC link party. In this study, we examine how an HVDC inverter responds to three different types of failures, including faults at the inverter valve, system control faults, and single-phase-to-ground AC faults at the sending end of the inverter side. As this phenomenon represents the most frequent problem that may affect inverter valves, particularly those based on thyristor valves (LCC (line-Commutated converter)), it is more precise to explore which circumstance generates and raises the commutation failure on inverter valves. Because of the techniques used to accelerate the simulation, digital real-time simulators are now the most potent tools that provide simulation results. The real-time-lab RT-LAB platform HYPERSIM OP-5600 is used to implement the Simulation in the Loop (SIL) technique, which is used to validate the results. It is demonstrated how to recover from both the internal faults and the AC problem. The simulation findings show how crucial a role the control system plays in fault recovery.

Keywords: hypersim simulator, HVDC systems, mono-polar link, AC faults, misfiring faults

Procedia PDF Downloads 74
16195 Optimized Approach for Secure Data Sharing in Distributed Database

Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal

Abstract:

In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.

Keywords: ER-schema, electronic record, P2P framework, API, query formulation

Procedia PDF Downloads 313
16194 Efficacy of Umbilical Cord Lining Stem Cells For Wound Healing in Diabetic Murine Model

Authors: Fui Ping Lim, Wen Choong Chua, Toan Thang Phan

Abstract:

Aim: This study investigates the roles of Cord Lining Stem Cells (CLSCs) as potential therapeutic agents for diabetic wounds. Method: 20 genetically diabetic db/db mice were randomly assigned to two arms; (i) control group received placebo treatment (sham media or cells delivery material), and (ii) active comparator received CLSCs. Two full-thickness wounds, each sized 10mm X 10mm were created, one on each side of the midline on the back of the mice. Digital pictures were taken on day 1, 3, 7, 10, 14, 17, 21, 24, 28. Wound areas were analyzed with ImageJ TM software and calculated as percentage of the original wound. Time to closure was defined as the day the wound bed was completely epithelized and filled with new tissues. Results: The CLSCs-treated wounds, showed a significant increase in the percentage of wound closure and achieved 100% closure of the wound sooner than the control group by an average of 3.7 days. The mice treated with CLSCs have a shorter wound closure time (mean closure day: 19.8 days) as compared to the control group (mean closure day: 23.5 days). Conclusion: Our preliminary findings inferred that CLSCs treated wound achieved higher percentage of wound closure within a shorter duration of time.

Keywords: cord lining stem cell, diabetic wound, stem cell, wound

Procedia PDF Downloads 265
16193 The Volume–Volatility Relationship Conditional to Market Efficiency

Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese

Abstract:

The relation between stock price volatility and trading volume represents a controversial issue which has received a remarkable attention over the past decades. In fact, an extensive literature shows a positive relation between price volatility and trading volume in the financial markets, but the causal relationship which originates such association is an open question, from both a theoretical and empirical point of view. In this regard, various models, which can be considered as complementary rather than competitive, have been introduced to explain this relationship. They include the long debated Mixture of Distributions Hypothesis (MDH); the Sequential Arrival of Information Hypothesis (SAIH); the Dispersion of Beliefs Hypothesis (DBH); the Noise Trader Hypothesis (NTH). In this work, we analyze whether stock market efficiency can explain the diversity of results achieved during the years. For this purpose, we propose an alternative measure of market efficiency, based on the pointwise regularity of a stochastic process, which is the Hurst–H¨older dynamic exponent. In particular, we model the stock market by means of the multifractional Brownian motion (mBm) that displays the property of a time-changing regularity. Mostly, such models have in common the fact that they locally behave as a fractional Brownian motion, in the sense that their local regularity at time t0 (measured by the local Hurst–H¨older exponent in a neighborhood of t0 equals the exponent of a fractional Brownian motion of parameter H(t0)). Assuming that the stock price follows an mBm, we introduce and theoretically justify the Hurst–H¨older dynamical exponent as a measure of market efficiency. This allows to measure, at any time t, markets’ departures from the martingale property, i.e. from efficiency as stated by the Efficient Market Hypothesis. This approach is applied to financial markets; using data for the SP500 index from 1978 to 2017, on the one hand we find that when efficiency is not accounted for, a positive contemporaneous relationship emerges and is stable over time. Conversely, it disappears as soon as efficiency is taken into account. In particular, this association is more pronounced during time frames of high volatility and tends to disappear when market becomes fully efficient.

Keywords: volume–volatility relationship, efficient market hypothesis, martingale model, Hurst–Hölder exponent

Procedia PDF Downloads 66
16192 Effects of Packaging Method, Storage Temperature and Storage Time on the Quality Properties of Cold-Dried Beef Slices

Authors: Elif Aykın Dinçer, Mustafa Erbaş

Abstract:

The effects of packaging method (modified atmosphere packaging (MAP) and aerobic packaging (AP)), storage temperature (4 and 25°C) and storage time (0, 15, 30, 45, 60, 75 and 90 days) on the chemical, microbiological and sensory properties of cold-dried beef slices were investigated. Beef slices were dried at 10°C and 3 m/s after pasteurization with hot steam and then packaged in order to determine the effect of different storage conditions. As the storage temperature and time increased, it was determined that the amount of CO2 decreased in the MAP packed samples and that the amount of O2 decreased while the amount of CO2 increased in the AP packed samples. The water activity value of stored beef slices decreased from 0.91 to 0.88 during 90 days of storage. The pH, TBARS and NPN-M values of stored beef slices were higher in the AP packed samples and pH value increased from 5.68 to 5.93, TBARS increased from 25.25 to 60.11 μmol MDA/kg and NPN-M value increased from 4.37 to 6.66 g/100g during the 90 days of storage. It was determined that the microbiological quality of MAP packed samples was higher and the mean counts of TAMB, TPB, Micrococcus/Staphylococcus, LAB and yeast-mold were 4.10, 3.28, 3.46, 2.99 and 3.14 log cfu/g, respectively. As a result of sensory evaluation, it was found that the quality of samples packed MAP and stored at low temperature was higher and the shelf life of samples was 90 days at 4°C and 75 days at 25°C for MAP treatment, and 60 days at 4°C and 45 days at 25°C for AP treatment.

Keywords: cold drying, dried meat, packaging, storage

Procedia PDF Downloads 130
16191 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters

Procedia PDF Downloads 292
16190 Temperature-Dependent Post-Mortem Changes in Human Cardiac Troponin-T (cTnT): An Approach in Determining Postmortem Interval

Authors: Sachil Kumar, Anoop Kumar Verma, Wahid Ali, Uma Shankar Singh

Abstract:

Globally approximately 55.3 million people die each year. In the India there were 95 lakh annual deaths in 2013. The number of deaths resulted from homicides, suicides and unintentional injuries in the same period was about 5.7 lakh. The ever-increasing crime rate necessitated the development of methods for determining time since death. An erroneous time of death window can lead investigators down the wrong path or possibly focus a case on an innocent suspect. In this regard a research was carried out by analyzing the temperature dependent degradation of a Cardiac Troponin-T protein (cTnT) in the myocardium postmortem as a marker for time since death. Cardiac tissue samples were collected from (n=6) medico-legal autopsies, (in the Department of Forensic Medicine and Toxicology, King George’s Medical University, Lucknow India) after informed consent from the relatives and studied post-mortem degradation by incubation of the cardiac tissue at room temperature (20±2 OC), 12 0C, 25 0C and 37 0C for different time periods ((~5, 26, 50, 84, 132, 157, 180, 205, and 230 hours). The cases included were the subjects of road traffic accidents (RTA) without any prior history of disease who died in the hospital and their exact time of death was known. The analysis involved extraction of the protein, separation by denaturing gel electrophoresis (SDS-PAGE) and visualization by Western blot using cTnT specific monoclonal antibodies. The area of the bands within a lane was quantified by scanning and digitizing the image using Gel Doc. The data shows a distinct temporal profile corresponding to the degradation of cTnT by proteases found in cardiac muscle. The disappearance of intact cTnT and the appearance of lower molecular weight bands are easily observed. Western blot data clearly showed the intact protein at 42 kDa, two major (27 kDa, 10kDa) fragments, two additional minor fragments (32 kDa) and formation of low molecular weight fragments as time increases. At 12 0C the intensity of band (intact cTnT) decreased steadily as compared to RT, 25 0C and 37 0C. Overall, both PMI and temperature had a statistically significant effect where the greatest amount of protein breakdown was observed within the first 38 h and at the highest temperature, 37 0C. The combination of high temperature (37 0C) and long Postmortem interval (105.15 hrs) had the most drastic effect on the breakdown of cTnT. If the percent intact cTnT is calculated from the total area integrated within a Western blot lane, then the percent intact cTnT shows a pseudo-first order relationship when plotted against the log of the time postmortem. These plots show a good coefficient of correlation of r = 0.95 (p=0.003) for the regression of the human heart at different temperature conditions. The data presented demonstrates that this technique can provide an extended time range during which Postmortem interval can be more accurately estimated.

Keywords: degradation, postmortem interval, proteolysis, temperature, troponin

Procedia PDF Downloads 367
16189 Jagiellonian-PET: A Novel TOF-PET Detector Based on Plastic Scintillators

Authors: P. Moskal, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, A. Gruntowski, D. Kaminska, L. Kaplon, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, L. Raczynski, Z. Rudy, P. Salabura, N. G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, W. Wislicki, M. Zielinski, N. Zon

Abstract:

A new concept and results of the performance tests of the TOF-PET detection system developed at the Jagiellonian University will be presented. The novelty of the concept lies in employing long strips of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes for the reconstruction of Lines-of-Response. The diagnostic chamber consists of plastic scintillator strips readout by pairs of photo multipliers arranged axially around a cylindrical surface. To take advantage of the superior timing properties of plastic scintillators the signals are probed in the voltage domain with the accuracy of 20 ps by a newly developed electronics, and the data are collected by the novel trigger-less and reconfigurable data acquisition system. The hit-position and hit-time are reconstructed by the dedicated reconstruction methods based on the compressing sensing theory and the library of synchronized model signals. The solutions are subject to twelve patent applications. So far a time-of-flight resolution of ~120 ps (sigma) was achieved for a double-strip prototype with 30 cm field-of-view (FOV). It is by more than a factor of two better than TOF resolution achievable in current TOF-PET modalities and at the same time the FOV of 30 cm long prototype is significantly larger with respect to typical commercial PET devices. The Jagiellonian PET (J-PET) detector with plastic scintillators arranged axially possesses also another advantage. Its diagnostic chamber is free of any electronic devices and magnetic materials thus giving unique possibilities of combining J-PET with CT and J-PET with MRI for scanning the same part of a patient at the same time with both methods.

Keywords: PET-CT, PET-MRI, TOF-PET, scintillator

Procedia PDF Downloads 472