Search results for: network capacity
7065 Applying Sociometer Theory to Different Age Groups and Groups Differences regarding State Self-Esteem Sensitivity
Authors: Yun Yu Stephanie Law
Abstract:
Sociometer Theory is well tested among young adults in western population, however, limited research is found for other age groups, like adolescent and middle-adulthood in Asia population. Thus, one of the main purposes of this study is to verify the validity of Sociometer Theory in different age groups among Asian. To be specific, we hypothesized that an increase in one’s perceived social rejection is associated to a decrease in his/her state self-esteem among all age groups in Asian population. And we expected that this association can be found among all age groups including adolescent, young adults and middle-adults group in our first study. In this way, we can verify the validity of Sociometer Theory across different age groups as well as its significance in Asian population. Furthermore, those participants who received rejection about ‘mate-role’ would also receive some negative feedbacks regarding their current/future capacity of being a good mate. Results suggested that participants’ state self-esteem sensitivity for mating-capacity rejection is higher when comparing to that of friend-capacity rejection, i.e. greater drop in state self-esteem when receiving mating-capacity feedbacks then receiving friend-capacity feedbacks. These results, however, is just applicable on young adults. Thus, the main purpose of study two would be testing the state self-esteem sensitivity towards social rejection in different domains among three age groups. We hypothesized that group differences would be found for three age groups regarding state self-esteem sensitivity. Research question 1: perceived social rejection is associated to decrease in state self-esteem, is applicable among different age groups in Asia population. Research question 2: there are significant group differences for three age groups regarding state self-esteem sensitivity. Methods: 300 subjects are divided into three age groups, adolescents group, young adult group and middle-adult group, with 100 subjects in each group. Two questionnaires were used in testing this fundamental concept. Subjects were then asked to rate themselves on questionnaire in measuring their current state self-esteem in order to obtain the baseline measurements for later comparison. In order to avoid demand characteristics from subjects, other unrelated tasks like word matching were also given after the first test. Results: A positive correlation between scores in questionnaire 1 and questionnaire 2 among all age groups. Conclusion: State self-esteem decrease to both imagined social rejection (study1) and experienced social rejection (study2). Moreover, level of decrease in state self-esteem vary when receiving different domains of social rejection. Implications: a better understanding of self-esteem development for various age group might bring insights for education systems and policies for teaching approaches and learning methods among different age groups.Keywords: state self-esteem, social rejection, stage theory, self-feelings
Procedia PDF Downloads 2307064 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 837063 A Propose of Personnel Assessment Method Including a Two-Way Assessment for Evaluating Evaluators and Employees
Authors: Shunsuke Saito, Kazuho Yoshimoto, Shunichi Ohmori, Sirawadee Arunyanart
Abstract:
In this paper, we suggest a mechanism of assessment that rater and Ratee (or employees) to convince. There are many problems exist in the personnel assessment. In particular, we were focusing on the three. (1) Raters are not sufficiently recognized assessment point. (2) Ratee are not convinced by the mechanism of assessment. (3) Raters (or Evaluators) and ratees have empathy. We suggest 1: Setting of "understanding of the assessment points." 2: Setting of "relative assessment ability." 3: Proposal of two-way assessment mechanism to solve these problems. As a prerequisite, it is assumed that there are multiple raters. This is because has been a growing importance of multi-faceted assessment. In this model, it determines the weight of each assessment point evaluators by the degree of understanding and assessment ability of raters and ratee. We used the ANP (Analytic Network Process) is a theory that an extension of the decision-making technique AHP (Analytic Hierarchy Process). ANP can be to address the problem of forming a network and assessment of Two-Way is possible. We apply this technique personnel assessment, the weights of rater of each point can be reasonably determined. We suggest absolute assessment for Two-Way assessment by ANP. We have verified that the consent of the two approaches is higher than conventional mechanism. Also, human resources consultant we got a comment about the application of the practice.Keywords: personnel evaluation, pairwise comparison, analytic network process (ANP), two-ways
Procedia PDF Downloads 3827062 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.Keywords: ZigBee, Li-ion battery, solar panel, CC2530
Procedia PDF Downloads 3747061 Vectorial Capacity and Age Determination of Anopheles Maculipinnis S. L. (Diptera: Culicidae), in Esfahan and Chahar Mahal and Bakhtiari Provinces, Central Iran
Authors: Fariba Sepahvand, Seyed Hassan Moosa-kazemi
Abstract:
The objective was to determine the population dynamics of Anopheles maculipinnis s.l. in relation to probable malaria transmission. The study was carried out in three villages in Isfahan and charmahal bakhteari provinces of Iran, from April to March 2014. Mosquitoes were collected by Total catch, Human and Animal bait collection. An. maculipinnis play as a dominant vector with exophagic and endophilic behavior. Ovary dissection revealed four dilatations indicate at least 9% of the population can reach to the dangerous age to potentially malaria transmission. Two peaks of blood feeding were observed, 9.00-10.00 P.M, and the 12.00-00.01 A.M. The gonotrophic cycle, survival rate, life expectancy of the species was 4, 0.82 and five days, respectively. Vectorial capacity was measured as 0.028. In conclusion, moderate climatic conditions support the persistence, density and longevity of An maculipinnis s.l. could result in more significant malaria transmission.Keywords: age determination, Anopheles maculipinnis, center of Iran, Malaria
Procedia PDF Downloads 2467060 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading
Authors: Danladi Ali, Onah Festus Iloabuchi
Abstract:
In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using one-dimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment
Procedia PDF Downloads 3387059 Design of Low Latency Multiport Network Router on Chip
Authors: P. G. Kaviya, B. Muthupandian, R. Ganesan
Abstract:
On-chip routers typically have buffers are used input or output ports for temporarily storing packets. The buffers are consuming some router area and power. The multiple queues in parallel as in VC router. While running a traffic trace, not all input ports have incoming packets needed to be transferred. Therefore large numbers of queues are empty and others are busy in the network. So the time consumption should be high for the high traffic. Therefore using a RoShaQ, minimize the buffer area and time The RoShaQ architecture was send the input packets are travel through the shared queues at low traffic. At high load traffic the input packets are bypasses the shared queues. So the power and area consumption was reduced. A parallel cross bar architecture is proposed in this project in order to reduce the power consumption. Also a new adaptive weighted routing algorithm for 8-port router architecture is proposed in order to decrease the delay of the network on chip router. The proposed system is simulated using Modelsim and synthesized using Xilinx Project Navigator.Keywords: buffer, RoShaQ architecture, shared queue, VC router, weighted routing algorithm
Procedia PDF Downloads 5427058 Social Network Based Decision Support System for Smart U-Parking Planning
Authors: Jun-Ho Park, Kwang-Woo Nam, Seung-Mo Hong, Tae-Heon Moon, Sang-Ho Lee, Youn-Taik Leem
Abstract:
The aim of this study was to build ‘Ubi-Net’, a decision-making support system for systematic establishment in U-City planning. We have experienced various urban problems caused by high-density development and population concentrations in established urban areas. To address these problems, a U-Service contributes to the alleviation of urban problems by providing real-time information to citizens through network connections and related information. However, technology, devices, and information for consumers are required for systematic U-Service planning in towns and cities where there are many difficulties in this regard, and a lack of reference systems. Thus, this study suggests methods to support the establishment of sustainable planning by providing comprehensive information including IT technology, devices, news, and social networking services(SNS) to U-City planners through intelligent searches. In this study, we targeted Smart U-Parking Planning to solve parking problems in an ‘old’ city. Through this study, we sought to contribute to supporting advances in U-Space and the alleviation of urban problems.Keywords: desigin and decision support system, smart u-parking planning, social network analysis, urban engineering
Procedia PDF Downloads 4277057 Determination of Performances of Some Mulberry (Morus spp.) Species Selected from Different Places of Turkey under Kahramanmaras Conditions
Authors: Muruvvet Ilgin, Ilknur Agca
Abstract:
Common mulberry (Morus levigate Wall.) and purple mulberry (Morus rubra L.) species which were selected from different regions of Turkey were used as material in order to determine their performance. Therefore, phenological observations, pomological analysis (fruit size, fruit weight, fruit stalk length, acidity and TSS (Total Soluble Solids) and phytochemical properties organic acids (oxalic acid, succinic acid, citric acid, fumaric acid and malic acid) and vitamin C (ascorbic acid) total phenolics and antioxidant capacity values of mulberries) were determined. Phenological observations of seven different periods were also identified. Fruit weight values varied between 3.48 to 4.26 g. TSS contents value were from 14.36 to 21.30%, and fruit acidity was determined between 0.29 to 2.02%. The amount of ascorbic acid of Finger mulberry (Morus levigate Wall.) and purple mulberry (Morus rubra L.) species were identified as 35.60% and 363.28%. The highest value of total phenolic contents belonged to with a finger mulberry genotypes P1 934.80 mg/100g whereas the lowest one was of purple mulberry genotypes 278.70 mg/100g. FRAP and TEAC methods were used for determination of antioxidant capacity of the values of 0.58-22.65 micromol TE/kg and 20.34-31.6 micromol TE/kg. Total phenolics contents and antioxidant capacity strongly depends on fruit color intensity with a positive correlation. The obtained results have been found to be important as a source of future pharmacological studies and pomological and breeding programs.Keywords: mulberry, phenology, phytochemical property, pomology
Procedia PDF Downloads 2317056 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System
Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi
Abstract:
In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.Keywords: adaptive control, pendulum dynamical system, nonlinear control, adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control
Procedia PDF Downloads 6707055 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 1667054 Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames
Authors: Daniel Y. Abebe, Sijeong Jeong, Jaehyouk Choi
Abstract:
The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links.Keywords: EBFs, replaceable link, earthquake disaster, reduced section
Procedia PDF Downloads 3347053 Pose Normalization Network for Object Classification
Authors: Bingquan Shen
Abstract:
Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant
Procedia PDF Downloads 3537052 The Use of Nuclear Generation to Provide Power System Stability
Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li
Abstract:
The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.Keywords: frequency control, nuclear power generation, power system stability, system inertia
Procedia PDF Downloads 4387051 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 2807050 Sorption Properties of Hemp Cellulosic Byproducts for Petroleum Spills and Water
Authors: M. Soleimani, D. Cree, C. Chafe, L. Bates
Abstract:
The accidental release of petroleum products into the environment could have harmful consequences to our ecosystem. Different techniques such as mechanical separation, membrane filtration, incineration, treatment processes using enzymes and dispersants, bioremediation, and sorption process using sorbents have been applied for oil spill remediation. Most of the techniques investigated are too costly or do not have high enough efficiency. This study was conducted to determine the sorption performance of hemp byproducts (cellulosic materials) in terms of sorption capacity and kinetics for hydrophobic and hydrophilic fluids. In this study, heavy oil, light oil, diesel fuel, and water/water vapor were used as sorbate fluids. Hemp stalk in different forms, including loose material (hammer milled (HM) and shredded (Sh) with low bulk densities) and densified forms (pellet form (P) and crumbled pellets (CP)) with high bulk densities, were used as sorbents. The sorption/retention tests were conducted according to ASTM 726 standard. For a quick-purpose application of the sorbents, the sorption tests were conducted for 15 min, and for an ideal sorption capacity of the materials, the tests were carried out for 24 h. During the test, the sorbent material was exposed to the fluid by immersion, followed by filtration through a stainless-steel wire screen. Water vapor adsorption was carried out in a controlled environment chamber with the capability of controlling relative humidity (RH) and temperature. To determine the kinetics of sorption for each fluid and sorbent, the retention capacity also was determined intervalley for up to 24 h. To analyze the kinetics of sorption, pseudo-first-order, pseudo-second order and intraparticle diffusion models were employed with the objective of minimal deviation of the experimental results from the models. The results indicated that HM and Sh materials had the highest sorption capacity for the hydrophobic fluids with approximately 6 times compared to P and CP materials. For example, average retention values of heavy oil on HM and Sh was 560% and 470% of the mass of the sorbents, respectively. Whereas, the retention of heavy oil on P and CP was up to 85% of the mass of the sorbents. This lower sorption capacity for P and CP can be due to the less exposed surface area of these materials and compacted voids or capillary tubes in the structures. For water uptake application, HM and Sh resulted in at least 40% higher sorption capacity compared to those obtained for P and CP. On average, the performance of sorbate uptake from high to low was as follows: water, heavy oil, light oil, diesel fuel. The kinetic analysis indicated that the second-pseudo order model can describe the sorption process of the oil and diesel better than other models. However, the kinetics of water absorption was better described by the pseudo-first-order model. Acetylation of HM materials could improve its oil and diesel sorption to some extent. Water vapor adsorption of hemp fiber was a function of temperature and RH, and among the models studied, the modified Oswin model was the best model in describing this phenomenon.Keywords: environment, fiber, petroleum, sorption
Procedia PDF Downloads 1247049 Energy Efficient Clustering with Adaptive Particle Swarm Optimization
Authors: KumarShashvat, ArshpreetKaur, RajeshKumar, Raman Chadha
Abstract:
Wireless sensor networks have principal characteristic of having restricted energy and with limitation that energy of the nodes cannot be replenished. To increase the lifetime in this scenario WSN route for data transmission is opted such that utilization of energy along the selected route is negligible. For this energy efficient network, dandy infrastructure is needed because it impinges the network lifespan. Clustering is a technique in which nodes are grouped into disjoints and non–overlapping sets. In this technique data is collected at the cluster head. In this paper, Adaptive-PSO algorithm is proposed which forms energy aware clusters by minimizing the cost of locating the cluster head. The main concern is of the suitability of the swarms by adjusting the learning parameters of PSO. Particle Swarm Optimization converges quickly at the beginning stage of the search but during the course of time, it becomes stable and may be trapped in local optima. In suggested network model swarms are given the intelligence of the spiders which makes them capable enough to avoid earlier convergence and also help them to escape from the local optima. Comparison analysis with traditional PSO shows that new algorithm considerably enhances the performance where multi-dimensional functions are taken into consideration.Keywords: Particle Swarm Optimization, adaptive – PSO, comparison between PSO and A-PSO, energy efficient clustering
Procedia PDF Downloads 2467048 Comparative Study of Scheduling Algorithms for LTE Networks
Authors: Samia Dardouri, Ridha Bouallegue
Abstract:
Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.Keywords: LTE, multimedia flows, scheduling algorithms, mobile computing
Procedia PDF Downloads 3837047 Signal Strength Based Multipath Routing for Mobile Ad Hoc Networks
Authors: Chothmal
Abstract:
In this paper, we present a route discovery process which uses the signal strength on a link as a parameter of its inclusion in the route discovery method. The proposed signal-to-interference and noise ratio (SINR) based multipath reactive routing protocol is named as SINR-MP protocol. The proposed SINR-MP routing protocols has two following two features: a) SINR-MP protocol selects routes based on the SINR of the links during the route discovery process therefore it select the routes which has long lifetime and low frame error rate for data transmission, and b) SINR-MP protocols route discovery process is multipath which discovers more than one SINR based route between a given source destination pair. The multiple routes selected by our SINR-MP protocol are node-disjoint in nature which increases their robustness against link failures, as failure of one route will not affect the other route. The secondary route is very useful in situations where the primary route is broken because we can now use the secondary route without causing a new route discovery process. Due to this, the network overhead caused by a route discovery process is avoided. This increases the network performance greatly. The proposed SINR-MP routing protocol is implemented in the trail version of network simulator called Qualnet.Keywords: ad hoc networks, quality of service, video streaming, H.264/SVC, multiple routes, video traces
Procedia PDF Downloads 2497046 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure
Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar
Abstract:
This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T_1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.Keywords: collapse capacity, fragility analysis, spectral shape effects, IDA method
Procedia PDF Downloads 2397045 Support of Syrian Refugees: The Roles of Descriptive and Injunctive Norms, Perception of Threat, and Negative Emotions
Authors: Senay Yitmen
Abstract:
This research investigated individual’s support and helping intentions towards Syrian refugees in Turkey. This is examined in relation to perceived threat and negative emotions, and also to the perceptions of whether one’s intimate social network (family and friends) considers Syrians a threat (descriptive network norm) and whether this network morally supports Syrian refugees (injunctive norms). A questionnaire study was conducted among Turkish participants (n= 565) and the results showed that perception of threat was associated with negative emotions which, in turn, were related to less support of Syrian refugees. Additionally, descriptive norms moderated the relationship between perceived threat and negative emotions towards Syrian refugees. Furthermore, injunctive norms moderated the relationship between negative emotions and support to Syrian refugees. Specifically, the findings indicate that perceived threat is associated with less support of Syrian refugees through negative emotions when descriptive norms are weak and injunctive norms are strong. Injunctive norms appear to trigger a dilemma over the decision to conform or not to conform: when one has negative emotions as a result of perceived threat, it becomes more difficult to conform to the moral obligation of injunctive norms which is associated with less support of Syrian refugees. Hence, these findings demonstrate that both descriptive and injunctive norms are important and play different roles in individual’s support of Syrian refugees.Keywords: descriptive norms, emotions, injunctive norms, the perception of threat
Procedia PDF Downloads 1907044 Efficiency of Background Chlorine Residuals against Accidental Microbial Episode in Proto-Type Distribution Network (Rig) Using Central Composite Design (CCD)
Authors: Sajida Rasheed, Imran Hashmi, Luiza Campos, Qizhi Zhou, Kim Keu
Abstract:
A quadratic model (p ˂ 0.0001) was developed by using central composite design of 50 experimental runs (42 non-center + 8 center points) to assess efficiency of background chlorine residuals in combating accidental microbial episode in a prototype distribution network (DN) (rig). A known amount of background chlorine residuals were maintained in DN and a required number of bacteria, Escherichia coli K-12 strain were introduced by an injection port in the pipe loop system. Samples were taken at various time intervals at different pipe lengths. Spread plate count was performed to count bacterial number. The model developed was significant. With microbial concentration and time (p ˂ 0.0001), pipe length (p ˂ 0.022), background chlorine residuals (p ˂ 0.07) and time^2 (p ˂ 0.09) as significant factors. The ramp function of variables shows that at the microbial count of 10^6, at 0.76 L/min, and pipe length of 133 meters, a background residual chlorine 0.16 mg/L was enough for complete inactivation of microbial episode in approximately 18 minutes.Keywords: central composite design (CCD), distribution network, Escherichia coli, residual chlorine
Procedia PDF Downloads 4637043 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 2747042 Effect of Fermentation Time on Some Functional Properties of Moringa (Moringa oleifera) Seed Flour
Authors: Ocheme B. Ocheme, Omobolanle O. Oloyede, S. James, Eleojo V. Akpa
Abstract:
The effect of fermentation time on some functional properties of Moringa (Moringa oleifera) seed flour was examined. Fermentation, an effective processing method used to improve nutritional quality of plant foods, tends to affect the characteristics of food components and their behaviour in food systems just like other processing methods. Hence the need for this study. Moringa seeds were fermented naturally by soaking in potable water and allowing it to stand for 12, 24, 48 and 72 hours. At the end of fermentation, the seeds were oven dried at 600C for 12 hours and then milled into flour. Flour obtained from unfermented seeds served as control: hence a total of five flour samples. The functional properties were analyzed using standard methods. Fermentation significantly (p<0.05) increased the water holding capacity of Moringa seed flour from 0.86g/g - 2.31g/g. The highest value was observed after 48 hours of fermentation The same trend was observed for oil absorption capacity with values between 0.87 and 1.91g/g. Flour from unfermented Moringa seeds had a bulk density of 0.60g/cm3 which was significantly (p<0.05) higher than the bulk densities of flours from seeds fermented for 12, 24 and 48. Fermentation significantly (p<0.05) decreased the dispersibility of Moringa seed flours from 36% to 21, 24, 29 and 20% after 12, 24, 48 and 72 hours of fermentation respectively. The flours’ emulsifying capacities increased significantly (p<0.05) with increasing fermentation time with values between 50 – 68%. The flour obtained from seeds fermented for 12 hours had a significantly (p<0.05) higher foaming capacity of 16% while the flour obtained from seeds fermented for 0, 24 and 72 hours had the least foaming capacities of 9%. Flours from seeds fermented for 12 and 48 hours had better functional properties than flours from seeds fermented for 24 and 72 hours.Keywords: fermentation, flour, functional properties, Moringa
Procedia PDF Downloads 6887041 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 2687040 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks
Authors: Kais Manai
Abstract:
The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.Keywords: nuclear emulsion, particle identification, tracking, neural network
Procedia PDF Downloads 5067039 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics
Authors: Mikheil Kalmakhelidze
Abstract:
Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.Keywords: description logic, fuzzy logic, neural networks, record linkage
Procedia PDF Downloads 2737038 Flexural Behavior of Light-Gauge Steel Box Sections Filled with Normal and Recycled Aggregates Concrete
Authors: Rola El-Nimri, Mu’Tasime Abdel-Jaber, Yasser Hunaiti
Abstract:
The flexural behavior of light-gauge steel box sections filled with recycled concrete was assessed through an experimental program involving 15 composite beams. Recycled concrete was obtained by replacing natural aggregates (NA) with recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) with replacement levels of 20%, 40%, 60%, 80%, and 100% by the total weight of NA. In addition, RCA and RAP were incorporated in the same mixes with replacement levels of (1) 20% RCA and 80% RAP; (2) 40% RCA and 60% RAP; (3) 60% RCA and 40% RAP; and (4) 80% RCA and 20% RAP. A comparison between the experimental capacities and the theoretically predicted values according to Eurocode 4 (EC4) was made as well. Results proved that the ultimate capacity of composite beams decreased with the increase of recycled aggregate (RA) percentage and EC4 was conservative in predicting the ultimate capacity of composite beams.Keywords: flexure, light gauge, recycled asphalt pavement, recycled concrete aggregate, steel tube
Procedia PDF Downloads 1997037 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 837036 Microstructure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3-xAlxO2 Cathode Material for Lithium Ion Batteries
Authors: Wei-Bo Hua, Zhuo Zheng, Xiao-Dong Guo, Ben-He Zhong
Abstract:
The layered structure LiNi1/3Co1/3Mn1/3-xAlxO2 (x = 0 ~ 0.04) series cathode materials were synthesized by a carbonate co-precipitation method, followed by a high temperature calcination process. The influence of Al substitution on the microstructure and electrochemical performances of the prepared materials was investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge/discharge test. The results show that the LiNi1/3Co1/3Mn1/3-xAlxO2 has a well-ordered hexagonal "α" -NaFeO2 structure. Although the discharge capacity of Al-doped samples decreases as x increases, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 exhibits superior capacity retention at high voltage (4.6 V). Therefore, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 is a promising material for “green” vehicles.Keywords: lithium ion battery, carbonate co-precipitation, doping, microstructure, electrochemical properties
Procedia PDF Downloads 330