Search results for: improved
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4654

Search results for: improved

3094 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 169
3093 Effects of an Educational Program on Nurses Knowledge and Practice Related to Hepatitis-B: Pre-Experimental Design

Authors: R. S. Mehta, G. N. Mandal

Abstract:

Hepatitis-B is the major infectious disease of mankind. In Nepal it is reported that more than 4.3% of Nepalese population at any time in their life has been infected with Hepatitis-B virus (HBV). The objective of this study was to evaluate the effectiveness of planned educational programme regarding knowledge and practice of hepatitis-B among the nurses working at medical units of BPKIHS. Pre-experimental research design was used to conduct the study among the nurses working in medical units of BPKIHS. Total 40 nurses were included in the pre-test and 34 in the post-test. The education intervention was arranged on 24th May 2012 from 2:15 pm to 4:45 pm i.e. two and half hours. After two weeks of education intervention post-test was conducted. Most of the participants (60%) were of the age group of 18-22 years, Hindu (82.5%), and unmarried (65%). After education intervention there is significant differences in knowledge on the components of Hepatitis-B at 0.05 level of significance. There is no difference in the attitude components after post-test except the component patient contaminated with Hepatitis-B must be called as the last patient (p=0.035). It can conclude that hepatitis-B educational program improved knowledge and practice among the nurses.

Keywords: educational program, Hepatitis-B, pre-experimental design, medical units

Procedia PDF Downloads 354
3092 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 75
3091 Project Paulina: A Human-Machine Interface for Individuals with Limited Mobility and Conclusions from Research and Development

Authors: Radoslaw Nagay

Abstract:

The Paulina Project aims to address the challenges faced by immobilized individuals, such as those with multiple sclerosis, muscle dystrophy, or spinal cord injuries, by developing a flexible hardware and software solution. This paper presents the research and development efforts of our team, which commenced in 2019 and is now in its final stage. Recognizing the diverse needs and limitations of individuals with limited mobility, we conducted in-depth testing with a group of 30 participants. The insights gained from these tests led to the complete redesign of the system. Our presentation covers the initial project ideas, observations from in-situ tests, and the newly developed system that is currently under construction. Moreover, in response to the financial constraints faced by many disabled individuals, we propose an affordable business model for the future commercialization of our invention. Through the Paulina Project, we strive to empower immobilized individuals, providing them with greater independence and improved quality of life.

Keywords: UI, human-machine interface, social inclusion, multiple sclerosis, muscular dystrophy, spinal cord injury, quadriplegic

Procedia PDF Downloads 68
3090 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot

Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin

Abstract:

This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.

Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control

Procedia PDF Downloads 464
3089 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: gradient image, segmentation and extract, mean-shift algorithm, dictionary iearning

Procedia PDF Downloads 263
3088 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 302
3087 Seismic Vulnerability Mitigation of Non-Engineered Buildings

Authors: Muhammad Tariq A. Chaudhary

Abstract:

The tremendous loss of life that resulted in the aftermath of recent earthquakes in developing countries is mostly due to the collapse of non-engineered and semi-engineered building structures. Such structures are used as houses, schools, primary healthcare centres and government offices. These building are classified structurally into two categories viz. non-engineered and semi-engineered. Non-engineered structures include: adobe, Unreinforced Masonry (URM) and wood buildings. Semi-engineered buildings are mostly low-rise (up to 3 story) light concrete frame structures or masonry bearing walls with reinforced concrete slab. This paper presents an overview of the typical damage observed in non-engineered structures and their most likely causes in the past earthquakes with specific emphasis on the performance of such structures in the 2005 Kashmir earthquake. It is demonstrated that seismic performance of these structures can be improved from life-safety viewpoint by adopting simple low-cost modifications to the existing construction practices. Incorporation of some of these practices in the reconstruction efforts after the 2005 Kashmir earthquake are examined in the last section for mitigating seismic risk hazard.

Keywords: Kashmir earthquake, non-engineered buildings, seismic hazard, structural details, structural strengthening

Procedia PDF Downloads 286
3086 Challenges of Good Government in Enhancing Food Security for Sustainable National Development in Nigeria

Authors: Egboja Simon, Agi Sunday

Abstract:

One of the most important key to success of a nation is to ensure steady development and national economic self - sufficiency and independence. There have been challenges in food security related issues in many developing nations. The problems may be as a result of rise in food price across the globe diminishing global food reserve and erratic weather patterns among other factors. In Nigeria several Agricultural politics have been formulated to curtail food security challenges. Unfortunately, these policies have not yielded the deserved results of increase food production. This paper is designed to identify the various challenges confronting food security in Nigeria with a view of highlighting the reasons that accounting for these problems. This paper also suggests ways of addressing these challenges and concludes by saying that subsidization of the process of farm inputs like fertilizer, improved seed and agro chemicals education of the farmers on modern methods of farming through extension services, improvisation of villages based food storage mechanism and provision of infrastructural facilities in rural areas to facilitate the preservation and easy evacuation of farm produce should be encouraged.

Keywords: governance, security, food, development, conflict, hunger, society, sustainability

Procedia PDF Downloads 329
3085 The Effects of an Intervention Program on Psychosocial Factors and Consequences during the COVID-19 Pandemic in a Chilean Technology Services Company: A Quasi-Experimental Study

Authors: Julio Lavarello-Salinas, Verónica Kramm-Vergara, Pedro Gil-La Orden

Abstract:

During the COVID-19 pandemic, mental health became a relevant factor in people’s performance within organizations. The aim of this study was to analyze the effects of an organizational intervention program on the psychosocial factors of demands, resources, and the consequences of psychosocial risks in a technology services company during the COVID-19 pandemic. A quasi-experimental study was carried out with 105 employees who took part in an eight-week intervention program divided into two large stages. Pre- and post- measurements were collected using the UNIPSICO Questionnaire, considering its factors of demands, resources, and consequences of psychosocial risks. The Spanish Burnout Inventory (SBI) was also included. The results showed significant improvements in the perception of some psychosocial demand factors, all the resource factors, and all the consequences of psychosocial risks, except the guilt dimension of the SBI. Thus, we can conclude that the program was effective and that the study limitations should be improved in future studies.

Keywords: UNIPSICO questionnaire, occupational health, work stress, work psychosocial risk

Procedia PDF Downloads 104
3084 Studying the Anti-Cancer Effects of Thymoquinone on Tumor Cells Through Natural Killer Cells Activity

Authors: Nouf A. Aldarmahi, Nesrin I. Tarbiah, Nuha A. Alkhattabi, Huda F. Alshaibi

Abstract:

Nigella sativa which is known as dark cumin is a well-known example for a widely applicable herbal medicine. Nigella sativa can be effective in a variety of diseases such as hypertension, diabetes, bronchitis, gastrointestinal upset, and cancer. The anticancer effect of Nigella sativa appeared to be mediated by immune-modulatory effect through stimulating human natural killer (NK) cells. This is a type of lymphocytes which is part of the innate immunity, also known as the first line of defense in the body against pathogens. This study investigated the effect of thymoquinone as a major component of Nigella sativa on the molecular cytotoxic pathway of NK cell and the role of thymoquinone therapeutic effect on NK cells. NK cells were cultured with breast tumor cells in different ways and cultured media was collected and the concentration of perforin, granzyme B and interferon-α were measured by ELISA. The cytotoxic effect of NK cells on breast tumor cells was enhanced in the presence of thymoquinone, with increased activity of perforin in NK cells. This improved anticancer effect of thymoquinone on breast cancer cells.

Keywords: breast cancer, cancer cells, natural killer cells, thymoquinone

Procedia PDF Downloads 239
3083 The Use of Mnemonic and Mathematical Mnemonic Method in Improving Historical Understanding

Authors: Lee Bih Ni, Nurul Asyikin Binti Hassan

Abstract:

This paper discusses the use of mnemonic and mathematical methods in enhancing the understanding of history. Mnemonics can help students from all levels including high school and in various disciplines including language, math and history. At the secondary level, students are exposed to various courses that require them to remember many facts that can be mastered through the application of mnemonic techniques. Researchers use narrative literature studies to illustrate the current state of art and science in the field of research focused. Researchers used narrative literature reviews to build a scientific base of knowledge. Researchers gather all the key points in the discussion, and put it here by referring to the specific field where the paper is essentially based. The findings suggest that the use of mnemonic techniques can improve the individual's memory by adding little effort. In implementing mnemonic techniques, it is important to integrate mathematics and history in the course as both are interconnected as mathematics has shaped our history and vice versa. This study shows that memory skills can actually be improved; the human mind can remember something more than expected.

Keywords: cognitive strategy, mnemonic technique, secondary school level study, mathematical mnemonic

Procedia PDF Downloads 131
3082 The Effects of Hydraulic Retention Time on the Sludge Characteristics and Effluent Quality in an Aerobic Suspension Sequencing Batch Reactor

Authors: Ali W. N. Alattabi, Clare B. Harris, Rafid M. Alkhaddar, Montserrat Ortoneda, David A. Phipps, Ali Alzeyadi, Khalid S. Hashim

Abstract:

This study was performed to optimise the hydraulic retention time (HRT) and study its effects on the sludge characteristics and the effluent quality in an aerobic suspension sequencing batch reactor (ASSBR) treating synthetic wastewater. The results showed that increasing the HRT from 6 h to 12 h significantly improved the COD and Nitrate removal efficiency; it was increased from 78.7% - 75.7% to 94.7% – 97% for COD and Nitrate respectively. However, increasing the HRT from 12 h to 18 h reduced the COD and Nitrate removal efficiency from 94.7% - 97% to 91.1% – 94.4% respectively. Moreover, Increasing the HRT from 18 h to 24 h did not affect the COD and Nitrate removal efficiency. Sludge volume index (SVI) was used to monitor the sludge settling performance. The results showed a direct relationship between the HRT and SVI value. Increasing the HRT from 6 h to 12 h led to decrease the SVI value from 123 ml/g to 82.5 ml/g, and then it remained constant despite of increasing the HRT from 12 h to 18 h and to 24 h. The results obtained from this study showed that the HRT of 12 h was better for COD and Nitrate removal and a good settling performance occurred during that range.

Keywords: COD, hydraulic retention time, nitrate, sequencing batch reactor, sludge characteristics

Procedia PDF Downloads 369
3081 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing

Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak

Abstract:

In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.

Keywords: unmanned aerial vehicles, morphing, autopilots, autonomous performance

Procedia PDF Downloads 671
3080 Mutation of Galp Improved Fermentation of Mixed Sugars to Succinate Using Engineered Escherichia coli As1600a

Authors: Apichai Sawisit, Sirima Suvarnakuta Jantama, Sunthorn Kanchanatawee, Lonnie O. Ingram, Kaemwich Jantama

Abstract:

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain ferments 10% (w/v) xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% (w/v) xylose. Evolved mutants exhibited a similar improvement, co-fermentation of an equal mixture of xylose and glucose. One of these, AS1600a, produced 84.26±1.37 g/L succinate, equivalent to that produced by the parent (KJ122) strain from 10% glucose (85.46±1.78 g/L). AS1600a was sequenced and found to contain a mutation in galactose permease (GalP, G236D). Expressing the galP* mutation gene in KJ122ΔgalP resembled the xylose utilization phenotype of the mutant AS1600a. The strain AS1600a and KJ122ΔgalP (pLOI5746; galP*) also co-fermented a mixture of glucose, xylose, arabinose, and galactose in sugarcane bagasse hydrolysate for succinate production.

Keywords: xylose, furfural, succinat, sugarcane bagasse, E. coli

Procedia PDF Downloads 449
3079 Advancing Horizons: Standardized Future Trends in LiDAR and Remote Sensing Technologies

Authors: Spoorthi Sripad

Abstract:

Rapid advancements in LiDAR (Light Detection and Ranging) technology, coupled with the synergy of remote sensing, have revolutionized Earth observation methodologies. This paper delves into the transformative impact of integrated LiDAR and remote sensing systems. Focusing on miniaturization, cost reduction, and improved resolution, the study explores the evolving landscape of terrestrial and aquatic environmental monitoring. The integration of multi-wavelength and dual-mode LiDAR systems, alongside collaborative efforts with other remote sensing technologies, presents a comprehensive approach. The paper highlights the pivotal role of LiDAR in environmental assessment, urban planning, and infrastructure development. As the amalgamation of LiDAR and remote sensing reshapes Earth observation, this research anticipates a paradigm shift in our understanding of dynamic planetary processes.

Keywords: LiDAR, remote sensing, earth observation, advancements, integration, environmental monitoring, multi-wavelength, dual-mode, technology, urban planning, infrastructure, resolution, miniaturization

Procedia PDF Downloads 81
3078 Tin and Tin-Copper Composite Nanorod Anodes for Rechargeable Lithium Applications

Authors: B. D. Polat, Ö. Keleş

Abstract:

Physical vapor deposition under conditions of an obliquely incident flux results in a film formation with an inclined columnar structure. These columns will be oriented toward the vapor source because of the self-shadowing effect, and they are homogenously distributed on the substrate surface because of the limited surface diffusion ability of ad-atoms when there is no additional substrate heating. In this work, the oblique angle electron beam evaporation technique is used to fabricate thin films containing inclined nanorods. The results demonstrate that depending on the thin film composition, the morphology of the nanorods changed as well. The galvanostatic analysis of these thin film anodes reveals that a composite CuSn nanorods having approximately 900mAhg-1 of initial discharge capacity, performs higher electrochemical performance compared to pure Sn nanorods containing anode material. The long cycle life and the advanced electrochemical properties of the nano-structured composite electrode might be attributed to its improved mechanical tolerance and enhanced electrical conductivity depending on the Cu presence in the nanorods.

Keywords: Cu-Sn thin film, oblique angle deposition, lithium ion batteries, anode

Procedia PDF Downloads 345
3077 Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method

Authors: Harish Kumar Ponnappan, Joseph C. Chen

Abstract:

The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L9 orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling.

Keywords: live tooling, surface roughness, taguchi analysis, CNC milling operation, CNC turning operation

Procedia PDF Downloads 139
3076 The Effects of Xiang Sha Liu Jun Zi Tang to Diarrhea and Growth Performance of Piglets

Authors: Siao-Wei Jiang, Boy-Young Hsieh, Ching-Liang Hsieh, Cheng-Yung Lin

Abstract:

The problems of multiple drug resistance in the pig farming industry have been emphasized in recent years. Diarrhea syndrome is common in weaning piglets and often treated with antibiotics as a feed additive, leading to the rapid spread of antibiotic resistance and posing high health risks to humans. The study aimed to alleviate diarrhea syndrome with traditional herbal medicine, Xiang Sha Liu Jun Zi Tang, whose effects enhanced digestive function. Piglets at 4 weeks old with stool classified to Bristol stool classification type 6 or type 7 were randomly divided into the control group, group A (1% of Xiang Sha Liu Jun Zi Tang) and group B (0.1% Colistin). The piglets were administrated for 7 days, and their weight, feed intake, and stool score were recorded daily before and after the trial. The results showed that the diarrhea index score in group A and group B improved significantly compared to the control group, indicating that Xiang Sha Liu Jun Zi Tang may have the same effect on alleviating diarrhea syndrome as Colistin, and it may be another replacement for antibiotics.

Keywords: pig, diarrhea, herbal medicine, Xiang Sha Liu Jun Zi Tang

Procedia PDF Downloads 49
3075 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology

Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy

Abstract:

Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.

Keywords: legacy systems, redocumentation, big data analysis, parallel processing

Procedia PDF Downloads 44
3074 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/Tio2 Nano-Composite Coatings

Authors: S. Mahdavi, S.R. Allahkaram

Abstract:

Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nano-particles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nano-particles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.

Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium

Procedia PDF Downloads 485
3073 Based on MR Spectroscopy, Metabolite Ratio Analysis of MRI Images for Metastatic Lesion

Authors: Hossain A, Hossain S.

Abstract:

Introduction: In a small cohort, we sought to assess the magnetic resonance spectroscopy's (MRS) ability to predict the presence of metastatic lesions. Method: A Popular Diagnostic Centre Limited enrolled patients with neuroepithelial tumors. The 1H CSI MRS of the brain allows us to detect changes in the concentration of specific metabolites caused by metastatic lesions. Among these metabolites are N-acetyl-aspartate (NNA), creatine (Cr), and choline (Cho). For Cho, NAA, Cr, and Cr₂, the metabolic ratio was calculated using the division method. Results: The NAA values were 0.63 and 5.65 for tumor cells, 1.86 and 5.66 for normal cells, and 1.86 and 5.66 for normal cells 2. NAA values for normal cells 1 were 1.84, 10.6, and 1.86 for normal cells 2, respectively. Cho levels were as low as 0.8 and 10.53 in the tumor cell, compared to 1.12 and 2.7 in the normal cell 1 and 1.24 and 6.36 in the normal cell 2. Cho/Cr₂ barely distinguished itself from the other ratios in terms of significance. For tumor cells, the ratios of Cho/NAA, Cho/Cr₂, NAA/Cho, and NAA/Cr₂ were significant. Normal cell 1 had significant Cho/NAA, Cho/Cr, NAA/Cho, and NAA/Cr ratios. Conclusion: The clinical result can be improved by using 1H-MRSI to guide the size of resection for metastatic lesions. Even though it is non-invasive and doesn't present any difficulties during the procedure, MRS has been shown to predict the detection of metastatic lesions.

Keywords: metabolite ratio, MRI images, metastatic lesion, MR spectroscopy, N-acetyl-aspartate

Procedia PDF Downloads 93
3072 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations

Authors: K. Noah, F.-S. Lien

Abstract:

In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.

Keywords: compressible lattice Boltzmann method, multiple relaxation times, large eddy simulation, turbulent jet flows

Procedia PDF Downloads 273
3071 Effect of SPS Parameters on the Densification of ZrB2-Based Composites

Authors: Z. Balak, M. Zakeri, M.R.Rahimipur, M. Azizieh

Abstract:

Spark Plasma Sintering is a new technique which was used for ultra high temperature ceramics such as ZrB2-based composites in recent years. Taguchi design was applied to explore effective parameters for achieving the highest hardness. Nine factors including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure in four levels were considered through the Taguchi technique. In this study, only the effect of SPS conditions on densification and hardness were investigated. ZrB2-based composites were prepared by SPS in different temperatures (1600°C,1700°C, 1800°C, 1900°C), times (4min, 8 min, 12 min, 16min) and pressures (10MPa, 20MPa, 30MPa and 40MPa). The effect of SPS parameters on the densification and hardness were investigated. It was found, by increasing the temperature and time, from level 1 to 4, densification improved continuously. Also, the results shows hardness increases continuously by increasing temperature and time. Finally, it is concluded that temperature and time have more significant effect on densification and harness rather than pressure.

Keywords: spark plasma sintering (SPS), ultra high temperature ceramics (UHTCs), densification, hardness

Procedia PDF Downloads 405
3070 Alternating Electric fields-Induced Senescence in Glioblastoma

Authors: Eun Ho Kim

Abstract:

Innovations have conjured up a mode of treating GBM cancer cells in the newly diagnosed patients in a period of 4.9 months at an improved median OS, which brings along only a few minor side effects in the phase III of the clinical trial. This mode has been termed the Alternating Electric Fields (AEF). The study at hand is aimed at determining whether the AEF treatment is beneficial in sensitizing the GBM cancer cells through the process of increasing the AEF –induced senescence. The methodology to obtain the findings for this research ranged across various components, such as obtaining and testing SA-β-gal staining, flow cytometry, Western blotting, morphology, and Positron Emission Tomography (PET) / Computed Tomography (CT), immunohistochemical staining and microarray. The number of cells that displayed a senescence-specific morphology and positive SA-ß-Gal activity gradually increased up to 5 days. These results suggest that p16, p21 and p27 are essential regulators of AEF -induced senescence via NF-κB activation. The results showed that the AEF treatment is functional in enhancing the AEF –induced senescence in the GBM cells via an apoptosis- independent mechanism. This research concludes that this mode of treatment is a trustworthy protocol that can be effectively employed to overcome the limitations of the conventional mode of treatment on GBM.

Keywords: alternating electric fields, senescence, glioblastoma, cell death

Procedia PDF Downloads 90
3069 InP/ZnS Core-Shell and InP/ZnS/ZnS Core-Multishell Quantum Dots for Improved luminescence Efficiency

Authors: Imen Harabi, Hanae Toura, Safa Jemai, Bernabe Mari Soucase

Abstract:

A promising alternative to traditional Quantum Dots QD materials, which contain toxic heavy elements such as lead and cadmium, sheds light on indium phosphide quantum dots (InP QDs) Owing to improve the quantum yields of photoluminescence and other properties. InP, InP/ZnS core/shell and InP/ZnS/ZnS core/shell/shell Quantum Dots (QDs) were synthetized by the hot injection method. The optical and structural properties of the core InP QDs, InP/ZnS QDs, and InP/ZnS/ZnS QDs have being considered by several techniques such as X-ray diffraction, transmission electron microscopy, optical spectroscopy, and photoluminescence. The average diameter of InP, InP/ZnS, and InP/ZnS/ZnS Quantum Dots (QDs) was varying between 10 nm, 5.4 nm, and 4.10 nm. This experience revealed that the surface morphology of the Quantum Dots has a more regular spherical form with color variation of the QDs in solution. The emission peak of colloidal InP Quantum Dots was around 530 nm, while in InP/ZnS, the emission peak is displayed and located at 598 nm. whilst for InP/ZnS/ZnS is placed at 610 nm. Furthermore, an enhanced PL emission due to a passivation effect in the ZnS-covered InP QDs was obtained. Add the XRD information FWHM of the principal peak of InP QDs was 63 nm, while for InP/ZnS was 41 nm and InP/ZnS/ZnS was 33 nm. The effect of the Zinc stearate precursor concentration on the optical, structural, surface chemical of InP and InP/ZnS and InP/ZnS/ZnS QDs will be discussed.

Keywords: indium phosphide, quantum dot, nanoparticle, core-shell, multishell, luminescence

Procedia PDF Downloads 163
3068 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 369
3067 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: fake news detection, natural language processing, machine learning, classification techniques.

Procedia PDF Downloads 165
3066 Impact of Natural Language Processing in Educational Setting: An Effective Approach towards Improved Learning

Authors: Khaled M. Alhawiti

Abstract:

Natural Language Processing (NLP) is an effective approach for bringing improvement in educational setting. This involves initiating the process of learning through the natural acquisition in the educational systems. It is based on following effective approaches for providing the solution for various problems and issues in education. Natural Language Processing provides solution in a variety of different fields associated with the social and cultural context of language learning. It is based on involving various tools and techniques such as grammar, syntax, and structure of text. It is effective approach for teachers, students, authors, and educators for providing assistance for writing, analysis, and assessment procedure. Natural Language Processing is widely integrated in the large number of educational contexts such as research, science, linguistics, e-learning, evaluations system, and various other educational settings such as schools, higher education system, and universities. Natural Language Processing is based on applying scientific approach in the educational settings. In the educational settings, NLP is an effective approach to ensure that students can learn easily in the same way as they acquired language in the natural settings.

Keywords: natural language processing, education, application, e-learning, scientific studies, educational system

Procedia PDF Downloads 501
3065 Estimation of Human Absorbed Dose Using Compartmental Model

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of 177Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, 177Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations.

Keywords: compartmental modeling, human absorbed dose, ¹⁷⁷Lu-DOTATOC, Syrian rats

Procedia PDF Downloads 189