Search results for: reduced modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7868

Search results for: reduced modeling

6308 Rheological Properties of Dough and Sensory Quality of Crackers with Dietary Fibers

Authors: Ljubica Dokić, Ivana Nikolić, Dragana Šoronja–Simović, Zita Šereš, Biljana Pajin, Nils Juul, Nikola Maravić

Abstract:

The possibility of application the dietary fibers in production of crackers was observed in this work, as well as their influence on rheological and textural properties on the dough for crackers and influence on sensory properties of obtained crackers. Three different dietary fibers, oat, potato and pea fibers, replaced 10% of wheat flour. Long fermentation process and baking test method were used for crackers production. The changes of dough for crackers were observed by rheological methods of determination the viscoelastic dough properties and by textural measurements. Sensory quality of obtained crackers was described using quantity descriptive method (QDA) by trained members of descriptive panel. Additional analysis of crackers surface was performed by videometer. Based on rheological determination, viscoelastic properties of dough for crackers were reduced by application of dietary fibers. Manipulation of dough with 10% of potato fiber was disabled, thus the recipe modification included increase in water content at 35%. Dough compliance to constant stress for samples with dietary fibers decreased, due to more rigid and stiffer dough consistency compared to control sample. Also, hardness of dough for these samples increased and dough extensibility decreased. Sensory properties of final products, crackers, were reduced compared to control sample. Application of dietary fibers affected mostly hardness, structure and crispness of the crackers. Observed crackers were low marked for flavor and taste, due to influence of fibers specific aroma. The sample with 10% of potato fibers and increased water content was the most adaptable to applied stresses and to production process. Also this sample was close to control sample without dietary fibers by evaluation of sensory properties and by results of videometer method.

Keywords: crackers, dietary fibers, rheology, sensory properties

Procedia PDF Downloads 323
6307 Haematological Changes and Anticoccidial Activities of Kaempferol in Eimeria Tenella Infected Broiler Chickens

Authors: Ya'u Muhammad, Umar Umar A. Mallammadori, Dahiru Mansur

Abstract:

Effect of kaempferol on haematological parameters in two weeks old broiler chickens with experimental Eimeria tenella infection was evaluated in this study. Sixty-day old broilers were randomly allotted into six groups (I-VI) of ten broilers each and brooded for two weeks with commercial broiler feed (vital feed®) and provided water ad libitum. At two weeks of age broilers in group 1 were neither infected nor treated. Broilers in groups II-VI were infected with Eimeria tenella sporulated oocyst (104/ml) via oral inoculation. After infection was established, broilers in groups II-IV were treated orally with 1 mg/kg, 1.5 mg/kg, and 2 mg/kg of kaempferol, respectively. Broilers in group V were treated for five days with amprolium, 1.25 g/L in drinking water. Broilers in group VI were administered normal saline, 5 ml/kg per os for five days. Five days post infection; all broilers were sacrificed by severing their jugular veins. Blood sample from each bird was collected in EDTA container for haematology. Caecal contents were harvested and used to determine the lesion score and caecal Oocyst count respectively. Data obtained was analyzed using pad prism version 5.0. Mean Packed Cell Volume (PCV), haemoglobin (Hb) concentration, and Red Blood Cell (RBC) count significantly (P < 0.05) increased in groups II, III, and IV in a dose dependent manner. Similarly, PCV, Hb concentration, and RBC count significantly (P < 0.05) increased in groups II, III, and IV when compared to VI. No significant (P > 0.05) difference in the mean values of PCV, Hb and RBC count were recorded between groups treated with kaempferol and group V. Caecal Oocyst counts and lesion scores reduced significantly (P < 0.05) in groups II, III, and IV in a dose dependent manner. It was therefore observed in this study that kaempferol improved haematological parameters and reduced Oocyst count as well as the lesion scores in broilers infected with Eimeria tenella.

Keywords: broilers, Eimeria tenella, kaempferol, lesion scores, oocyst count,

Procedia PDF Downloads 194
6306 Analysis, Evaluation and Optimization of Food Management: Minimization of Food Losses and Food Wastage along the Food Value Chain

Authors: G. Hafner

Abstract:

A method developed at the University of Stuttgart will be presented: ‘Analysis, Evaluation and Optimization of Food Management’. A major focus is represented by quantification of food losses and food waste as well as their classification and evaluation regarding a system optimization through waste prevention. For quantification and accounting of food, food losses and food waste along the food chain, a clear definition of core terms is required at the beginning. This includes their methodological classification and demarcation within sectors of the food value chain. The food chain is divided into agriculture, industry and crafts, trade and consumption (at home and out of home). For adjustment of core terms, the authors have cooperated with relevant stakeholders in Germany for achieving the goal of holistic and agreed definitions for the whole food chain. This includes modeling of sub systems within the food value chain, definition of terms, differentiation between food losses and food wastage as well as methodological approaches. ‘Food Losses’ and ‘Food Wastes’ are assigned to individual sectors of the food chain including a description of the respective methods. The method for analyzing, evaluation and optimization of food management systems consist of the following parts: Part I: Terms and Definitions. Part II: System Modeling. Part III: Procedure for Data Collection and Accounting Part. IV: Methodological Approaches for Classification and Evaluation of Results. Part V: Evaluation Parameters and Benchmarks. Part VI: Measures for Optimization. Part VII: Monitoring of Success The method will be demonstrated at the example of an invesigation of food losses and food wastage in the Federal State of Bavaria including an extrapolation of respective results to quantify food wastage in Germany.

Keywords: food losses, food waste, resource management, waste management, system analysis, waste minimization, resource efficiency

Procedia PDF Downloads 405
6305 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator

Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov

Abstract:

The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.

Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator

Procedia PDF Downloads 378
6304 Adding a Degree of Freedom to Opinion Dynamics Models

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 119
6303 Modeling of Drug Distribution in the Human Vitreous

Authors: Judith Stein, Elfriede Friedmann

Abstract:

The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.

Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body

Procedia PDF Downloads 137
6302 Numerical Tools for Designing Multilayer Viscoelastic Damping Devices

Authors: Mohammed Saleh Rezk, Reza Kashani

Abstract:

Auxiliary damping has gained popularity in recent years, especially in structures such as mid- and high-rise buildings. Distributed damping systems (typically viscous and viscoelastic) or reactive damping systems (such as tuned mass dampers) are the two types of damping choices for such structures. Distributed VE dampers are normally configured as braces or damping panels, which are engaged through relatively small movements between the structural members when the structure sways under wind or earthquake loading. In addition to being used as stand-alone dampers in distributed damping applications, VE dampers can also be incorporated into the suspension element of tuned mass dampers (TMDs). In this study, analytical and numerical tools for modeling and design of multilayer viscoelastic damping devices to be used in dampening the vibration of large structures are developed. Considering the limitations of analytical models for the synthesis and analysis of realistic, large, multilayer VE dampers, the emphasis of the study has been on numerical modeling using the finite element method. To verify the finite element models, a two-layer VE damper using ½ inch synthetic viscoelastic urethane polymer was built, tested, and the measured parameters were compared with the numerically predicted ones. The numerical model prediction and experimentally evaluated damping and stiffness of the test VE damper were in very good agreement. The effectiveness of VE dampers in adding auxiliary damping to larger structures is numerically demonstrated by chevron bracing one such damper numerically into the model of a massive frame subject to an abrupt lateral load. A comparison of the responses of the frame to the aforementioned load, without and with the VE damper, clearly shows the efficacy of the damper in lowering the extent of frame vibration.

Keywords: viscoelastic, damper, distributed damping, tuned mass damper

Procedia PDF Downloads 107
6301 Asset Pricing Puzzle and GDP-Growth: Pre and Post Covid-19 Pandemic Effect on Pakistan Stock Exchange

Authors: Mohammad Azam

Abstract:

This work is an endeavor to empirically investigate the Gross Domestic Product-Growth as mediating variable between various factors and portfolio returns using a broad sample of 522 financial and non-financial firms enlisted on Pakistan Stock Exchange between January-1993 and June-2022. The study employs the Structural Equation modeling and Ordinary Least Square regression to determine the findings before and during the Covid-19 epidemiological situation, which has not received due attention by researchers. The analysis reveals that market and investment factors are redundant, whereas size and value show significant results, whereas Gross Domestic Product-Growth performs significant mediating impact for the whole time frame. Using before Covid-19 period, the results reveal that market, value, and investment are redundant, but size, profitability, and Gross Domestic Product-Growth are significant. During the Covid-19, the statistics indicate that market and investment are redundant, though size and Gross Domestic Product-Growth are highly significant, but value and profitability are moderately significant. The Ordinary Least Square regression shows that market and investment are statistically insignificant, whereas size is highly significant but value and profitability are marginally significant. Using the Gross Domestic Product-Growth augmented model, a slight growth in R-square is observed. The size, value and profitability factors are recommended to the investors for Pakistan Stock Exchange. Conclusively, in the Pakistani market, the Gross Domestic Product-Growth indicates a feeble moderating effect between risk-premia and portfolio returns.

Keywords: asset pricing puzzle, mediating role of GDP-growth, structural equation modeling, COVID-19 pandemic, Pakistan stock exchange

Procedia PDF Downloads 73
6300 Effect of Doping on Band Gap of Zinc Oxide and Degradation of Methylene Blue and Industrial Effluent

Authors: V. P. Borker, K. S. Rane, A. J. Bhobe, R. S. Karmali

Abstract:

Effluent of dye industries contains chemicals and organic dyes. Sometimes they are thrown in the water bodies without any treatment. This leads to environmental pollution and is detrimental to flora and fauna. Semiconducting oxide zinc oxide with wide bandgap 3.37 eV is used as a photocatalyst in degrading organic dyes using UV radiations. It generates electron-hole pair on exposure to UV light. If degradation is aimed at solar radiations, bandgap of zinc oxide is to be reduced so as to utilize visible radiation. Thus, in present study, zinc oxide, ZnO is synthesized from zinc oxalate, N doped zinc oxide, ZnO₁₋ₓNₓ from hydrazinated zinc oxalate, cadmium doped zinc oxide Zn₀.₉Cd₀.₁₀ and magnesium-doped zinc oxide Zn₀.₉Mg₀.₁₀ from mixed metal oxalate and hydrazinated mixed metal oxalate. The precursors were characterized by FTIR. They were decomposed to form oxides and XRD were recorded. The compounds were monophasic. Bandgap was calculated using Diffuse Reflectance Spectrum. The bandgap of ZnO was reduced to 3.24 because of precursor method of synthesis leading large surface area. The bandgap of Zn₀.₉Cd₀.₁₀ was 3.11 eV and that of Zn₀.₉Mg₀.₁₀ 3.41 eV. The lowest value was of ZnO₁₋ₓNₓ 3.09 eV. These oxides were used to degrade methylene blue, a model dye in sunlight. ZnO₁₋ₓNₓ was also used to degrade effluent of industry manufacturing colours, crayons and markers. It was observed that ZnO₁₋ₓNₓ acts as a good photocatalyst for degradation of methylene blue. It can degrade the solution within 120 minutes. Similarly, diluted effluent was decolourised using this oxide. Some colours were degraded using ZnO. Thus, the use of these two oxides could mineralize effluent. Lesser bandgap leads to more electro hole pair thus helps in the formation of hydroxyl ion radicals. These radicals attack the dye molecule, fragmentation takes place and it is mineralised.

Keywords: cadmium doped zinc oxide, dye degradation, dye effluent degradation, N doped zinc oxide, zinc oxide

Procedia PDF Downloads 168
6299 Viability of Permaculture Principles to Sustainable Agriculture Enterprises in Malta

Authors: Byron Baron

Abstract:

Malta is a Mediterranean archipelago presenting a combination of environmental conditions which are less suitable for agriculture. This has resulted in a heavy dependence on agricultural chemicals, as well as over-extraction of groundwater, compounded by concomitant destruction of natural habitat surrounding the land areas used for agriculture. Such prolonged intensive land use has resulted in even greater degradation of Maltese soils. This study was thus designed with the goal of assessing the viability of implementing a sustainable agricultural system based on permaculture practices compared to the traditional local practices applied for intensive farming. The permaculture model was implemented over a period of two years for a number of locally-grown staple crops. The tangible targets included improved soil health, reduced water consumption, increased reliance on renewable energy, increased wild plant and insect diversity, and sustained crop yield. To achieve this in the permaculture test area, numerous practices were introduced. In line with permaculture principles land, tillage was reduced, only natural fertilisers were used, no herbicides or pesticides were used, irrigation was linked to a desalination system with sensors for monitoring soil parameters, mulching was practiced, and a photovoltaic system was installed. Furthermore, areas for wild plants were increased and controlled only by trimming, not mowing. A variety of environmental parameters were measured at regular intervals as well as crop yield (in kilos of produce) in order to quantify if any improvements in crop output and environmental conditions were obtained. The results obtained show a very slight improvement in overall soil health due to the brevity of the test period. Water consumption was reduced by over 50% with no apparent losses or ill effects on the crops. Renewable energy was sufficient to provide all electric power on-site, so apart from the initial investment costs, there were no limitations. Moreover, surrounding the commercial crops with borders of wild plants whilst only taking up less than 15% of the total land area assisted pollination, increased animal visitors, and did not give rise to any pest infestations. The conclusion from this study was that whilst results are promising, more detailed and long-term studies are required to understand the full extent of the implications brought about by such a transition, which hints towards the untapped potential of investing in the available resources on the island with the goal of improving the balance between economic prosperity and ecological sustainability.

Keywords: agronomic measures, ecological amplification, sustainability, permaculture

Procedia PDF Downloads 97
6298 Integration of Building Information Modeling Framework for 4D Constructability Review and Clash Detection Management of a Sewage Treatment Plant

Authors: Malla Vijayeta, Y. Vijaya Kumar, N. Ramakrishna Raju, K. Satyanarayana

Abstract:

Global AEC (architecture, engineering, and construction) industry has been coined as one of the most resistive domains in embracing technology. Although this digital era has been inundated with software tools like CAD, STADD, CANDY, Microsoft Project, Primavera etc. the key stakeholders have been working in siloes and processes remain fragmented. Unlike the yesteryears’ simpler project delivery methods, the current projects are of fast-track, complex, risky, multidisciplinary, stakeholder’s influential, statutorily regulative etc. pose extensive bottlenecks in preventing timely completion of projects. At this juncture, a paradigm shift surfaced in construction industry, and Building Information Modeling, aka BIM, has been a panacea to bolster the multidisciplinary teams’ cooperative and collaborative work leading to productive, sustainable and leaner project outcome. Building information modeling has been integrative, stakeholder engaging and centralized approach in providing a common platform of communication. A common misconception that BIM can be used for building/high rise projects in Indian Construction Industry, while this paper discusses of the implementation of BIM processes/methodologies in water and waste water industry. It elucidates about BIM 4D planning and constructability reviews of a Sewage Treatment Plant in India. Conventional construction planning and logistics management involves a blend of experience coupled with imagination. Even though the excerpts or judgments or lessons learnt gained from veterans might be predictive and helpful, but the uncertainty factor persists. This paper shall delve about the case study of real time implementation of BIM 4D planning protocols for one of the Sewage Treatment Plant of Dravyavati River Rejuvenation Project in India and develops a Time Liner to identify logistics planning and clash detection. With this BIM processes, we shall find that there will be significant reduction of duplication of tasks and reworks. Also another benefit achieved will be better visualization and workarounds during conception stage and enables for early involvement of the stakeholders in the Project Life cycle of Sewage Treatment Plant construction. Moreover, we have also taken an opinion poll of the benefits accrued utilizing BIM processes versus traditional paper based communication like 2D and 3D CAD tools. Thus this paper concludes with BIM framework for Sewage Treatment Plant construction which will achieve optimal construction co-ordination advantages like 4D construction sequencing, interference checking, clash detection checking and resolutions by primary engagement of all key stakeholders thereby identifying potential risks and subsequent creation of risk response strategies. However, certain hiccups like hesitancy in adoption of BIM technology by naïve users and availability of proficient BIM trainers in India poses a phenomenal impediment. Hence the nurture of BIM processes from conception, construction and till commissioning, operation and maintenance along with deconstruction of a project’s life cycle is highly essential for Indian Construction Industry in this digital era.

Keywords: integrated BIM workflow, 4D planning with BIM, building information modeling, clash detection and visualization, constructability reviews, project life cycle

Procedia PDF Downloads 122
6297 Assessing the Nutritional Characteristics and Habitat Modeling of the Comorian’s Yam (Dioscorea comorensis) in a Fragmented Landscape

Authors: Mounir Soule, Hindatou Saidou, Razafimahefa, Mohamed Thani Ibouroi

Abstract:

High levels of habitat fragmentation and loss are the main drivers of plant species extinction. They reduce the habitat quality, which is a determining factor for the reproduction of plant species, and generate strong selective pressures for habitat selection, with impacts on the reproduction and survival of individuals. The Comorian’s yam (Dioscorea comorensis) is one of the most threatened plant species of the Comoros archipelago. The species faces one of the highest rates of habitat loss worldwide (9.3 % per year) and is classified as Endangered in the IUCN red list. Despite the nutritional potential of this tuber, the Comorian’s yam cultivation remains neglected by local populations due probably to lack of knowledge on its nutritional importance and the factors driving its spatial distribution and development. In this study, we assessed the nutritional characteristics of Dioscorea comorensis and the drivers of spatial distribution and abundance to propose conservation measures and improve crop yields. To determine the nutritional characteristics, the Kjeldahl method, the Soxhlet method, and Atwater's specific calorific coefficients methods were applied for analyzing proteins, lipids, and caloric energy respectively. In addition, atomic absorption spectrometry was used to measure mineral particles. By combining species occurrences with ecological (habitat types), climatic (temperature, rainfall, etc.), and physicochemical (soil types and quality) variables, we assessed habitat suitability and spatial distribution of the species and the factors explaining the origin, persistence, distribution and competitive capacity of a species using a Species Distribution Modeling (SDM) method. The results showed that the species contains 83.37% carbohydrates, 6.37% protein, and 0.45% lipids. In 100 grams, the quantities of Calcium, Sodium, Zinc, Iron, Copper, Potassium, Phosphorus, Magnesium, and Manganese are respectively 422.70, 599.41, 223.11, 252.32, 332.20, 780.41, 444.17, 287.71 and 220.73 mg. Its PRAL index is negative (- 9.80 mEq/100 g), and its Ca/P (0.95) and Na/K (0.77) ratios are less than 1. This species provides an energy value of 357.46 Kcal per 100 g, thanks to its carbohydrates and minerals and is distinguished from others by its high protein content, offering benefits for cardiovascular health. According to our SDM, the species has a very limited distribution, restricted to forests with higher biomass, humidity, and clay. Our findings highlight how distribution patterns are related to ecological and environmental factors. They also emphasize how the Comoros yam is beneficial in terms of nutritional quality. Our results represent a basic knowledge that will help scientists and decision-makers to develop conservation strategies and to improve crop yields.

Keywords: Dioscorea comorensis, nutritional characteristics, species distribution modeling, conservation strategies, crop yields improvement

Procedia PDF Downloads 31
6296 Mathematical Modeling to Reach Stability Condition within Rosetta River Mouth, Egypt

Authors: Ali Masria , Abdelazim Negm, Moheb Iskander, Oliver C. Saavedra

Abstract:

Estuaries play an important role in exchanging water and providing a navigational pathway for ships. These zones are very sensitive and vulnerable to any interventions in coastal dynamics. Almost major of these inlets experience coastal problems such as severe erosion, and accretion. Rosetta promontory, Egypt is an example of this environment. It suffers from many coastal problems as erosion problem along the coastline and siltation problem inside the inlet. It is due to lack of water and sediment resources as a side effect of constructing the Aswan High dam. The shoaling of the inlet leads to hindering the navigation process of fishing boats, negative impacts to estuarine and salt marsh habitat and decrease the efficiency of the cross section to transfer the flow during emergencies to the sea. This paper aims to reach a new condition of stability of Rosetta Promontory by using coastal measures to control the sediment entering, and causes shoaling inside the inlet. These coastal measures include modifying the inlet cross section by using centered jetties, eliminate the coastal dynamic in the entrance using boundary jetties. This target is achieved by using a hydrodynamic model Coastal Modeling System (CMS). Extensive field data collection (hydrographic surveys, wave data, tide data, and bed morphology) is used to build and calibrate the model. About 20 scenarios were tested to reach a suitable solution that mitigate the coastal problems at the inlet. The results show that 360 m jetty in the eastern bank with system of sand bypass from the leeside of the jetty can stabilize the estuary.

Keywords: Rosetta promontory, erosion, sedimentation, inlet stability

Procedia PDF Downloads 587
6295 Modeling and Characterization of Organic LED

Authors: Bouanati Sidi Mohammed, N. E. Chabane Sari, Mostefa Kara Selma

Abstract:

It is well-known that Organic light emitting diodes (OLEDs) are attracting great interest in the display technology industry due to their many advantages, such as low price of manufacturing, large-area of electroluminescent display, various colors of emission included white light. Recently, there has been much progress in understanding the device physics of OLEDs and their basic operating principles. In OLEDs, Light emitting is the result of the recombination of electron and hole in light emitting layer, which are injected from cathode and anode. For improve luminescence efficiency, it is needed that hole and electron pairs exist affluently and equally and recombine swiftly in the emitting layer. The aim of this paper is to modeling polymer LED and OLED made with small molecules for studying the electrical and optical characteristics. The first simulation structures used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2’-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode usually an indium tin oxide (ITO) substrate, and a cathode, such as Al. In the second structure we replace MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). We choose MEH-PPV because of it's solubility in common organic solvents, in conjunction with a low operating voltage for light emission and relatively high conversion efficiency and Alq3 because it is one of the most important host materials used in OLEDs. In this simulation, the Poole-Frenkel- like mobility model and the Langevin bimolecular recombination model have been used as the transport and recombination mechanism. These models are enabled in ATLAS -SILVACO software. The influence of doping and thickness on I(V) characteristics and luminescence, are reported.

Keywords: organic light emitting diode, polymer lignt emitting diode, organic materials, hexoxy-phenylenevinylene

Procedia PDF Downloads 554
6294 Effect of Salvadora Persica Gel on Clinical and Microbiological Parameters of Chronic Periodontitis

Authors: Tahira Hyder, Saima Quraeshi, Zohaib Akram

Abstract:

Salvadora Persica (SP) is known to have anti-inflammatory, antioxidant, anti-coagulant and anti-bacterial properties that may provide therapeutic benefits in the treatment of chronic periodontitis (CP). The current clinical trial was designed to investigate the clinical and anti-microbial effects of SP gel as an adjunct to scaling and root planning (SRP) in subjects with generalized CP. Sixty-six subjects with CP were randomized allocated into two groups: SRP + SP gel (test group) and SRP only (control group). Clinical parameters (periodontal pocket depth, gingival recession, clinical attachment level, bleeding score and plaque score) were recorded at baseline before SRP and at 6 weeks. At baseline and 6 weeks subgingival plaque samples were collected and periodontopathogen Porphyromonas Gingivalis (Pg) quantified using Real-time Polymerase Chain Reaction (RT-PCR). Both therapies reduced the mean periodontal pocket depth (PPD), plaque score (PS) and bleeding score (BOP) and improved the mean clinical attachment level (CAL) between baseline and 6 weeks. In subjects receiving adjunctive SP gel a statistically significant improvement was observed in BOP at follow-up compared to control group (15.01±3.47% and 22.81±6.81% respectively, p=0.001), while there was no statistically significant difference in periodontal pocket depth, gingival recession, clinical attachment level and plaque score between both groups. The test group displayed significantly greater Pg reduction compared to the control group after 6 weeks. The current study establishes that local delivery of SP gel into periodontal pocket in CP stimulated a significant reduction in bacteria Pg level and an improvement in gingival health, as evident from a reduced bleeding score, when used as an adjunct to SRP.

Keywords: miswak, scaling and root planing, porphyromonas gingivalis, chronic periodontitis

Procedia PDF Downloads 87
6293 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation

Procedia PDF Downloads 348
6292 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning

Authors: Shayla He

Abstract:

Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.

Keywords: homeless, prediction, model, RNN

Procedia PDF Downloads 121
6291 Redesigning the Plant Distribution of an Industrial Laundry in Arequipa

Authors: Ana Belon Hercilla

Abstract:

The study is developed in “Reactivos Jeans” company, in the city of Arequipa, whose main business is the laundry of garments at an industrial level. In 2012 the company initiated actions to provide a dry cleaning service of alpaca fiber garments, recognizing that this item is in a growth phase in Peru. Additionally this company took the initiative to use a new greenwashing technology which has not yet been developed in the country. To accomplish this, a redesign of both the process and the plant layout was required. For redesigning the plant, the methodology used was the Systemic Layout Planning, allowing this study divided into four stages. First stage is the information gathering and evaluation of the initial situation of the company, for which a description of the areas, facilities and initial equipment, distribution of the plant, the production process and flows of major operations was made. Second stage is the development of engineering techniques that allow the logging and analysis procedures, such as: Flow Diagram, Route Diagram, DOP (process flowchart), DAP (analysis diagram). Then the planning of the general distribution is carried out. At this stage, proximity factors of the areas are established, the Diagram Paths (TRA) is developed, and the Relational Diagram Activities (DRA). In order to obtain the General Grouping Diagram (DGC), further information is complemented by a time study and Guerchet method is used to calculate the space requirements for each area. Finally, the plant layout redesigning is presented and the implementation of the improvement is made, making it possible to obtain a model much more efficient than the initial design. The results indicate that the implementation of the new machinery, the adequacy of the plant facilities and equipment relocation resulted in a reduction of the production cycle time by 75.67%, routes were reduced by 68.88%, the number of activities during the process were reduced by 40%, waits and storage were removed 100%.

Keywords: redesign, time optimization, industrial laundry, greenwashing

Procedia PDF Downloads 394
6290 Reduction of Transient Receptor Potential Vanilloid 1 for Chronic Pain and Depression Co-Morbidity through Electroacupuncture and Gene Deletion in Mice Brain

Authors: Bernice Lottering, Yi-Wen Lin

Abstract:

Chronic pain and depression have an estimated 80% rate of comorbidity with unsatisfactory treatment interventions signifying the importance of developing effective therapeutic interventions for a serious chronic condition affecting a large majority of the global population. Chronic pain is defined as persistent pain presenting for over 3 months. This disease state increases the risk of developing depression in comparison to healthy individuals. In the current study, complete Freund’s adjuvant (CFA) was used to induce cell-mediated chronic inflammatory pain in a murine model. Significant mechanical and thermal hyperalgesia was induced, alongside observable depression-like behaviors. These conditions were attenuated through the use of electroacupuncture (EA). Similarly, these effects were also investigated with respect to the transient receptor potential vanilloid 1 (TRPV1), by analyzing the effects of TRPV1 gene deletion on the comorbidity of chronic pain and depression. The expression of the TRPV1 inflammatory response, and related downstream molecules, including protein kinases (PKs), mitogen-activated protein kinase (MAPKs), and transcriptional factors, were significantly reduced in the thalamus, prefrontal cortex (PFC), hippocampus, and periaqueductal gray (PAG) of CFA-treated mice. In addition, phosphorylated N-methyl-D-aspartate (NMDA) receptor 1 was also found to be reduced in the aforementioned areas, suggesting potential application and validity in a clinical setting. Our study determined the prospective therapeutic effects of EA in the treatment of chronic inflammatory pain and depression comorbidity and provides a novel and detailed mechanism underlying EA-mediated analgesia. These findings may be relevant in the utilization of clinical intervention approaches related to chronic pain and depression comorbidity.

Keywords: chronic pain, depression, NMDA, prefrontal cortex, TRPV1

Procedia PDF Downloads 133
6289 Enhance Construction Visual As-Built Schedule Management Using BIM Technology

Authors: Shu-Hui Jan, Hui-Ping Tserng, Shih-Ping Ho

Abstract:

Construction project control attempts to obtain real-time as-built schedule information and to eliminate project delays by effectively enhancing dynamic schedule control and management. Suitable platforms for enhancing an as-built schedule visually during the construction phase are necessary and important for general contractors. As the application of building information modeling (BIM) becomes more common, schedule management integrated with the BIM approach becomes essential to enhance visual construction management implementation for the general contractor during the construction phase. To enhance visualization of the updated as-built schedule for the general contractor, this study presents a novel system called the Construction BIM-assisted Schedule Management (ConBIM-SM) system for general contractors in Taiwan. The primary purpose of this study is to develop a web ConBIM-SM system for the general contractor to enhance visual as-built schedule information sharing and efficiency in tracking construction as-built schedule. Finally, the ConBIM-SM system is applied to a case study of a commerce building project in Taiwan to verify its efficacy and demonstrate its effectiveness during the construction phase. The advantages of the ConBIM-SM system lie in improved project control and management efficiency for general contractors, and in providing BIM-assisted as-built schedule tracking and management, to access the most current as-built schedule information through a web browser. The case study results show that the ConBIM-SM system is an effective visual as-built schedule management platform integrated with the BIM approach for general contractors in a construction project.

Keywords: building information modeling (BIM), construction schedule management, as-built schedule management, BIM schedule updating mechanism

Procedia PDF Downloads 375
6288 Design, Synthesis and Pharmacological Investigation of Novel 2-Phenazinamine Derivatives as a Mutant BCR-ABL (T315I) Inhibitor

Authors: Gajanan M. Sonwane

Abstract:

Nowadays, the entire pharmaceutical industry is facing the challenge of increasing efficiency and innovation. The major hurdles are the growing cost of research and development and a concurrent stagnating number of new chemical entities (NCEs). Hence, the challenge is to select the most druggable targets and to search the equivalent drug-like compounds, which also possess specific pharmacokinetic and toxicological properties that allow them to be developed as drugs. The present research work includes the studies of developing new anticancer heterocycles by using molecular modeling techniques. The heterocycles synthesized through such methodology are much effective as various physicochemical parameters have been already studied and the structure has been optimized for its best fit in the receptor. Hence, on the basis of the literature survey and considering the need to develop newer anticancer agents, new phenazinamine derivatives were designed by subjecting the nucleus to molecular modeling, viz., GQSAR analysis and docking studies. Simultaneously, these designed derivatives were subjected to in silico prediction of biological activity through PASS studies and then in silico toxicity risk assessment studies. In PASS studies, it was found that all the derivatives exhibited a good spectrum of biological activities confirming its anticancer potential. The toxicity risk assessment studies revealed that all the derivatives obey Lipinski’s rule. Amongst these series, compounds 4c, 5b and 6c were found to possess logP and drug-likeness values comparable with the standard Imatinib (used for anticancer activity studies) and also with the standard drug methotrexate (used for antimitotic activity studies). One of the most notable mutations is the threonine to isoleucine mutation at codon 315 (T315I), which is known to be resistant to all currently available TKI. Enzyme assay planned for confirmation of target selective activity.

Keywords: drug design, tyrosine kinases, anticancer, Phenazinamine

Procedia PDF Downloads 116
6287 Silymarin Reverses Scopolamine-Induced Memory Deficit in Object Recognition Test in Rats: A Behavioral, Biochemical, Histopathological and Immunohistochemical Study

Authors: Salma A. El-Marasy, Reham M. Abd-Elsalam, Omar A. Ahmed-Farid

Abstract:

Dementia is characterized by impairments in memory and other cognitive abilities. This study aims to elucidate the possible ameliorative effect of silymarin on scopolamine-induced dementia using the object recognition test (ORT). The study was extended to demonstrate the role of cholinergic activity, oxidative stress, neuroinflammation, brain neurotransmitters and histopathological changes in the anti-amnestic effect of silymarin in demented rats. Wistar rats were pretreated with silymarin (200, 400, 800 mg/kg) or donepezil (10 mg/kg) orally for 14 consecutive days. Dementia was induced after the last drug administration by a single intraperitoneal dose of scopolamine (16 mg/kg). Then behavioral, biochemical, histopathological, and immunohistochemical analyses were then performed. Rats pretreated with silymarin counteracted scopolamine-induced non-spatial working memory impairment in the ORT and decreased acetylcholinesterase (AChE) activity, reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), restored gamma-aminobutyric acid (GABA) and dopamine (DA) contents in the cortical and hippocampal brain homogenates. Silymarin dose-dependently reversed scopolamine-induced histopathological changes. Immunohistochemical analysis showed that silymarin dose-dependently mitigated protein expression of a glial fibrillary acidic protein (GFAP) and nuclear factor kappa-B (NF-κB) in the brain cortex and hippocampus. All these effects of silymarin were similar to that of the standard anti-amnestic drug, donepezil. This study reveals that the ameliorative effect of silymarin on scopolamine-induced dementia in rats using the ORT maybe in part mediated by, enhancement of cholinergic activity, anti-oxidant and anti-inflammatory activities as well as mitigation in brain neurotransmitters and histopathological changes.

Keywords: dementia, donepezil, object recognition test, rats, silymarin, scopolamine

Procedia PDF Downloads 138
6286 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene

Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen

Abstract:

A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.

Keywords: CdS quantum dots, modification, detection, naphthalene

Procedia PDF Downloads 493
6285 Solvent-Aided Dilution Approach for Heavy Hydrocarbon Liquid Evaluation in the Eastern Dahomey Basin, Southwestern Nigeria: Case Study of Agbabu Bitumen in Ondo State.

Authors: Adetokunbo Ademola Falade, Oluwatoyin Olakunle Akinsete, Hussein Omeiza Aliu

Abstract:

Solvent-aided dilution processes are often employed to recover bitumen by reducing its viscosity. In this study, methanol, toluene, and xylene were investigated as potential hydrocarbon solvents for solvent-aided hydrocarbon recovery of Agbabu bitumen. Solubility, Viscosity, and Saturate, Aromatic, Resin and Asphaltene (SARA) Analysis tests were carried out to determine the solubility of the bitumen in the solvents, the viscosity, and the SARA fraction of the natural bitumen and bitumen-solvent mixtures. Agbabu bitumen was found to have a high content of saturates and aromatics. Viscosity decreases as pressure increases, while solubility reduces as temperature increases. The experimental diffusivity of the sample decreases with temperature and increases with pressure, indicating that the presence of additional solvent molecules in the oil phase facilitates diffusion. Agbabu bitumen was found to be most soluble in toluene, and its viscosity was reduced most in it. Xylene exhibited a similar effect as toluene on the sample, though lesser but better than methanol. Methanol reduced the saturated content and significantly raised the asphaltene content, keeping the mixture viscosity high, a condition that, in turn, favors its colloidal stability. The colloidal instability index (CII) values, which account for the asphaltene stability of the mixture, show that the bitumen-methanol system with a CII of 0.874 will have mild asphaltene deposit issues while others are unstable. This approach of combining multiple tests with the CII can accurately predict the behavior of Agbabu bitumen in solvents and enhance the decision on the choice of bitumen recovery technology.

Keywords: asphaltene, bitumen, diffusivity, hydrocarbon solvent, SARA

Procedia PDF Downloads 37
6284 Recurrent Neural Networks for Complex Survival Models

Authors: Pius Marthin, Nihal Ata Tutkun

Abstract:

Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.

Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)

Procedia PDF Downloads 90
6283 Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Icaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters.

Keywords: hybrid circuits, LE-FDTD, lumped element, parametric analysis

Procedia PDF Downloads 153
6282 Influence of Flight Design on Discharging Profiles of Granular Material in Rotary Dryer

Authors: I. Benhsine, M. Hellou, F. Lominé, Y. Roques

Abstract:

During the manufacture of fertilizer, it is necessary to add water for granulation purposes. The water content is then removed or reduced using rotary dryers. They are commonly used to dry wet granular materials and they are usually fitted with lifting flights. The transport of granular materials occurs when particles cascade from the lifting flights and fall into the air stream. Each cascade consists of a lifting and a falling cycle. Lifting flights are thus of great importance for the transport of granular materials along the dryer. They also enhance the contact between solid particles and the air stream. Optimization of the drying process needs an understanding of the behavior of granular materials inside a rotary dryer. Different approaches exist to study the movement of granular materials inside the dryer. Most common of them are based on empirical formulations or on study the movement of the bulk material. In the present work, we are interested in the behavior of each particle in the cross section of the dryer using Discrete Element Method (DEM) to understand. In this paper, we focus on studying the hold-up, the cascade patterns, the falling time and the falling length of the particles leaving the flights. We will be using two segment flights. Three different profiles are used: a straight flight (180° between both segments), an angled flight (with an angle of 150°), and a right-angled flight (90°). The profile of the flight affects significantly the movement of the particles in the dryer. Changing the flight angle changes the flight capacity which leads to different discharging profile of the flight, thus affecting the hold-up in the flight. When the angle of the flight is reduced, the range of the discharge angle increases leading to a more uniformed cascade pattern in time. The falling length and the falling time of the particles also increase up to a maximum value then they start decreasing. Moreover, the results show an increase in the falling length and the falling time up to 70% and 50%, respectively, when using a right-angled flight instead of a straight one.

Keywords: discrete element method, granular materials, lifting flight, rotary dryer

Procedia PDF Downloads 327
6281 Modeling Geogenic Groundwater Contamination Risk with the Groundwater Assessment Platform (GAP)

Authors: Joel Podgorski, Manouchehr Amini, Annette Johnson, Michael Berg

Abstract:

One-third of the world’s population relies on groundwater for its drinking water. Natural geogenic arsenic and fluoride contaminate ~10% of wells. Prolonged exposure to high levels of arsenic can result in various internal cancers, while high levels of fluoride are responsible for the development of dental and crippling skeletal fluorosis. In poor urban and rural settings, the provision of drinking water free of geogenic contamination can be a major challenge. In order to efficiently apply limited resources in the testing of wells, water resource managers need to know where geogenically contaminated groundwater is likely to occur. The Groundwater Assessment Platform (GAP) fulfills this need by providing state-of-the-art global arsenic and fluoride contamination hazard maps as well as enabling users to create their own groundwater quality models. The global risk models were produced by logistic regression of arsenic and fluoride measurements using predictor variables of various soil, geological and climate parameters. The maps display the probability of encountering concentrations of arsenic or fluoride exceeding the World Health Organization’s (WHO) stipulated concentration limits of 10 µg/L or 1.5 mg/L, respectively. In addition to a reconsideration of the relevant geochemical settings, these second-generation maps represent a great improvement over the previous risk maps due to a significant increase in data quantity and resolution. For example, there is a 10-fold increase in the number of measured data points, and the resolution of predictor variables is generally 60 times greater. These same predictor variable datasets are available on the GAP platform for visualization as well as for use with a modeling tool. The latter requires that users upload their own concentration measurements and select the predictor variables that they wish to incorporate in their models. In addition, users can upload additional predictor variable datasets either as features or coverages. Such models can represent an improvement over the global models already supplied, since (a) users may be able to use their own, more detailed datasets of measured concentrations and (b) the various processes leading to arsenic and fluoride groundwater contamination can be isolated more effectively on a smaller scale, thereby resulting in a more accurate model. All maps, including user-created risk models, can be downloaded as PDFs. There is also the option to share data in a secure environment as well as the possibility to collaborate in a secure environment through the creation of communities. In summary, GAP provides users with the means to reliably and efficiently produce models specific to their region of interest by making available the latest datasets of predictor variables along with the necessary modeling infrastructure.

Keywords: arsenic, fluoride, groundwater contamination, logistic regression

Procedia PDF Downloads 348
6280 Effect of Co-Infection With Intestinal Parasites on COVID-19 Severity: A Prospective Observational Cohort Study

Authors: Teklay Gebrecherkos, Dawit Wolday, Muhamud Abdulkader

Abstract:

Background: COVID-19 symptomatology in Africa appears significantly less serious than in the industrialized world. Our hypothesis for this phenomenon, being a different, more activated immune system due to parasite infections contributes to reduced COVID-19 outcome. We investigated this hypothesis in an endemic area in sub sub-saharan Africa. Methods: Ethiopian COVID-19 patients were enrolled and screened for intestinal parasites, between July 2020 and March 2021. The primary outcome was the proportion of patients with severe COVID-19. SARS-CoV-2 infection was confirmed by RT-PCR on samples obtained from nasopharyngeal swabs, while direct microscopic examination, modified Ritchie concentration, and Kato-Katz methods were used to identify parasites and ova from a fresh stool sample. Ordinal logistic regression models were used to estimate the association between parasite infection and COVID-19 severity. Models were adjusted for sex, age, residence, education level, occupation, body mass index, and comorbidities. Data were analyzed using STATA version 14. P-value <0.05 was considered statistically significant. Results: A total of 751 SARS-CoV-2 infected patients were enrolled, of whom 284 (37•8%) had an intestinal parasitic infection. Only 27/255 (10•6%) severe COVID-19 patients were co-infected with intestinal parasites, while 257/496 (51•8%) non-severe COVID-19 patients appeared parasite positive (p<0.0001). Patients co-infected with parasites had lower odds of developing severe COVID-19, with an adjusted odds ratio (AOR) of 0•14 (95% CI 0•09–0•24; p<0•0001) for all parasites, AOR 0•20 ([95% CI 0•11–0•38]; p<0•0001) for protozoa, and AOR 0•13 ([95% CI 0•07–0•26]; p<0•0001) for helminths. When stratified by species, co-infection with Entamoeba spp., Hymenolopis nana, and Schistosoma mansoni implied a lower probability of developing severe COVID-19. There were 11 deaths (1•5%), and all were among patients without parasites (p=0•009). Conclusions: Parasite co-infection is associated with a reduced risk of severe COVID-19 in African patients. Parasite-driven immunomodulatory responses may mute hyper-inflammation associated with severe COVID-19.

Keywords: COVID-19, SARS-COV-2, intestinal parasite, RT-PCR, co-infection

Procedia PDF Downloads 61
6279 The Impact of Sedimentary Heterogeneity on Oil Recovery in Basin-plain Turbidite: An Outcrop Analogue Simulation Case Study

Authors: Bayonle Abiola Omoniyi

Abstract:

In turbidite reservoirs with volumetrically significant thin-bedded turbidites (TBTs), thin-pay intervals may be underestimated during calculation of reserve volume due to poor vertical resolution of conventional well logs. This paper demonstrates the strong control of bed-scale sedimentary heterogeneity on oil recovery using six facies distribution scenarios that were generated from outcrop data from the Eocene Itzurun Formation, Basque Basin (northern Spain). The variable net sand volume in these scenarios serves as a primary source of sedimentary heterogeneity impacting sandstone-mudstone ratio, sand and shale geometry and dimensions, lateral and vertical variations in bed thickness, and attribute indices. The attributes provided input parameters for modeling the scenarios. The models are 20-m (65.6 ft) thick. Simulation of the scenarios reveals that oil production is markedly enhanced where degree of sedimentary heterogeneity and resultant permeability contrast are low, as exemplified by Scenarios 1, 2, and 3. In these scenarios, bed architecture encourages better apparent vertical connectivity across intervals of laterally continuous beds. By contrast, low net-to-gross Scenarios 4, 5, and 6, have rapidly declining oil production rates and higher water cut with more oil effectively trapped in low-permeability layers. These scenarios may possess enough lateral connectivity to enable injected water to sweep oil to production well; such sweep is achieved at a cost of high-water production. It is therefore imperative to consider not only net-to-gross threshold but also facies stack pattern and related attribute indices to better understand how to effectively manage water production for optimum oil recovery from basin-plain reservoirs.

Keywords: architecture, connectivity, modeling, turbidites

Procedia PDF Downloads 24