Search results for: agent based simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31413

Search results for: agent based simulation

29823 The Victim as a Public Actor: Understanding the Victim’s Role as an Agent of Accountability

Authors: Marie Manikis

Abstract:

This paper argues that the scholarship to date on victims in the criminal process has mainly adopted a private conception of victims –as bearers of individual interests, rights, and remedies– rather than a conception of the victim as an actor with public functions and interests, who has historically and continuously taken on an active role in the common law tradition. This conception enables a greater understanding of the various developments around victim participation in common law criminal justice systems and provides a useful analytical tool to understand the different roles of victims in England and Wales and the United States. Indeed, the main focus on individual rights and the conception of the victim as a private entity undermines the distinctive and increasing role victims play in the wider criminal justice process as agents of accountability through administrative-based processes within and outside courts, including private prosecutions, internal review processes within prosecutorial agencies, judicial review, and ombudsmen processes.

Keywords: victims, participation, criminal justice, accountability

Procedia PDF Downloads 117
29822 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network

Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang

Abstract:

Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.

Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid

Procedia PDF Downloads 273
29821 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter

Procedia PDF Downloads 411
29820 Performance Comparison of Wideband Covariance Matrix Sparse Representation (W-CMSR) with Other Wideband DOA Estimation Methods

Authors: Sandeep Santosh, O. P. Sahu

Abstract:

In this paper, performance comparison of wideband covariance matrix sparse representation (W-CMSR) method with other existing wideband Direction of Arrival (DOA) estimation methods has been made.W-CMSR relies less on a priori information of the incident signal number than the ordinary subspace based methods.Consider the perturbation free covariance matrix of the wideband array output. The diagonal covariance elements are contaminated by unknown noise variance. The covariance matrix of array output is conjugate symmetric i.e its upper right triangular elements can be represented by lower left triangular ones.As the main diagonal elements are contaminated by unknown noise variance,slide over them and align the lower left triangular elements column by column to obtain a measurement vector.Simulation results for W-CMSR are compared with simulation results of other wideband DOA estimation methods like Coherent signal subspace method (CSSM), Capon, l1-SVD, and JLZA-DOA. W-CMSR separate two signals very clearly and CSSM, Capon, L1-SVD and JLZA-DOA fail to separate two signals clearly and an amount of pseudo peaks exist in the spectrum of L1-SVD.

Keywords: W-CMSR, wideband direction of arrival (DOA), covariance matrix, electrical and computer engineering

Procedia PDF Downloads 459
29819 Leasing Revisited: Mastering the Digital Transformation with Traditional Financing

Authors: Tobias Huttche, Marco Canipa-Valdez, Corinne Mühlebach

Abstract:

This article discusses the role of leasing on the digital transformation process of companies and corresponding economic effects. Based on the traditional mechanisms of leasing, this article focuses in particular on the benefits of leasing as financing instrument with regard to the innovation potential of companies. Practical examples demonstrate how leasing can become an integral part of new business models. Especially, with regard to the digital transformation and corresponding investments in know-how and infrastructure, leasing can play an important role. Furthermore, findings of an empirical survey are presented dealing with the usage of leasing in Switzerland in an international context. The survey shows not only the benefits of leasing against the backdrop of digital transformation but gives guidance on how other countries can benefit from promoting leasing in their legislation and economy. Based on a simulation model for Switzerland, the economic effect of an increase in leasing volume is being calculated. Again, the respective results underline the substantial growth potential. This holds true especially for economies where asset-based lending is rarely used because of a lack of entrepreneurial or private security of the borrower (cash-based financing for developing and emerging countries). Overall, the authors found that leasing using companies are more productive and tend to grow faster than companies using less or none leasing. The positive effects of leasing on emerging digital challenges for companies and entire economies should encourage other countries to facilitate access to leasing as financing instrument by decreasing legal-, tax- and accounting-related requirements in the respective jurisdiction.

Keywords: Cash-Based financing, digital transformation, financing instruments, growth, innovation, leasing

Procedia PDF Downloads 247
29818 Control System Design for a Simulated Microbial Electrolysis Cell

Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen

Abstract:

Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.

Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller

Procedia PDF Downloads 236
29817 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 470
29816 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 440
29815 Internet of Things Edge Device Power Modelling and Optimization Simulator

Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh

Abstract:

Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.

Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting

Procedia PDF Downloads 118
29814 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes

Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-Ariyaskul

Abstract:

The production of dimethyl acetal, isovaleradehyde, and pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of acetaldehyde, methanol, ethyl acetate, 1-propanol, water, isoamyl alcohol, and isobutanol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.

Keywords: dimethyl acetal, pyridine, wine, aspen plus, isovaleradehyde, polymeric precursors

Procedia PDF Downloads 316
29813 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL Multiphysics®, electrokinetic, electroosmotic, microfluidics, zeta potential

Procedia PDF Downloads 230
29812 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration

Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos

Abstract:

In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.

Keywords: CFD, deflagration, hydrogen, combustion model

Procedia PDF Downloads 489
29811 Computational Fluid Dynamics Simulation Study of Flow near Moving Wall of Various Surface Types Using Moving Mesh Method

Authors: Khizir Mohd Ismail, Yu Jun Lim, Tshun Howe Yong

Abstract:

The study of flow behavior in an enclosed volume using Computational Fluid Dynamics (CFD) has been around for decades. However, due to the knowledge limitation of adaptive grid methods, the flow in an enclosed volume near the moving wall using CFD is less explored. A CFD simulation of flow in an enclosed volume near a moving wall was demonstrated and studied by introducing a moving mesh method and was modeled with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. A static enclosed volume with controlled opening size in the bottom was positioned against a moving, translational wall with sliding mesh features. Controlled variables such as smoothed, crevices and corrugated wall characteristics, the distance between the enclosed volume to the wall and the moving wall speed against the enclosed chamber were varied to understand how the flow behaves and reacts in between these two geometries. These model simulations were validated against experimental results and provided result confidence when the simulation had shown good agreement with the experimental data. This study had provided better insight into the flow behaving in an enclosed volume when various wall types in motion were introduced within the various distance between each other and create a potential opportunity of application which involves adaptive grid methods in CFD.

Keywords: moving wall, adaptive grid methods, CFD, moving mesh method

Procedia PDF Downloads 134
29810 An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks

Authors: Rahman Mofidi, Sina Rahimi, Farnoosh Darban

Abstract:

Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call.

Keywords: quality of service, key performance indicators, control parameter, channel quality indicator

Procedia PDF Downloads 190
29809 Recognising and Managing Haematoma Following Thyroid Surgery: Simulation Teaching is Effective

Authors: Emily Moore, Dora Amos, Tracy Ellimah, Natasha Parrott

Abstract:

Postoperative haematoma is a well-recognised complication of thyroid surgery with an incidence of 1-5%. Haematoma formation causes progressive airway obstruction, necessitating emergency bedside haematoma evacuation in up to ¼ of patients. ENT UK, BAETS and DAS have developed consensus guidelines to improve perioperative care, recommending that all healthcare staff interacting with patients undergoing thyroid surgery should be trained in managing post-thyroidectomy haematoma. The aim was to assess the effectiveness of a hybrid simulation model in improving clinician’s confidence in dealing with this surgical emergency. A hybrid simulation was designed, consisting of a standardised patient wearing a part-task trainer to mimic a post-thyroidectomy haematoma in a real patient. The part-task trainer was an adapted C-spine collar with layers of silicone representing the skin and strap muscles and thickened jelly representing the haematoma. Both the skin and strap muscle layers had to be opened in order to evacuate the haematoma. Boxes have been implemented into the appropriate post operative areas (recovery and surgical wards), which contain a printed algorithm designed to assist in remembering a sequence of steps for haematoma evacuation using the ‘SCOOP’ method (skin exposure, cut sutures, open skin, open muscles, pack wound) along with all the necessary equipment to open the front of the neck. Small-group teaching sessions were delivered by ENT and anaesthetic trainees to members of the multidisciplinary team normally involved in perioperative patient care, which included ENT surgeons, anaesthetists, recovery nurses, HCAs and ODPs. The DESATS acronym of signs and symptoms to recognise (difficulty swallowing, EWS score, swelling, anxiety, tachycardia, stridor) was highlighted. Then participants took part in the hybrid simulation in order to practice this ‘SCOOP’ method of haematoma evacuation. Participants were surveyed using a Likert scale to assess their level of confidence pre- and post teaching session. 30 clinicians took part. Confidence (agreed/strongly agreed) in recognition of post thyroidectomy haematoma improved from 58.6% to 96.5%. Confidence in management improved from 27.5% to 89.7%. All participants successfully decompressed the haematoma. All participants agreed/strongly agreed, that the sessions were useful for their learning. Multidisciplinary team simulation teaching is effective at significantly improving confidence in both the recognition and management of postoperative haematoma. Hybrid simulation sessions are useful and should be incorporated into training for clinicians.

Keywords: thyroid surgery, haematoma, teaching, hybrid simulation

Procedia PDF Downloads 87
29808 Thermal Analysis and Computational Fluid Dynamics Simulation of Large-Scale Cryopump

Authors: Yue Shuai Zhao, Rong Ping Shao, Wei Sun, Guo Hua Ren, Yong Wang, Li Chen Sun

Abstract:

A large-scale cryopump (DN1250) used in large vacuum leak detecting system was designed and its performance experimentally investigated by Beijing Institute of Spacecraft Environment Engineering. The cryopump was cooled by four closed cycle helium refrigerators (two dual stage refrigerators and two single stage refrigerators). Detailed numerical analysis of the heat transfer in the first stage array and the second stage array were performed by using computational fluid dynamic method (CFD). Several design parameters were considered to find the effect on the temperature distribution and the cooldown time. The variation of thermal conductivity and heat capacity with temperature was taken into account. The thermal analysis method based on numerical techniques was introduced in this study, the heat transfer in the first stage array and the second stage cryopanel was carefully analyzed to determine important considerations in the thermal design of the cryopump. A performance test system according to the RNEUROP standards was built to test main performance of the cryopump. The experimental results showed that the structure of first stage array which was optimized by the method could meet the requirement of the cryopump well. The temperature of the cryopanel was down to 10K within 300 min, and the result of the experiment was accordant with theoretical analysis' conclusion. The test also showed that the pumping speed for N2 of the pump was up to 57,000 L/s, and the crossover was over than 300,000 Pa•L.

Keywords: cryopump, temperature distribution, thermal analysis, CFD Simulation

Procedia PDF Downloads 294
29807 Virtual Assessment of Measurement Error in the Fractional Flow Reserve

Authors: Keltoum Chahour, Mickael Binois

Abstract:

Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.

Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift

Procedia PDF Downloads 116
29806 Modeling of Coupled Mechanical State and Diffusion in Composites with Impermeable Fibers

Authors: D. Gueribiz, F. Jacquemin, S. Fréour

Abstract:

During their service life, composite materials are submitted to humid environments. The moisture absorbed by their matrix polymer induced internal stresses which can lead to multi-scale damage and may reduce the lifetime of composite structures. The estimation of internal stresses is based at a first on realistic evaluation of the diffusive behavior of composite materials. Generally, the modeling and simulation of the diffusive behavior of composite materials are extensively investigated through decoupled models based on the assumption of Fickien behavior. For these approaches, the concentration and the deformation (or stresses), the two state variables of the problem considered are governed by independent equations which are solved separately. In this study, a model coupling diffusive behavior with stresses state for a polymer matrix composite reinforced with impermeable fibers is proposed, the investigation of diffusive behavior is based on a more general thermodynamic approach which introduces a dependence of diffusive behavior on internal stresses state. The coupled diffusive behavior modeling was established in first for homogeneous and isotropic matrix and it is, thereafter, extended to impermeable unidirectional composites.

Keywords: composites materials, moisture diffusion, effective moisture diffusivity, coupled moisture diffusion

Procedia PDF Downloads 294
29805 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy

Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi

Abstract:

Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.

Keywords: vacuum membrane distillation, membrane module, membrane temperature, productivity

Procedia PDF Downloads 177
29804 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications

Authors: William Li

Abstract:

Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.

Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles

Procedia PDF Downloads 215
29803 Different Sampling Schemes for Semi-Parametric Frailty Model

Authors: Nursel Koyuncu, Nihal Ata Tutkun

Abstract:

Frailty model is a survival model that takes into account the unobserved heterogeneity for exploring the relationship between the survival of an individual and several covariates. In the recent years, proposed survival models become more complex and this feature causes convergence problems especially in large data sets. Therefore selection of sample from these big data sets is very important for estimation of parameters. In sampling literature, some authors have defined new sampling schemes to predict the parameters correctly. For this aim, we try to see the effect of sampling design in semi-parametric frailty model. We conducted a simulation study in R programme to estimate the parameters of semi-parametric frailty model for different sample sizes, censoring rates under classical simple random sampling and ranked set sampling schemes. In the simulation study, we used data set recording 17260 male Civil Servants aged 40–64 years with complete 10-year follow-up as population. Time to death from coronary heart disease is treated as a survival-time and age, systolic blood pressure are used as covariates. We select the 1000 samples from population using different sampling schemes and estimate the parameters. From the simulation study, we concluded that ranked set sampling design performs better than simple random sampling for each scenario.

Keywords: frailty model, ranked set sampling, efficiency, simple random sampling

Procedia PDF Downloads 200
29802 Design of Neural Predictor for Vibration Analysis of Drilling Machine

Authors: İkbal Eski

Abstract:

This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.

Keywords: artificial neural network, vibration analyses, drilling machine, robust

Procedia PDF Downloads 380
29801 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture

Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis

Abstract:

Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.

Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus

Procedia PDF Downloads 175
29800 Tribologycal Design by Molecular Dynamics Simulation- The Influence of Porous Surfaces on Wall Slip and Bulk Shear

Authors: Seyedmajid Mehrnia, Maximilan Kuhr, Peter F. Pelz

Abstract:

Molecular Dynamics (MD) simulation is a proven method to inspect behaviours of lubricant oils in nano-scale gaps. However, most MD simulations on tribology have been performed with atomically smooth walls to determine wall slip and friction properties. This study will investigate the effect of porosity, specifically nano-porous walls, on wall slip properties of hydrocarbon oils confined between two walls in a Couette flow. Different pore geometries will be modelled to investigate the effect on wall slip and bulk shear. In this paper, the Polyalphaolefin (PAO) molecules are confined to a stationary and a moving wall. A hybrid force field consisting of different potential energy functions was employed in this MD simulation. Newton’s law defines how those forces will influence the atoms' movements. The interactions among surface atoms were simulated with an Embedded Atom Method (EAM) potential function which can represent the characteristics of metallic arrangements very strongly. We implemented NERD forcefield for intramolecular potential energy function. Also, Lennard-Jones potential was employed for nonbonded intermolecular interaction.

Keywords: slip length, molecular dynamics, critical shear rate, Couette flow

Procedia PDF Downloads 117
29799 Frailty Models for Modeling Heterogeneity: Simulation Study and Application to Quebec Pension Plan

Authors: Souad Romdhane, Lotfi Belkacem

Abstract:

When referring to actuarial analysis of lifetime, only models accounting for observable risk factors have been developed. Within this context, Cox proportional hazards model (CPH model) is commonly used to assess the effects of observable covariates as gender, age, smoking habits, on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This may be due to the existence of another random variable (frailty) that is still being ignored. The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model by including two different parametric forms of frailty into the hazard function. Four estimated methods are used to fit them. The performance of the parameter estimates is assessed and compared between the classical Cox model and these frailty models through a real-life data set from the Quebec Pension Plan and then using a more general simulation study. This performance is investigated in terms of the bias of point estimates and their empirical standard errors in both fixed and random effect parts. Both the simulation and the real dataset studies showed differences between classical Cox model and shared frailty model.

Keywords: life insurance-pension plan, survival analysis, risk factors, cox proportional hazards model, multivariate failure-time data, shared frailty, simulations study

Procedia PDF Downloads 350
29798 Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, terahertz radiation, magnetized plasma, ordinary and extraordinary mode

Procedia PDF Downloads 288
29797 Artificial Intelligence in Penetration Testing of a Connected and Autonomous Vehicle Network

Authors: Phillip Garrad, Saritha Unnikrishnan

Abstract:

The recent popularity of connected and autonomous vehicles (CAV) corresponds with an increase in the risk of cyber-attacks. These cyber-attacks have been instigated by both researchers or white-coat hackers and cyber-criminals. As Connected Vehicles move towards full autonomy, the impact of these cyber-attacks also grows. The current research details challenges faced in cybersecurity testing of CAV, including access and cost of the representative test setup. Other challenges faced are lack of experts in the field. Possible solutions to how these challenges can be overcome are reviewed and discussed. From these findings, a software simulated CAV network is established as a cost-effective representative testbed. Penetration tests are then performed on this simulation, demonstrating a cyber-attack in CAV. Studies have shown Artificial Intelligence (AI) to improve runtime, increase efficiency and comprehensively cover all the typical test aspects in penetration testing in other industries. There is an attempt to introduce similar AI models to the software simulation. The expectation from this implementation is to see similar improvements in runtime and efficiency for the CAV model. If proven to be an effective means of penetration test for CAV, this methodology may be used on a full CAV test network.

Keywords: cybersecurity, connected vehicles, software simulation, artificial intelligence, penetration testing

Procedia PDF Downloads 94
29796 Recent Advancement in Dendrimer Based Nanotechnology for the Treatment of Brain Tumor

Authors: Nitin Dwivedi, Jigna Shah

Abstract:

Brain tumor is metastatic neoplasm of central nervous system, in most of cases it is life threatening disease with low survival rate. Despite of enormous efforts in the development of therapeutics and diagnostic tools, the treatment of brain tumors and gliomas remain a considerable challenge in the area of neuro-oncology. The most reason behind of this the presence of physiological barriers including blood brain barrier and blood brain tumor barrier, lead to insufficient reach ability of therapeutic agents at the site of tumor, result of inadequate destruction of gliomas. So there is an indeed need empowerment of brain tumor imaging for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional different generations of dendrimer offer an improved effort for potentiate drug delivery at the site of brain tumor and gliomas. So this article emphasizes the innovative dendrimer approaches in tumor targeting, tumor imaging and delivery of therapeutic agent.

Keywords: blood brain barrier, dendrimer, gliomas, nanotechnology

Procedia PDF Downloads 551
29795 Numerical Simulation of Unsteady Cases of Fluid Flow Using Modified Dynamic Boundary Condition (mDBC) in Smoothed Particle Hydrodynamics Models

Authors: Exa Heydemans, Jessica Sjah, Dwinanti Rika Marthanty

Abstract:

This paper presents numerical simulations using an open boundary algorithm with modified dynamic boundary condition (mDBC) for weakly compressible smoothed particle hydrodynamics models from particle-based code Dualsphysics. The problems of piping erosion in dams and dikes are aimed for studying the algorithm. The case 2D model of unsteady fluid flow past around a fixed cylinder is simulated, where various values of Reynold’s numbers (Re40, Re60, Re80, and Re100) and different model’s resolution are considered. A constant velocity with different values of viscosity for generating various Reynold’s numbers and different numbers of particles over a cylinder for the resolution are modeled. The interaction between solid particles of the cylinder and fluid particles is concerned. The cylinder is affected by the hydrodynamics force caused by the flow of fluid particles. The solid particles of the cylinder are the observation points to obtain force and pressure due to the hydrodynamics forces. As results of the simulation, which is to show the capability to model 2D unsteady with various Reynold’s numbers, the pressure coefficient, drag coefficient, lift coefficient, and Strouhal number are compared to the previous work from literature.

Keywords: hydrodynamics, internal erosion, dualsphysics, viscous fluid flow

Procedia PDF Downloads 149
29794 Assessment the Correlation of Rice Yield Traits by Simulation and Modelling Methods

Authors: Davood Barari Tari

Abstract:

In order to investigate the correlation of rice traits in different nitrogen management methods by modeling programming, an experiment was laid out in rice paddy field in an experimental field at Caspian Coastal Sea region from 2013 to 2014. Variety used was Shiroudi as a high yielding variety. Nitrogen management was in two methods. Amount of nitrogen at four levels (30, 60, 90, and 120 Kg N ha-1 and control) and nitrogen-splitting at four levels (T1: 50% in base + 50% in maximum tillering stage, T2= 33.33% basal +33.33% in maximum tillering stage +33.33% in panicle initiation stage, T3=25% basal+37.5% in maximum tillering stage +37.5% in panicle initiation stage, T4: 25% in basal + 25% in maximum tillering stage + 50% in panicle initiation stage). Results showed that nitrogen traits, total grain number, filled spikelets, panicle number per m2 had a significant correlation with grain yield. Results related to calibrated and validation of rice model methods indicated that correlation between rice yield and yield components was accurate. The correlation between panicle length and grain yield was minimum. Physiological indices was simulated with low accuracy. According to results, investigation of the correlation between rice traits in physiological, morphological and phenological characters and yield by modeling and simulation methods are very useful.

Keywords: rice, physiology, modelling, simulation, yield traits

Procedia PDF Downloads 334