Search results for: Sn-Ge based
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28236

Search results for: Sn-Ge based

26676 Predicting Marital Burnout Based on Irrational Beliefs and Sexual Dysfunction of Couples

Authors: Elnaz Bandeh

Abstract:

This study aimed to predict marital burnout based on irrational beliefs and sexual dysfunction of couples. The research method was descriptive-correlational, and the statistical population included all couples who consulted to counseling clinics in the fall of 2016. The sample consisted of 200 people who were selected by convenience sampling and answered the Ahwaz Irrational Beliefs Questionnaire, Pines Couple Burnout, and Hudson Marital Satisfaction Questionnaire. The data were analyzed using regression coefficient. The results of regression analysis showed that there was a linear relationship between irrational beliefs and couple burnout and dimensions of helplessness toward change, expectation of approval from others, and emotional irresponsibility were positive and significant predictors of couple burnout. However, after avoiding the problem of power, it was not a significant predictor of marital dissatisfaction. There was also a linear relationship between sexual dysfunction and couple burnout, and sexual dysfunction was a positive and significant predictor of couple burnout. Based on the findings, it can be concluded that irrational beliefs and sexual dysfunction play a role in couple dysfunction.

Keywords: couple burnout, irrational beliefs, sexual dysfunction, marital relationship

Procedia PDF Downloads 155
26675 Parameter Estimation in Dynamical Systems Based on Latent Variables

Authors: Arcady Ponosov

Abstract:

A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory.

Keywords: generalized law of mass action, metamodels, principal components, synergetic systems

Procedia PDF Downloads 355
26674 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks

Authors: Ali Isapour, Ramin Nateghi

Abstract:

— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.

Keywords: Markov parameters, realization, activation function, flexible neural network

Procedia PDF Downloads 194
26673 SOTM: A New Cooperation Based Trust Management System for VANET

Authors: Amel Ltifi, Ahmed Zouinkhi, Mohamed Salim Bouhlel

Abstract:

Security and trust management in Vehicular Ad-hoc NETworks (VANET) is a crucial research domain which is the scope of many researches and domains. Although, the majority of the proposed trust management systems for VANET are based on specific road infrastructure, which may not be present in all the roads. Therefore, road security should be managed by vehicles themselves. In this paper, we propose a new Self Organized Trust Management system (SOTM). This system has the responsibility to cut with the spread of false warnings in the network through four principal components: cooperation, trust management, communication and security.

Keywords: ative vehicle, cooperation, trust management, VANET

Procedia PDF Downloads 431
26672 Model Driven Architecture Methodologies: A Review

Authors: Arslan Murtaza

Abstract:

Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies.

Keywords: OMG, model driven rrchitecture (MDA), computation independent model (CIM), platform independent model (PIM), platform specific model(PSM), MDA-based methodologies

Procedia PDF Downloads 459
26671 Reliability Estimation of Bridge Structures with Updated Finite Element Models

Authors: Ekin Ozer

Abstract:

Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.

Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring

Procedia PDF Downloads 223
26670 Design, Fabrication, and Study of Droplet Tube Based Triboelectric Nanogenerators

Authors: Yana Xiao

Abstract:

The invention of Triboelectric Nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interfaces-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplets have rarely been investigated. In this study, we have proposed a new kind of droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs were designed, fabricated, and evaluated, including straight tubes TENG with 27 electrodes and curved tubes TENG of 25cm radius curvature- at the inclination of 30°, 45° and 60° respectively. Different materials and hydrophobicity treatments for the tubes have also been studied, together with a discussion on the mechanism and applications of DT-TENGs. As different types of liquid discrepant energy performance, this kind of DT-TENG can be potentially used in laboratories to identify liquid or solvent. In addition, a smart fishing float is contrived, which can recognize different levels of movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. The electric generation performance when using a PVC helix tube around a cylinder is similar in straight situations under the inclination of 45° in this experiment. This new structure changes the direction of a water drop or flows without losing kinetic energy, which makes utilizing Helix-Tube-TENG to harvest energy from different building morphologies possible.

Keywords: triboelectric nanogenerator, energy harvest, liquid tribomaterial, structure innovation

Procedia PDF Downloads 90
26669 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials

Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre

Abstract:

More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.

Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage

Procedia PDF Downloads 138
26668 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades

Authors: E. Tandis, E. Assareh

Abstract:

Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employed

Keywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine

Procedia PDF Downloads 316
26667 Application of WebGIS-Based Water Environment Capacity Inquiry and Planning System in Water Resources Management

Authors: Tao Ding, Danjia Yan, Jinye Li, Chao Ren, Xinhua Hu

Abstract:

The paper based on the research background of the current situation of water shortage in China and intelligent management of water resources in the information era. And the paper adopts WebGIS technology, combining the mathematical model of water resources management to develop a WebGIS-based water environment capacity inquiry and polluted water emission planning. The research significance of the paper is that it can inquiry the water environment capacity of Jinhua City in real time and plan how to drain polluted water into the river, so as to realize the effective management of water resources. This system makes sewage planning more convenient and faster. For the planning of the discharge enterprise, the decision on the optimal location of the sewage outlet can be achieved through calculation of the Sewage discharge planning model in the river, without the need for site visits. The system can achieve effective management of water resources and has great application value.

Keywords: sewerage planning, water environment capacity, water resources management, WebGIS

Procedia PDF Downloads 183
26666 Sexual and Gender Based Crimes in International Criminal Law: Moving Forwards or Backwards

Authors: Khadija Ali

Abstract:

Prosecution of sexual violence in international criminal law requires not only an understanding of the mechanisms employed to prosecute sexual violence but also a critical analysis of the factors facilitating perpetuation of such crimes in armed conflicts. The extrapolations laid out in this essay delve into the jurisprudence of international criminal law pertaining to sexual and gender based violence followed by the core question of this essay: Has the entrenchment of sexual violence as international crimes in the Rome Statute been successful to address such violence in armed conflicts?

Keywords: conflict, gender, international criminal law, sexual violence

Procedia PDF Downloads 573
26665 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables

Authors: M. Hamdi, R. Rhouma, S. Belghith

Abstract:

Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.

Keywords: Random Numbers, Chaotic map, S-box, cryptography, statistical tests

Procedia PDF Downloads 365
26664 Identification of COVID-SARS Variants Based on Lactate Test Results

Authors: Zoltan Horvath, Dora Nagy

Abstract:

In this research, it was examined whether individual COVID variants cause differences in the lactate curve of cyclists. After all, the virus variants attacked different organs in our body during the infections. During our tests, we used a traditional lactate step test, the results of which were compared with the values before the infection. In the tests, it has been proven that different virus variants show unique lactate curves. In this way, based on the lactate curve, it is possible to identify which variant caused the disease. Thanks to this, it has been shorten the return time, because we can apply the best return protocol after infection to the competitors.

Keywords: COVID-Sars19, lactate, virus mutation, lactate profile

Procedia PDF Downloads 66
26663 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)

Procedia PDF Downloads 365
26662 Challenges of Outreach Team Leaders in Managing Ward Based Primary Health Care Outreach Teams in National Health Insurance Pilot Districts in Kwazulu-Natal

Authors: E. M. Mhlongo, E. Lutge

Abstract:

In 2010, South Africa’s National Department of Health (NDoH) launched national primary health care (PHC) initiative to strengthen health promotion, disease prevention, and early disease detection. The strategy, called Re-engineering Primary Health Care (rPHC), aims to support a preventive and health-promoting community-based PHC model by using community-based outreach teams (known in South Africa as Ward-based Primary Health Care Outreach teams or WBPHCOTs). These teams provide health education, promote healthy behaviors, assess community health needs, manage minor health problems, and support linkages to health services and health facilities. Ward based primary health care outreach teams are supervised by a professional nurse who is the outreach team leader. In South Africa, the WBPHCOTs have been established, registered, and are reporting their activities in the District Health Information System (DHIS). This study explored and described the challenges faced by outreach team leaders in supporting and supervising the WBPHCOTs. Qualitative data were obtained through interviews conducted with the outreach team leaders at a sub-district level. Thematic analysis of data was done. Findings revealed some challenges faced by team leaders in day to day execution of their duties. Issues such as staff shortages, inadequate resources to carry out health promotion activities, and lack of co-operation from team members may undermine the capacity of team leaders to support and supervise the WBPHCOTs. Many community members are under the impression that the outreach team is responsible for bringing the clinic to the community while the outreach teams do not carry any medication/treatment with them when doing home visits. The study further highlights issues around the challenges of WBPHCOTs at a household level. In conclusion, the WBPHCOTs are an important component of National Health Insurance (NHI), and in order for NHI to be optimally implemented, the issues raised in this research should be addressed with some urgency.

Keywords: community health worker, national health insurance, primary health care, ward-based primary health care outreach teams

Procedia PDF Downloads 140
26661 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 217
26660 Applicability of Polyisobutylene-Based Polyurethane Structures in Biomedical Disciplines: Some Calcification and Protein Adsorption Studies

Authors: Nihan Nugay, Nur Cicek Kekec, Kalman Toth, Turgut Nugay, Joseph P. Kennedy

Abstract:

In recent years, polyurethane structures are paving the way for elastomer usage in biology, human medicine, and biomedical application areas. Polyurethanes having a combination of high oxidative and hydrolytic stability and excellent mechanical properties are focused due to enhancing the usage of PUs especially for implantable medical device application such as cardiac-assist. Currently, unique polyurethanes consisting of polyisobutylenes as soft segments and conventional hard segments, named as PIB-based PUs, are developed with precise NCO/OH stoichiometry (∽1.05) for obtaining PIB-based PUs with enhanced properties (i.e., tensile stress increased from ∽11 to ∽26 MPa and elongation from ∽350 to ∽500%). Static and dynamic mechanical properties were optimized by examining stress-strain graphs, self-organization and crystallinity (XRD) traces, rheological (DMA, creep) profiles and thermal (TGA, DSC) responses. Annealing procedure was applied for PIB-based PUs. Annealed PIB-based PU shows ∽26 MPa tensile strength, ∽500% elongation, and ∽77 Microshore hardness with excellent hydrolytic and oxidative stability. The surface characters of them were examined with AFM and contact angle measurements. Annealed PIB-based PU exhibits the higher segregation of individual segments and surface hydrophobicity thus annealing significantly enhances hydrolytic and oxidative stability by shielding carbamate bonds by inert PIB chains. According to improved surface and microstructure characters, greater efforts are focused on analyzing protein adsorption and calcification profiles. In biomedical applications especially for cardiological implantations, protein adsorption inclination on polymeric heart valves is undesirable hence protein adsorption from blood serum is followed by platelet adhesion and subsequent thrombus formation. The protein adsorption character of PIB-based PU examines by applying Bradford assay in fibrinogen and bovine serum albumin solutions. Like protein adsorption, calcium deposition on heart valves is very harmful because vascular calcification has been proposed activation of osteogenic mechanism in the vascular wall, loss of inhibitory factors, enhance bone turnover and irregularities in mineral metabolism. The calcium deposition on films are characterized by incubating samples in simulated body fluid solution and examining SEM images and XPS profiles. PIB-based PUs are significantly more resistant to hydrolytic-oxidative degradation, protein adsorption and calcium deposition than ElastEonTM E2A, a commercially available PDMS-based PU, widely used for biomedical applications.

Keywords: biomedical application, calcification, polyisobutylene, polyurethane, protein adsorption

Procedia PDF Downloads 257
26659 Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66

Authors: Anasheh Maridiroosi, Ali Reza Mahjoub, Hanieh Fakhri

Abstract:

Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition.

Keywords: heteropoly acid, graphene oxide, MOF, tetracycline

Procedia PDF Downloads 133
26658 Federated Learning in Healthcare

Authors: Ananya Gangavarapu

Abstract:

Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.

Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment

Procedia PDF Downloads 141
26657 Examining the Effects of Increasing Lexical Retrieval Attempts in Tablet-Based Naming Therapy for Aphasia

Authors: Jeanne Gallee, Sofia Vallila-Rohter

Abstract:

Technology-based applications are increasingly being utilized in aphasia rehabilitation as a means of increasing intensity of treatment and improving accessibility to treatment. These interactive therapies, often available on tablets, lead individuals to complete language and cognitive rehabilitation tasks that draw upon skills such as the ability to name items, recognize semantic features, count syllables, rhyme, and categorize objects. Tasks involve visual and auditory stimulus cues and provide feedback about the accuracy of a person’s response. Research has begun to examine the efficacy of tablet-based therapies for aphasia, yet much remains unknown about how individuals interact with these therapy applications. Thus, the current study aims to examine the efficacy of a tablet-based therapy program for anomia, further examining how strategy training might influence the way that individuals with aphasia engage with and benefit from therapy. Individuals with aphasia are enrolled in one of two treatment paradigms: traditional therapy or strategy therapy. For ten weeks, all participants receive 2 hours of weekly in-house therapy using Constant Therapy, a tablet-based therapy application. Participants are provided with iPads and are additionally encouraged to work on therapy tasks for one hour a day at home (home logins). For those enrolled in traditional therapy, in-house sessions involve completing therapy tasks while a clinician researcher is present. For those enrolled in the strategy training group, in-house sessions focus on limiting cue use in order to maximize lexical retrieval attempts and naming opportunities. The strategy paradigm is based on the principle that retrieval attempts may foster long-term naming gains. Data have been collected from 7 participants with aphasia (3 in the traditional therapy group, 4 in the strategy training group). We examine cue use, latency of responses and accuracy through the course of therapy, comparing results across group and setting (in-house sessions vs. home logins).

Keywords: aphasia, speech-language pathology, traumatic brain injury, language

Procedia PDF Downloads 204
26656 Effect of Vegetable Oil Based Nanofluids on Machining Performance: An Experimental Investigation

Authors: Krishna Mohana Rao Gurram, R. Padmini, P. Vamsi Krishna

Abstract:

As a part of extensive research for ecologically safe and operator friendly cutting fluids, this paper presents the experimental investigations on the performance of eco-friendly vegetable oil based nanofluids in turning operation. In order to assess the quality of nano cutting fluids used during machining, cutting temperatures, cutting forces and surface roughness under constant cutting conditions are measured. The influence of two types of nanofluids prepared from nano boric acid and CNT particles mixed separately with coconut oil, on machining performance during turning operation is examined. Comparative analysis of the results obtained is done under dry and lubricant environments. Results obtained using cutting fluids prepared from vegetable oil based nanofluids are encouraging and more pronouncing by the application of CCCNT at machining zone. The extent of improvement in reduction of cutting temperatures, main cutting force, tool wear and surface roughness is tracked to be 13%, 37.5%, 44% and 40% respectively by the application of CCCNT compared to dry machining.

Keywords: nanoparticles, vegetable oil, machining, MQL, surface roughness

Procedia PDF Downloads 359
26655 Climate Change and Variability-Induced Resource Based Conflicts: The Case of the Issa, Ittu and Afar (Agro) Pastoralists of Eastern Ethiopia

Authors: Bamlaku Tadesse Mengistu

Abstract:

This article explores the link between climate change/variability and its adaptation/coping strategies with resource-based ethnic conflicts among the Afar, Issa-Somali, and Ittu-Oromo ethnic groups. The qualitative data were collected from community leaders, ordinary members of the communities, and administrative and political bodies at various levels through one-on-one interviews, focus group discussions and field observations. The quantitative data were also collected through a household survey from the randomly selected 128 households drawn from the three districts of Mieso-Mullu, Mieso, and Amibara districts. The study shows that there is a causal relationship between resource scarcity impacted by climate change/variability and ethnic conflicts. The study reveals that the increasing nature of resource scarcity and environmental problems, and also the changing nature of ethnic diversity will aggravate the resource-based inter-ethnic conflicts.

Keywords: Eastern Ethiopia, ethnic conflict, climate change, Afar, Issa, Ittu

Procedia PDF Downloads 196
26654 Web Page Design Optimisation Based on Segment Analytics

Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi

Abstract:

In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.

Keywords: analytics, design optimization, visual block trees, vision based technology

Procedia PDF Downloads 266
26653 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain

Authors: Jia Zhang, Fengmei Yao, Yanjing Tan

Abstract:

The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.

Keywords: process-based model, C4 crop, maize yield, remote sensing, Northeast China Plain

Procedia PDF Downloads 375
26652 Investigating the Effect of Aesthetics of Wisdom and Thought on Islamic-Iranian Architecture and Modern Western Architecture: Considering the Position of Islamic Philosophy and Western Philosophy in the Art of Architecture

Authors: Hamid Mohamad Hosein Zadeh Hashemi

Abstract:

In this article, in order to recognize the value of aesthetics of the place of wisdom and mysticism on Islamic art-architecture, and compare it with the influence of philosophy and thought on the "modern art of architecture" of the West, it examines the position of wisdom and philosophy in art Architecture ". In this regard, one can point out the unique status of "art of architecture" in human societies, which in two cultures of the East and West, based on the ideas of Islamic wisdom and Western thought, has taken a dual path, so that even today, even from the original And the basic "art of architecture" of its primary and academic has turned away and has undergone some kind of transformation. To this end, we examine some of the "aesthetics" positions based on the "art of architecture" in the broad sense of the word, in order to reflect on the historical course of this art, and with regard to the position of Islamic thought and Western thought, each of which originated from, but based on The basis of cultures, climate, and sociology, and others, are ultimately the result of an arbitrary result, namely the achievement of the aesthetic position of wisdom and mysticism on the "Islamic-Iranian" architecture of art "and its opposition to the position of philosophy and thought On modern art of modern architecture of the West.

Keywords: aesthetics, art, philosophy, the art of Architecture, wisdom

Procedia PDF Downloads 247
26651 Water Reclamation from Synthetic Winery Wastewater Using a Fertiliser Drawn Forward Osmosis System Evaluating Aquaporin-Based Biomimetic and Cellulose Triacetate Forward Osmosis Membranes

Authors: Robyn Augustine, Irena Petrinic, Claus Helix-Nielsen, Marshall S. Sheldon

Abstract:

This study examined the performance of two commercial forward osmosis (FO) membranes; an aquaporin (AQP) based biomimetic membrane, and cellulose triacetate (CTA) membrane in a fertiliser is drawn forward osmosis (FDFO) system for the reclamation of water from synthetic winery wastewater (SWW) operated over 24 hr. Straight, 1 M KCl and 1 M NH₄NO₃ fertiliser solutions were evaluated as draw solutions in the FDFO system. The performance of the AQP-based biomimetic and CTA FO membranes were evaluated in terms of permeate water flux (Jw), reverse solute flux (Js) and percentage water recovery (Re). The average water flux and reverse solute flux when using 1 M KCl as a draw solution against controlled feed solution, deionised (DI) water, was 11.65 L/m²h and 3.98 g/m²h (AQP) and 6.24 L/m²h and 2.89 g/m²h (CTA), respectively. Using 1 M NH₄NO₃ as a draw solution yielded average water fluxes and reverse solute fluxes of 10.73 L/m²h and 1.31 g/m²h (AQP) and 5.84 L/m²h and 1.39 g/m²h (CTA), respectively. When using SWW as the feed solution and 1 M KCl and 1 M NH₄NO₃ as draw solutions, respectively, the average water fluxes observed were 8.15 and 9.66 L/m²h (AQP) and 5.02 and 5.65 L/m²h (CTA). Membrane water flux decline was the result of a combined decrease in the effective driving force of the FDFO system, reverse solute flux and organic fouling. Permeate water flux recoveries of between 84-98%, and 83-89% were observed for the AQP-based biomimetic and CTA membrane, respectively after physical cleaning by flushing was employed. The highest water recovery rate of 49% was observed for the 1 M KCl fertiliser draw solution with AQP-based biomimetic membrane and proved superior in the reclamation of water from SWW.

Keywords: aquaporin biomimetic membrane, cellulose triacetate membrane, forward osmosis, reverse solute flux, synthetic winery wastewater and water flux

Procedia PDF Downloads 165
26650 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency

Authors: Fayssal Amrane, Azeddine Chaiba

Abstract:

In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.

Keywords: doubly fed induction generator (DFIG), direct power control (DPC), neuro-fuzzy control (NFC), maximum power point tracking (MPPT), space vector modulation (SVM), type 2 fuzzy logic control (T2FLC)

Procedia PDF Downloads 420
26649 A High Compression Ratio for a Losseless Image Compression Based on the Arithmetic Coding with the Sorted Run Length Coding: Meteosat Second Generation Image Compression

Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane

Abstract:

Image compression is the heart of several multimedia techniques. It is used to reduce the number of bits required to represent an image. Meteosat Second Generation (MSG) satellite allows the acquisition of 12 image files every 15 minutes and that results in a large databases sizes. In this paper, a novel image compression method based on the arithmetic coding with the sorted Run Length Coding (SRLC) for MSG images is proposed. The SRLC allows us to find the occurrence of the consecutive pixels of the original image to create a sorted run. The arithmetic coding allows the encoding of the sorted data of the previous stage to retrieve a unique code word that represents a binary code stream in the sorted order to boost the compression ratio. Through this article, we show that our method can perform the best results concerning compression ratio and bit rate unlike the method based on the Run Length Coding (RLC) and the arithmetic coding. Evaluation criteria like the compression ratio and the bit rate allow the confirmation of the efficiency of our method of image compression.

Keywords: image compression, arithmetic coding, Run Length Coding, RLC, Sorted Run Length Coding, SRLC, Meteosat Second Generation, MSG

Procedia PDF Downloads 354
26648 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 19
26647 Comparative Analysis of Water-Based Alumina Nanoparticles with Water-Based Cupric Nanoparticles Past an Exponentially Accelerated Vertical Radiative Riga Plate with Heat Transfer

Authors: Kanayo Kenneth Asogwa

Abstract:

The influence of the flow of nanoparticles in nanofluids across a vertical surface is significant, and its application in medical sciences, engineering, pharmaceutical, and food industries is enormous & widely published. However, the comparative examination of alumina nanoparticles with cupric nanoparticles past a rapid progressive Riga plate remains unknown. Thus, this report investigates water-based alumina and cupric nanoparticles passing through an exponentially accelerated Riga plate. Nanofluids containing copper (II) oxide (CuO) and aluminum oxide (Al2O3) nanoparticles are considered. The Laplace transform technique is used to solve the partial differential equations guiding the flow. The effect of various factors on skin friction coefficient, Nusselt number, velocity and temperature profiles is investigated and reported in tabular and graphical form. The upsurge of Modified Hartmann number and radiative impact improves copper (II) oxide nanofluid compared to aluminum oxide nanofluid due to Lorentz force and since CuO is a better heat conductor. At the same time, heat absorption and reactive species favor a slight decline in Alumina nanofluid than Cupric nanofluid in the thermal and velocity fields. The higher density of Cupric nanofluid is enhanced by increasing nanoparticle volume fraction over Alumina nanofluid with a decline in velocity distribution.

Keywords: alumina, cupric, nanoparticles, water-based

Procedia PDF Downloads 202