Search results for: academic learning
7289 Designing Social Media into Higher Education Courses
Authors: Thapanee Seechaliao
Abstract:
This research paper presents guiding on how to design social media into higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about guiding on how to design social media into higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by frequency and percentage. The research results were the lecturers’ opinions concerning the designing social media into higher education courses as follows: 1) Lecturers deem that the most suitable learning theory is Collaborative Learning. 2) Lecturers consider that the most important learning and innovation Skill in the 21st century is communication and collaboration skills. 3) Lecturers think that the most suitable evaluation technique is authentic assessment. 4) Lecturers consider that the most appropriate portion used as blended learning should be 70% in the classroom setting and 30% online.Keywords: instructional design, social media, courses, higher education
Procedia PDF Downloads 5107288 Effective Teaching without Digital Enhancement
Authors: D. A. Carnegie
Abstract:
Whilst there is a movement towards increased digital augmentation in order to facilitate effective tertiary learning, this must come with an awareness of the limitations of such an approach. Learning is best achieved in an environment that includes their learning peers where difficulties can be shared and learning enabled. Policy that advocates for digital technology in place of a physical classroom is dangerous and is often driven by financial concerns rather than pedagogical ones. In this paper, a mostly digital-less form of teaching is presented – one that has proven to be extremely effective. Implicit is anecdotal evidence that student prefer the old overhead transparencies to PowerPoint presentations. Varying and reinforcing assessment, facilitation of effective note-taking, and just actively engaging with students is at the core of a good tertiary education experience. Digital techniques can augment and complement, but not replace these core personal teaching requirements.Keywords: engineering education, active classroom engagement, effective note taking, reinforcing assessment
Procedia PDF Downloads 3517287 Supervised Learning for Cyber Threat Intelligence
Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk
Abstract:
The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.Keywords: threat information sharing, supervised learning, data classification, performance evaluation
Procedia PDF Downloads 1497286 The Integration of ICT in EFL Classroom and Its Impact on Teacher Development
Authors: Tayaa Karima, Bouaziz Amina
Abstract:
Today's world is knowledge-based; everything we do is somehow connected with technology which it has a remarkable influence on socio-cultural and economic developments, including educational settings. This type of technology is supported in many teaching/learning setting where the medium of instruction is through computer technology, and particularly involving digital technologies. There has been much debate over the use of computers and the internet in foreign language teaching for more than two decades. Various studies highlights that the integration of Information Communications Technology (ICT) in foreign language teaching will have positive effects on both the teachers and students to help them be aware of the modernized world and meet the current demands of the globalised world. Information and communication technology has been gradually integrated in foreign learning environment as a platform for providing learners with learning opportunities. Thus, the impact of ICT on language teaching and learning has been acknowledged globally, this is because of the fundamental role that it plays in the enhancement of teaching and learning quality, modify the pedagogical practice, and motivate learners. Due to ICT related developments, many Maghreb countries regard ICT as a tool for changes and innovations in education. Therefore, the ministry of education attempted to set up computer laboratories and provide internet connection in the schools. Investment in ICT for educational innovations and improvement purposes has been continuing the need of teacher who will employ it in the classroom as vital role of the curriculum. ICT does not have an educational value in itself, but it becomes precious when teachers use it in learning and teaching process. This paper examines the impacts of ICT on teacher development rather than on teaching quality and highlights some challenges facing using ICT in the language learning/teaching.Keywords: information communications technology (ICT), integration, foreign language teaching, teacher development, learning opportunity
Procedia PDF Downloads 3887285 Adopting Structured Mini Writing Retreats as a Tool for Undergraduate Researchers
Authors: Clare Cunningham
Abstract:
Whilst there is a strong global research base on the benefits of structured writing retreats and similar provisions, such as Shut Up and Write events, for academic staff and postgraduate researchers, very little has been published about the worth of such events for undergraduate students. This is despite the fact that, internationally, undergraduate student researchers experience similar pressures, distractions and feelings towards writing as those who are at more senior levels within the academy. This paper reports on a mixed-methods study with cohorts of third-year undergraduate students over the course of four academic years. This involved a range of research instruments adopted over the four years of the study. They include the administration of four questionnaires across three academic years, a collection of ethnographic recordings in the second year, and the collation of reflective journal entries and evaluations from all four years. The final two years of data collection took place during the period of Covid-19 restrictions when writing retreats moved to the virtual space which adds an additional dimension of interest to the analysis. The analysis involved the collation of quantitative questionnaire data to observe patterns in expressions of attitudes towards writing. Qualitative data were analysed thematically and used to corroborate and support the quantitative data when appropriate. The resulting data confirmed that one of the biggest challenges for undergraduate students mirrors those reported in the findings of studies focused on more experienced researchers. This is not surprising, especially given the number of undergraduate students who now work alongside their studies, as well as the increasing number who have caring responsibilities, but it has, as yet, been under-reported. The data showed that the groups of writing retreat participants all had very positive experiences, with accountability, a sense of community and procrastination avoidance some of the key aspects. The analysis revealed the sometimes transformative power of these events for a number of these students in terms of changing the way they viewed writing and themselves as writers. The data presented in this talk will support the proposal that retreats should much more widely be offered to undergraduate students across the world.Keywords: academic writing, students, undergraduates, writing retreat
Procedia PDF Downloads 1997284 The Influence of English Learning on Ethnic Kazakh Minority Students’ Identity (Re)Construction at Chinese Universities
Authors: Sharapat Sharapat
Abstract:
English language is perceived as cultural capital in many non-native English-speaking countries, and minority groups in these social contexts seem to invest in the language to be empowered and reposition themselves from the imbalanced power relation with the dominant group. This study is devoted to explore how English learning influence minority Kazakh students’ identity (re)construction at Chinese universities from the scope of ‘imagined community, investment, and identity’ theory of Norton (2013). To this end the three research questions were designed as follows: 1) Kazakh minority students’ English learning experiences at Chinese universities; 2) Kazakh minority students’ views about benefits and opportunities of English learning; 3) the influence of English learning on Kazakh minority students’ identity (re)construction. The study employs an interview-based qualitative research method by interviewing nine Kazakh minority students in universities in Xinjiang and other inland cities in China. The findings suggest that through English learning, some students have reconstructed multiple identities as multicultural and global identities, which created ‘a third space’ to break limits of their ethnic and national identities and confused identity as someone in-between. Meanwhile, most minority students were empowered by the English language to resist inferior or marginalized positions and reconstruct imagined elite identity. However, English learning disempowered students who have little previous English education in school and placed them on unequal footing with other students, which further escalated the educational inequities.Keywords: minority in China, identity construction, multilingual education, language empowerment
Procedia PDF Downloads 2317283 An Investigation of Final Tests of Translation as Practiced in Iranian Undergraduate English Translation Program: The Instructors' Perspective
Authors: Hossein Heidari Tabrizi, Azizeh Chalak
Abstract:
The present study investigated in depth the way translation teachers design and develop final tests as measures for checking on the quality of students’ academic translation in Iranian context. To achieve this goal, thirty experienced male and female translation teachers from the four types of the universities offering the program were invited to an in-depth 30-minute one-session semi-structured interview. The responses provided showed how much discrepancy exists among the Iranian translation teachers (as developers of final translation tests), who are least informed with the current translation evaluation methods. It was also revealed that the criteria they use for developing such tests and scoring student translations are not theory-driven but are highly subjective, mainly based on their personal experience and intuition. Hence, the quality and accountability of such tests are under serious question. The results also confirmed that the dominant method commonly and currently practiced is the purely essay-type format. To remedy the situation, some suggestions are in order. As part of the solution, to improve the reliability and validity of such tests, the present summative, product-oriented evaluation should be accompanied with some formative, process-oriented methods of evaluation. Training the teachers and helping them get acquainted with modern principles of translation evaluation as well as the existing models, and rating scales does improve the quality of academic translation evaluation.Keywords: Iranian universities, students’ academic translations, translation final tests, undergraduate translation programs
Procedia PDF Downloads 5497282 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)
Authors: Medjadj Tarek, Ghribi Hayet
Abstract:
This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management
Procedia PDF Downloads 957281 Creating a Multilevel ESL Learning Community for Adults
Authors: Gloria Chen
Abstract:
When offering conventional level-appropriate ESL classes for adults is not feasible, a multilevel adult ESL class can be formed to benefit those who need to learn English for daily function. This paper examines the rationale, the process, the contents, and the outcomes of a multilevel ESL class for adults. The action research discusses a variety of assessments, lesson plans, teaching strategies that facilitate lifelong language learning. In small towns where adult ESL learners are only a handful, often advanced students and inexperienced students have to be placed in one class. Such class might not be viewed as desirable, but with on-going assessments, careful lesson plans, and purposeful strategies, a multilevel ESL class for adults can overcome the obstacles and help learners to reach a higher level of English proficiency. This research explores some hand-on strategies, such as group rotating, cooperative learning, and modifying textbook contents for practical purpose, and evaluate their effectiveness. The data collected in this research include Needs Assessment (beginning of class term), Mid-term Self-Assessment (5 months into class term), End-of-term Student Reflection (10 months into class), and End-of-term Assessment from the Instructor (10 months into class). A descriptive analysis of the data explains the practice of this particular learning community, and reveal the areas for improvement and enrichment. This research answers the following questions: (1) How do the assessments positively help both learners and instructors? (2) How do the learning strategies prepare students to become independent, life-long English learners? (3) How do materials, grouping, and class schedule enhance the learning? The result of the research contributes to the field of teaching and learning in language, not limited in English, by (a) examining strategies of conducting a multilevel adult class, (b) involving adult language learners with various backgrounds and learning styles for reflection and feedback, and (c) improving teaching and learning strategies upon research methods and results. One unique feature of this research is how students can work together with the instructor to form a learning community, seeking and exploring resources available to them, to become lifelong language learners.Keywords: adult language learning, assessment, multilevel, teaching strategies
Procedia PDF Downloads 3527280 Simplifying Writing Composition to Assist Students in Rural Areas: An Experimental Study for the Comparison of Guided and Unguided Instruction
Authors: Neha Toppo
Abstract:
Method and strategies of teaching instruction highly influence learning of students. In second language teaching, number of ways and methods has been suggested by different scholars and researchers through times. The present article deals with the role of teaching instruction in developing compositional ability of students in writing. It focuses on the secondary level students of rural areas, whose exposure to English language is limited and they face challenges even in simple compositions. The students till high school suffer with their disability in writing formal letter, application, essay, paragraph etc. They face problem in note making, writing answers in examination using their own words and depend fully on rote learning. It becomes difficult for them to give language to their own ideas. Teaching writing composition deserves special attention as writing is an integral part of language learning and students at this level are expected to have sound compositional ability for it is useful in numerous domains. Effective method of instruction could help students to learn expression of self, correct selection of vocabulary and grammar, contextual writing, composition of formal and informal writing. It is not limited to school but continues to be important in various other fields outside the school such as in newspaper and magazine, official work, legislative work, material writing, academic writing, personal writing, etc. The study is based on the experimental method, which hypothesize that guided instruction will be more effective in teaching writing compositions than usual instruction in which students are left to compose by their own without any help. In the test, students of one section are asked to write an essay on the given topic without guidance and another section are asked to write the same but with the assistance of guided instruction in which students have been provided with a few vocabulary and sentence structure. This process is repeated in few more schools to get generalize data. The study shows the difference on students’ performance using both the instructions; guided and unguided. The conclusion of the study is followed by the finding that writing skill of the students is quite poor but with the help of guided instruction they perform better. The students are in need of better teaching instruction to develop their writing skills.Keywords: composition, essay, guided instruction, writing skill
Procedia PDF Downloads 2797279 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2157278 A Study on the Implementation of Differentiating Instruction Based on Universal Design for Learning
Authors: Yong Wook Kim
Abstract:
The diversity of students in regular classrooms is increasing due to expand inclusive education and increase multicultural students in South Korea. In this diverse classroom environment, the universal design for learning (UDL) has been proposed as a way to meet both the educational need and social expectation of student achievement. UDL offers a variety of practical teaching methods, one of which is a differentiating instruction. The differentiating instruction has been pointed out resource limitation, organizational resistance, and lacks easy-to-implement framework. However, through the framework provided by the UDL, differentiating instruction is able to be flexible in their implementation. In practice, the UDL and differentiating instruction are complementary, but there is still a lack of research that suggests specific implementation methods that apply both concepts at the same time. This study was conducted to investigate the effects of differentiating instruction strategies according to learner characteristics (readiness, interest, learning profile), components of differentiating instruction (content, process, performance, learning environment), especially UDL principles (representation, behavior and expression, participation) existed in differentiating instruction, and implementation of UDL-based differentiating instruction through the Planning for All Learner (PAL) and UDL Lesson Plan Cycle. It is meaningful that such a series of studies can enhance the possibility of more concrete and realistic UDL-based teaching and learning strategies in the classroom, especially in inclusive settings.Keywords: universal design for learning, differentiating instruction, UDL lesson plan, PAL
Procedia PDF Downloads 1947277 Affective (And Effective) Teaching and Learning: Higher Education Gets Social Again
Authors: Laura Zizka, Gaby Probst
Abstract:
The Covid-19 pandemic has affected the way Higher Education Institutions (HEIs) have given their courses. From emergency remote where all students and faculty were immediately confined to home teaching and learning, the continuing evolving sanitary situation obliged HEIs to adopt other methods of teaching and learning from blended courses that included both synchronous and asynchronous courses and activities to hy-flex models where some students were on campus while others followed the course simultaneously online. Each semester brought new challenges for HEIs and, subsequently, additional emotional reactions. This paper investigates the affective side of teaching and learning in various online modalities and its toll on students and faculty members over the past three semesters. The findings confirm that students and faculty who have more self-efficacy, flexibility, and resilience reported positive emotions and embraced the opportunities that these past semesters have offered. While HEIs have begun a new semester in an attempt to return to ‘normal’ face-to-face courses, this paper posits that there are lessons to be learned from these past three semesters. The opportunities that arose from the challenge of the pandemic should be considered when moving forward by focusing on a greater emphasis on the affective aspect of teaching and learning in HEIs worldwide.Keywords: effective teaching and learning, higher education, engagement, interaction, motivation
Procedia PDF Downloads 1177276 Expression of Stance in Lower- and Upper- Level Students’ Writing in Business Administration at English-Medium University in Burundi
Authors: Clement Ndoricimpa
Abstract:
The expression of stance is highly expected in writing at tertiary level. Through a selection of linguistic and rhetorical elements, writers express commitment, critical distance and build a critically discerning reader in texts. Despite many studies on patterns of stance in students’ academic writing, little may not be known about how English as a Foreign Language students learns to build a critically discerning reader in their texts. Therefore, this study examines patterns of stance in essays written by students majoring in business administration at English-medium University in Burundi as part of classroom assignments. It draws on systemic functional linguistics to analyze qualitatively and quantitatively the data. The quantitative analysis is used to identify the differences in frequency of stance patterns in the essays. The results show a significant difference in the use of boosters by lower- and upper-level students. Lower-level students’ writing contains more boosters and many idiosyncratic sentence structures than do upper-level students’ writing, and upper-level students’ essays contain more hedging and few grammatical mistakes than do lower-level students’ essays. No significant difference in the use of attitude markers and concessive and contrastive expressions. Students in lower- and upper-level do not use attitude markers and disclaimer markers appropriately and accurately. These findings suggest that students should be taught the use of stance patterns in academic writing.Keywords: academic writing, metadiscourse, stance, student corpora
Procedia PDF Downloads 1377275 Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning
Authors: Wen-Chao Tang, Tang-Yi Liu, Ming Gao, Gang Xu, Hua-Yuan Yang
Abstract:
This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training.Keywords: acupuncture, group teaching, video instruction, observational learning, external focus, summary feedback
Procedia PDF Downloads 1807274 Data Structure Learning Platform to Aid in Higher Education IT Courses (DSLEP)
Authors: Estevan B. Costa, Armando M. Toda, Marcell A. A. Mesquita, Jacques D. Brancher
Abstract:
The advances in technology in the last five years allowed an improvement in the educational area, as the increasing in the development of educational software. One of the techniques that emerged in this lapse is called Gamification, which is the utilization of video game mechanics outside its bounds. Recent studies involving this technique provided positive results in the application of these concepts in many areas as marketing, health and education. In the last area there are studies that cover from elementary to higher education, with many variations to adequate to the educators methodologies. Among higher education, focusing on IT courses, data structures are an important subject taught in many of these courses, as they are base for many systems. Based on the exposed this paper exposes the development of an interactive web learning environment, called DSLEP (Data Structure Learning Platform), to aid students in higher education IT courses. The system includes basic concepts seen on this subject such as stacks, queues, lists, arrays, trees and was implemented to ease the insertion of new structures. It was also implemented with gamification concepts, such as points, levels, and leader boards, to engage students in the search for knowledge and stimulate self-learning.Keywords: gamification, Interactive learning environment, data structures, e-learning
Procedia PDF Downloads 4957273 Exploring the Nature and Meaning of Theory in the Field of Neuroeducation Studies
Authors: Ali Nouri
Abstract:
Neuroeducation is one of the most exciting research fields which is continually evolving. However, there is a need to develop its theoretical bases in connection to practice. The present paper is a starting attempt in this regard to provide a space from which to think about neuroeducational theory and invoke more investigation in this area. Accordingly, a comprehensive theory of neuroeducation could be defined as grouping or clustering of concepts and propositions that describe and explain the nature of human learning to provide valid interpretations and implications useful for educational practice in relation to philosophical aspects or values. Whereas it should be originated from the philosophical foundations of the field and explain its normative significance, it needs to be testable in terms of rigorous evidence to fundamentally advance contemporary educational policy and practice. There is thus pragmatically a need to include a course on neuroeducational theory into the curriculum of the field. In addition, there is a need to articulate and disseminate considerable discussion over the subject within professional journals and academic societies.Keywords: neuroeducation studies, neuroeducational theory, theory building, neuroeducation research
Procedia PDF Downloads 4487272 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners
Authors: Michael McMahon
Abstract:
The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.Keywords: multimedia learning, e-learning, design for learning, ICT
Procedia PDF Downloads 1037271 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 1097270 Impact of Overall Teaching Program of Anatomy in Learning: A Students Perspective
Authors: Mamatha Hosapatna, Anne D. Souza, Antony Sylvan Dsouza, Vrinda Hari Ankolekar
Abstract:
Our study intends to know the effect of the overall teaching program of Anatomy on a students learning. The advancement of various teaching methodologies in the present era has led to progressive changes in education. A student should be able to correlate well between the theory and practical knowledge attained even in the early years of their education in medicine and should be able to implement the same in patient care. The present study therefore aims to assess the impact the current anatomy teaching program has on a students learning and to what extent is it successful in making the learning program effective. Specific objectives of our study to assess the impact of overall teaching program of Anatomy in a students’ learning. Description of process proposed: A questionnaire will be constructed and the students will be asked to put forth their views regarding the Anatomy teaching program and its method of assessment. Suggestions, if any will also be encouraged to be put forth. Type of study is cross sectional observations. Target population is the first year MBBS students and sample size is 250. Assessment plan is to obtaining students responses using questionnaire. Calculating percentages of the responses obtained. Tabulation of the results will be done.Keywords: anatomy, observational study questionnaire, observational study, M.B.B.S students
Procedia PDF Downloads 4997269 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 897268 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 1087267 Entrepreneur Universal Education System: Future Evolution
Authors: Khaled Elbehiery, Hussam Elbehiery
Abstract:
The success of education is dependent on evolution and adaptation, while the traditional system has worked before, one type of education evolved with the digital age is virtual education that has influenced efficiency in today’s learning environments. Virtual learning has indeed proved its efficiency to overcome the drawbacks of the physical environment such as time, facilities, location, etc., but despite what it had accomplished, the educational system over all is not adequate for being a productive system yet. Earning a degree is not anymore enough to obtain a career job; it is simply missing the skills and creativity. There are always two sides of a coin; a college degree or a specialized certificate, each has its own merits, but having both can put you on a successful IT career path. For many of job-seeking individuals across world to have a clear meaningful goal for work and education and positively contribute the community, a productive correlation and cooperation among employers, universities alongside with the individual technical skills is a must for generations to come. Fortunately, the proposed research “Entrepreneur Universal Education System” is an evolution to meet the needs of both employers and students, in addition to gaining vital and real-world experience in the chosen fields is easier than ever. The new vision is to empower the education to improve organizations’ needs which means improving the world as its primary goal, adopting universal skills of effective thinking, effective action, effective relationships, preparing the students through real-world accomplishment and encouraging them to better serve their organization and their communities faster and more efficiently.Keywords: virtual education, academic degree, certificates, internship, amazon web services, Microsoft Azure, Google Cloud Platform, hybrid models
Procedia PDF Downloads 967266 Productivity-Emotiveness Model of School Students’ Capacity Levels
Authors: Ivan Samokhin
Abstract:
A new two-factor model of school students’ capacity levels is proposed. It considers the academic productivity and emotional condition of children taking part in the study process. Each basic level reflects the correlation of these two factors. The teacher decides whether the required result is achieved or not and write down the grade (from 'A' to 'F') in the register. During the term, the teacher can estimate the students’ progress with any intervals, but it is not desirable to exceed a two-week period (with primary school being an exception). Each boy or girl should have a special notebook to record the emotions which they feel studying a subject. The children can make their notes the way they like it – for example, using a ten-point scale or a short verbal description. It is recommended to record the emotions twice a day: after the lesson and after doing the homework. Before the students start doing this, they should be instructed by a school psychologist, who has to emphasize that an attitude to the subject – not to a person in charge of it – is relevant. At the end of the term, the notebooks are given to the teacher, who is now able to make preliminary conclusions about academic results and psychological comfort of each student. If necessary, some pedagogical measures can be taken. The data about a supposed capacity level is available for the teacher and the school administration. In certain cases, this information can be also revealed to the student’s parents, while the student learns it only after receiving a school-leaving certificate (until this moment, the results are not considered ultimate). Then a person may take these data into consideration when choosing his/her future area of higher education. We single out four main capacity levels: 'nominally low', 'inclination', 'ability' and 'gift'.Keywords: academic productivity, capacity level, emotional condition, school students
Procedia PDF Downloads 2257265 Discursive Construction of Strike in the Media Coverage of Academic Staff Union of Universities vs Federal Government of Nigeria Industrial Conflict of 2013
Authors: Samuel Alaba Akinwotu
Abstract:
Over the years, Nigeria’s educational system has greatly suffered from the menace of industrial conflict. The smooth running of the nation’s public educational institutions has been hampered by incessant strikes embarked upon by workers of these institutions. Even though industrial conflicts in Nigeria have enjoyed wide reportage in the media, there has been a dearth of critical examination of the language use that index the conflict’s discourse in the media. This study which is driven by a combination of Critical Discourse Analysis (CDA) and Conceptual Metaphor (CM) examines the discursive and ideological features of language indexing the industrial conflict between the Academic Staff Union of Universities (ASUU) and the Federal Government of Nigeria (FGN) in 2013. It aims to identify and assess the conceptual and cognitive motivations of the stances expressed by the parties and the public and the role of the media in the management and resolution of the conflict. For data, media reports and readers’ comments were purposively sampled from six print and online news sources (The Punch, This Day, Vanguard, The Nation, Osun Defender and AITonline) published between July and December 2013. The study provides further insight into industrial conflict and proves to be useful for the management and resolution of industrial conflicts especially in our public educational institutions.Keywords: industrial conflict, critical discourse analysis, conceptual metaphor, federal government of Nigeria, academic staff union of universities
Procedia PDF Downloads 1427264 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology
Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah
Abstract:
The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.Keywords: information, technology, virtual reality, education
Procedia PDF Downloads 2917263 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.Keywords: bioassay, machine learning, preprocessing, virtual screen
Procedia PDF Downloads 2747262 Psychological Capital and Intention for Self-Employment among Students in HEIs: A Multi-group Analysis Approach
Authors: Ugur Choban, Aruzhan Zhaksylyk, Assylbek Nurgabdeshov
Abstract:
In recent years, there has been an increasing understanding of the value of encouraging entrepreneurial attitudes in university students. This is motivated by the belief that stimulating entrepreneurship not only promotes economic growth but also fosters innovation. This study looks at the complex link and addresses critical gaps between psychological capital and entrepreneurial intention among university students, with a specific emphasis on how contextual factors like academic support and past business experience impact this dynamic. Using a quantitative research method, data were gathered from a broad sample of 300 university students drawn from several faculties. The study used a questionnaire that included the Psychological Capital Questionnaire (PCQ) to assess psychological capital and a validated scale for entrepreneurial intention, as well as binary measures of academic support and prior entrepreneurial experience. Statistical investigations, including multigroup analyses performed with SmartPLS software, provided interesting insights into the effect of contextual factors on the relationship between psychological capital and entrepreneurial intention. The findings highlight that psychological capital had a strong favorable influence on university students' entrepreneurial inclinations. Furthermore, the study found that academic support enhances the influence of psychological capital on entrepreneurial intentions, emphasizing the significance of institutional backing in fostering entrepreneurial mindsets. Furthermore, students with prior entrepreneurial experience had a stronger propensity for entrepreneurship, showing a synergistic link between psychological capital and entrepreneurial background. These findings have both theoretical and practical implications. By explaining the mechanisms by which psychological capital promotes entrepreneurial intentions, the study contributes to the establishment of focused entrepreneurship education programs and support activities that are suited to student requirements. Policymakers may use these findings to create policies that encourage student entrepreneurship, ultimately encouraging economic development and innovation.Keywords: academic support, entrepreneurial intentions, higher education institutions, psychological capital, prior entrepreneurial experience
Procedia PDF Downloads 567261 AutoML: Comprehensive Review and Application to Engineering Datasets
Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili
Abstract:
The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.Keywords: automated machine learning, uncertainty, engineering dataset, regression
Procedia PDF Downloads 617260 Designing an MTB-MLE for Linguistically Heterogenous Contexts: A Practitioner’s Perspective
Authors: Ajay Pinjani, Minha Khan, Ayesha Mehkeri, Anum Iftikhar
Abstract:
There is much research available on the benefits of adopting mother tongue-based multilingual education (MTB MLE) in primary school classrooms, but there is limited guidance available on how to design such programs for low-resource and linguistically diverse contexts. This paper is an effort to bridge the gap between theory and practice by offering a practitioner’s perspective on designing an MTB MLE program for linguistically heterogeneous contexts. The research compounds findings from current academic literature on MTB MLE, the study of global MTB MLE programs, interviews with practitioners, policy-makers, and academics worldwide, and a socio-linguistic survey carried out in parts of Tharparkar, Pakistan, the area selected for envisioned pilot implementation. These findings enabled the creation of ‘guiding principles’ which provide structure for the development of a contextualized and holistic MTB-MLE program. The guiding principles direct the creation of teaching and learning materials, creating effective teaching and learning environment, community engagement, and program evaluation. Additionally, the paper demonstrates the development of a context-specific language ladder framework which outlines the language journey of a child’s education, beginning with the mother tongue/ most familiar language in the early years and then gradually transitioning into other languages. Both the guiding principles and language ladder can be adapted to any multilingual context. Thus, this research provides MTB MLE practitioners with assistance in developing an MTB MLE model, which is best suited for their context.Keywords: mother tongue based multilingual education, education design, language ladder, language issues, heterogeneous contexts
Procedia PDF Downloads 114