Search results for: size and soil characteristic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9608

Search results for: size and soil characteristic

8078 Phytoremediation-A Plant Based Cleansing Method to Obtain Quality Medicinal Plants and Natural Products

Authors: Hannah S. Elizabeth, D. Gnanasekaran, M. R. Manju Gowda, Antony George

Abstract:

Phytoremediation a new technology of remediating the contaminated soil, water and air using plants and serves as a green technology with environmental friendly approach. The main aim of this technique is cleansing and detoxifying of organic compounds, organo-phosphorous pesticides, heavy metals like arsenic, iron, cadmium, gold, radioactive elements which cause teratogenic and life threatening diseases to mankind and animal kingdom when consume the food crops, vegetables, fruits, cerals, and millets obtained from the contaminated soil. Also, directly they may damage the genetic materials thereby alters the biosynthetic pathways of secondary metabolites and other phytoconstituents which may have different pharmacological activities which lead to lost their efficacy and potency as well. It would reflect in mutagenicity, drug resistance and affect other antagonistic properties of normal metabolism. Is the technology for real clean-up of contaminated soils and the contaminants which are potentially toxic. It reduces the risks produced by a contaminated soil by decreasing contaminants using plants as a source. The advantages are cost-effectiveness and less ecosystem disruption. Plants may also help to stabilize contaminants by accumulating and precipitating toxic trace elements in the roots. Organic pollutants can potentially be chemically degraded and ultimately mineralized into harmless biological compounds. Hence, the use of plants to revitalize contaminated sites is gaining more attention and preferred for its cost-effective when compared to other chemical methods. The introduction of harmful substances into the environment has been shown to have many adverse effects on human health, agricultural productivity, and natural ecosystems. Because the costs of growing a crop are minimal compared to those of soil removal and replacement, the use of plants to remediate hazardous soils is seen as having great promise.

Keywords: cost effective, eco-friendly, phytoremediation, secondary metabolites

Procedia PDF Downloads 265
8077 Assessment and Control for Oil Aerosol

Authors: Chane-Yu Lai, Xiang-Yu Huang

Abstract:

This study conducted an assessment of sampling result by using the new development rotation filtration device (RFD) filled with porous media filters integrating the method of cyclone centrifugal spins. The testing system established for the experiment used corn oil and potassium sodium tartrate tetrahydrate (PST) as challenge aerosols and were produced by using an Ultrasonic Atomizing Nozzle, a Syringe Pump, and a Collison nebulizer. The collection efficiency of RFD for oil aerosol was assessed by using an Aerodynamic Particle Sizer (APS) and a Fidas® Frog. The results of RFD for the liquid particles condition indicated the cutoff size was 1.65 µm and 1.02 µm for rotation of 0 rpm and 9000 rpm, respectively, under an 80 PPI (pores per inch)foam with a thickness of 80 mm, and sampling velocity of 13.5 cm/s. As the experiment increased the foam thickness of RFD, the cutoff size reduced from 1.62 µm to 1.02 µm. However, when increased the foam porosity of RFD, the cutoff size reduced from 1.26 µm to 0.96 µm. Moreover, as increased the sampling velocity of RFD, the cutoff size reduced from 1.02 µm to 0.76 µm. These discrepancies of above cutoff sizes of RFD all had statistical significance (P < 0.05). The cutoff size of RFD for three experimental conditions of generated liquid oil particles, solid PST particles or both liquid oil and solid PST particles was 1.03 µm, 1.02 µm, or 0.99 µm, respectively, under a 80 PPI foam with thickness of 80 mm, rotation of 9000 rpm, and sampling velocity of 13.5 cm/s. In addition, under the best condition of the experiment, two hours of sampling loading, the RFD had better collection efficiency for particle diameter greater than 0.45 µm, under a 94 PPI nickel mesh with a thickness of 68 mm, rotation of 9000 rpm, and sampling velocity of 108.3 cm/s. The experiment concluded that increased the thickness of porous media, face velocity, and porosity of porous media of RFD could increase the collection efficiency of porous media for sampling oil particles. Moreover, increased the rotation speed of RFD also increased the collection efficiency for sampling oil particles. Further investigation is required for those above operation parameters for RFD in this study in the future.

Keywords: oil aerosol, porous media filter, rotation, filtration

Procedia PDF Downloads 385
8076 A Finite Elements Model for the Study of Buried Pipelines Affected by Strike-Slip Fault

Authors: Reza Akbari, Jalal MontazeriFashtali, PeymanMomeni Taromsari

Abstract:

Pipeline systems, play an important role as a vital element in reducing or increasing the risk of earthquake damage and vulnerability. Pipelines are suitable, cheap, fast, and safe routes for transporting oil, gas, water, sewage, etc. The sepipelines must pass from a wide geographical area; hence they will structurally face different environmental and underground factors of earthquake forces’ effect. Therefore, structural engineering analysis and design for this type of lines requires the understanding of relevant parameters behavior and lack of familiarity with them can cause irreparable damages and risks to design and execution, especially in the face of earthquakes. Today, buried pipelines play an important role in human life cycle, thus, studying the vulnerability of pipeline systems is of particular importance. This study examines the behavior of buried pipelines affected by strike-slip fault. Studied fault is perpendicular to the tube axis and causes stress and deformation in the tube by sliding horizontally. In this study, the pipe-soil interaction is accurately simulated, so that one can examine the large displacements and strains, nonlinear material behavior and contact and friction conditions of soil and pipe. The results can be used for designing buried pipes and determining the amount of fault displacement that causes the failure of the buried pipes.

Keywords: pipe lines , earthquake , fault , soil-fault interaction

Procedia PDF Downloads 437
8075 Soil Matric Potential Based Irrigation in Rice: A Solution to Water Scarcity

Authors: S. N. C. M. Dias, Niels Schuetze, Franz Lennartz

Abstract:

The current focus in irrigated agriculture will move from maximizing crop production per unit area towards maximizing the crop production per unit amount of water (water productivity) used. At the same time, inadequate water supply or deficit irrigation will be the only solution to cope with water scarcity in the near future. Soil matric potential based irrigation plays an important role in such deficit irrigated agriculture to grow any crop including rice. Rice as the staple food for more than half of the world population, grows mainly under flooded conditions. It requires more water compared to other upland cereals. A major amount of this water is used in the land preparation and is lost at field level due to evaporation, deep percolation, and seepage. A field experimental study was conducted in the experimental premises of rice research and development institute of Sri Lanka in Kurunegala district to estimate the water productivity of rice under deficit irrigation. This paper presents the feasibility of improving current irrigation management in rice cultivation under water scarce conditions. The experiment was laid out in a randomized complete block design with four different irrigation treatments with three replicates. Irrigation treatments were based on soil matric potential threshold values. Treatment W0 was maintained between 60-80mbars. W1 was maintained between 80-100mbars. Other two dry treatments W2 and W3 were maintained at 100-120 mbar and 120 -140 mbar respectively. The sprinkler system was used to irrigate each plot individually upon reaching the maximum threshold value in respective treatment. Treatments were imposed two weeks after seed establishment and continued until two weeks before physiological maturity. Fertilizer applications, weed management, and other management practices were carried out per the local recommendations. Weekly plant growth measurements, daily climate parameters, soil parameters, soil tension values, and water content were measured throughout the growing period. Highest plant growth and grain yield (5.61t/ha) were observed in treatment W2 followed by W0, W1, and W3 in comparison to the reference yield (5.23t/ha) of flooded rice grown in the study area. Water productivity was highest in W3. Concerning the irrigation water savings, grain yield, and water productivity together, W2 showed the better performance. Rice grown under unsaturated conditions (W2) shows better performance compared to the continuously saturated conditions(W0). In conclusion, soil matric potential based irrigation is a promising practice in irrigation management in rice. Higher irrigation water savings can be achieved in this method. This strategy can be applied to a wide range of locations under different climates and soils. In future studies, higher soil matric potential values can be applied to evaluate the maximum possible values for rice to get higher water savings at minimum yield losses.

Keywords: irrigation, matric potential, rice, water scarcity

Procedia PDF Downloads 186
8074 Utilization of Traditional Medicine for Treatment of Selected Illnesses among Crop-Farming Households in Edo State, Nigeria

Authors: Adegoke A. Adeyelu, Adeola T. Adeyelu, S. D. Y. Alfred, O. O. Fasina

Abstract:

This study examines the use of traditional medicines for the treatment of selected illnesses among crop-farming households in Edo State, Nigeria. A sample size of ninety (90) households were randomly selected for the study. Data were collected with a structured questionnaire alongside focus group discussions (FGD). Result shows that the mean age was 50 years old, the majority (76.7%) of the sampled farmers were below 60 years old. The majority (80.0%) of the farmers were married, about (92.2%) had formal education. It exposes that the majority of the respondents (76.7%) had household size of between 1-10 persons, about 55.6% had spent 11 years and above in crop farming. malaria (8th ), waist pains (7th ), farm injuries ( 6th ), cough (5th), acute headache(4th), skin infection (3rd), typhoid (2nd) and tuberculosis (1st ) were the most and least treated illness. Respondents (80%) had spent N10,000.00 ($27) and less on treatment of illnesses, 8.9% had spent N10,000.00-N20,000.0027 ($27-$55) 4.4% had spent between N20,100-N30,000.00 ($27-$83) while 6.7% had spent more than N30,100.00 ($83) on treatment of illnesses in the last one (1) year prior to the study. Age, years of farming, farm size, household size, level of income, cost of treatment, level of education, social network, and culture are some of the statistically significant factors influencing the utilization of traditional medicine. Farmers should be educated on methods of preventing illnesses, which is far cheaper than the curative.

Keywords: crop farming-households, selected illnesses, traditional medicines, Edo State

Procedia PDF Downloads 180
8073 Team Workforce Diversity and Team Outcomes: A Meta-Analytic Review

Authors: Hyeondal Jeong, Yoonjung Baek

Abstract:

This study was carried out a meta-analysis on team workforce diversity and team outcomes. Using data from 3,534 teams in 13 studies conducted in team-level settings, we examined whether contextual factors at research local and team-size, influenced team outcomes of team workforce diversity. This meta-analytic examines the team workforce diversity and team outcomes. 13 studies included in the analysis are studies published from 2009 to 2014. We first examined the correlations between all types of diversity and team performance, significant result (Fisher`s Z = .112, k = 32, 95% CI = 0.039 to 0.183). After the analysis was conducted to moderating effect of research local (Republic of Korea=1, other area=0) and team-size. As a result, research local moderating effect had a significant but team-size was not supported. Based on the above findings suggest implications and future research directions.

Keywords: team workforce diversity, team outcomes, meta- analytic, cross-cultural research

Procedia PDF Downloads 294
8072 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 507
8071 A Case Study on Evaluating and Selecting Soil /Pipeline Interaction Analysis Software for the Oil and Gas Industry

Authors: Abdinasir Mohamed, Ashraf El-Hamalawi, Steven Yeomans, Matthew Frost, Andy Connell

Abstract:

The evaluation and selection of appropriate software solutions to meet with an organisation’s inherent business requirements can be a problematic software engineering process that if done incorrectly can have a significant, costly and adverse effect on the business and its processes. The aim of this paper is to show the process and evaluation criteria followed to select the right engineering solution for the identified business requirement. The research adopted an action research method within an organisation in the oil and gas industry, which required a solution suitable for conducting stress analysis for soil-pipeline interaction analysis (SPIA). Through the use of the presented software selection and evaluation approach, to capture and measure key requirements, it was possible to determine a suitable software for the organisation. This paper investigates methodologies for selecting software packages, software evaluation techniques, and software evaluation criteria in evaluating software packages before providing an explanation of the developed methodology adopted. The key findings of the study are: (1) that there is a need to create a framework for software selection methodologies, (2) there are no universal selection criteria in the engineering industry, and (3) there is a need to validate the findings by creating an application based on the evaluation technique and evaluation criteria for selecting software packages for the engineering industry. The findings of the study are offered to support organisations in the oil and gas sector improve software selection methodologies for SPIA.

Keywords: software evaluation, end user programs, soil pipeline analysis, software selection

Procedia PDF Downloads 178
8070 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils

Authors: Sara Soltanpour, Adolfo Foriero

Abstract:

Frost heave is arguably the most problematic adverse phenomenon in cold region areas. Frost heave is a complex process that depends on heat and water transfer. These coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled thermal-hydraulic-mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).

Keywords: frost heave, numerical simulations, COMSOL software, unsaturated freezing soil

Procedia PDF Downloads 104
8069 Liver Transplant for Hepatocellular Carcinoma: Single Medical Center Experience in Taiwan

Authors: Yu-Chih Wang, Chia-Yu Lai, Hsiao-Tien Liu, Yi-Ju Chen, Shao-Bin Cheng

Abstract:

Liver transplant has been one of the curative treatment options for hepatocellular carcinomaunder certain oncological conditions. Two of the most validated criteria are from Milan in1996 and USCF in 2001, suggesting number and size limits of tumor without vascularinvasion or distant metastasis. We performed a retrospective cohort study of hepatocellular carcinoma patients undergoing livertransplant between August 2003 and December 2020 in our institute. Clinical andpathological characteristic, survival outcome, and recurrent pattern were analysed.UCSF criteria was applied for living donor transplantation, and Milan criteria was applied for deceased donor transplantation. Of 180 total patients, 52 cases(28.8%) with diagnosis of hepatocellular carcinoma, including26 living donor(LD) and 26 deceased donor(DD) liver transplant. Complete pathologicalremission was significantly more in the DD group(p=0.009). Pathological reports showed that30.8% of DD group exceeded Milan criteria, and 19.2% of LD group exceeded UCSFcriteria.After a median follow-up of 52.2 months, the 1-year, 3-year and 5-year overall survival was 87.6%, 74.1%, and 71.8%, respectively.Meanwhile, progression-free survival was 93.1%, 85.7%, and 81.6% for 1, 3, and 5-year, respectively, similar to that in Mazzaferro et al, 1996. We concluded that Liver transplant could be applied cautiously in expanded criteria for patent withhepatocellular carcinoma.

Keywords: liver transplant, milan criteria, UCSF criteria, living donor transplantation, deceased donor transplantation

Procedia PDF Downloads 137
8068 Evaluation of Iranian Standard for Assessment of Liquefaction Potential of Cohesionless Soils Based on SPT

Authors: Reza Ziaie Moayad, Azam Kouhpeyma

Abstract:

In-situ testing is preferred to evaluate the liquefaction potential in cohesionless soils due to high disturbance during sampling. Although new in-situ methods with high accuracy have been developed, standard penetration test, the simplest and the oldest in-situ test, is still used due to the profusion of the recorded data. This paper reviews the Iranian standard of evaluating liquefaction potential in soils (codes 525) and compares the liquefaction assessment methods based on SPT results on cohesionless soil in this standard with the international standards. To this, methods for assessing liquefaction potential which are presented by Cetin et al. (2004), Boulanger and Idriss (2014) are compared with what is presented in standard 525. It is found that although the procedure used in Iranian standard of evaluating the potential of liquefaction has not been updated according to the new findings, it is a conservative procedure.

Keywords: cohesionless soil, liquefaction, SPT, standard 525

Procedia PDF Downloads 153
8067 Behavior of Droplets in Microfluidic System with T-Junction

Authors: A. Guellati, F-M Lounis, N. Guemras, K. Daoud

Abstract:

Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn't allow regular out-flows due to the fact that the continuous phase doesn't adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases.

Keywords: microfluidic system, micro droplets generation, t-junction, fluids engineering

Procedia PDF Downloads 331
8066 Bulk Amounts of Linear and Cyclic Polypeptides on Our Hand within a Short Time

Authors: Yu Zhang, Il Kim

Abstract:

Polypeptides with defined peptide sequences illustrate the power of remarkable applications in drug delivery, tissue engineering, sensing and catalysis. Especially the cyclic polypeptides, the distinctive topological architecture imparts many characteristic properties comparing to linear polypeptides. Here, a facile and highly efficient strategy for the synthesis of linear and cyclic polypeptides is reported using N-heterocyclic carbenes (NHCs)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA) in the presence or absence of primary amine initiator. The polymerization proceeds rapidly in a quasi-living manner, allowing access to linear and cyclic polypeptides of well-defined chain length and narrow polydispersity, as evidenced by nuclear magnetic resonance spectrum (1H NMR and 13C NMR spectra) and size exclusion chromatography (SEC) analysis. The cyclic architecture of the polypeptides was further verified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra (MALDI-TOF MS) and electrospray ionization (ESI) mass spectra, as well as viscosity studies. This approach can also simplify workup procedures and make bulk scale synthesis possible, which thereby opens avenues for practical uses in diverse areas, opening up the new generation of polypeptide synthesis.

Keywords: α-amino acid N-carboxyanhydrides, living polymerization, polypeptides, N-heterocyclic carbenes, ring-opening polymerization

Procedia PDF Downloads 156
8065 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure

Authors: Anika Zafiah M. Rus, S. Shafizah

Abstract:

This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.

Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood

Procedia PDF Downloads 448
8064 Quantum Sieving for Hydrogen Isotope Separation

Authors: Hyunchul Oh

Abstract:

One of the challenges in modern separation science and technology is the separation of hydrogen isotopes mixtures since D2 and H2 consist of almost identical size, shape and thermodynamic properties. Recently, quantum sieving of isotopes by confinement in narrow space has been proposed as an alternative technique. Despite many theoretical suggestions, however, it has been difficult to discover a feasible microporous material up to now. Among various porous materials, the novel class of microporous framework materials (COFs, ZIFs and MOFs) is considered as a promising material class for isotope sieving due to ultra-high porosity and uniform pore size which can be tailored. Hence, we investigate experimentally the fundamental correlation between D2/H2 molar ratio and pore size at optimized operating conditions by using different ultramicroporous frameworks. The D2/H2 molar ratio is strongly depending on pore size, pressure and temperature. An experimentally determined optimum pore diameter for quantum sieving lies between 3.0 and 3.4 Å which can be an important guideline for designing and developing feasible microporous frameworks for isotope separation. Afterwards, we report a novel strategy for efficient hydrogen isotope separation at technologically relevant operating pressure through the development of quantum sieving exploited by the pore aperture engineering. The strategy involves installation of flexible components in the pores of the framework to tune the pore surface.

Keywords: gas adsorption, hydrogen isotope, metal organic frameworks(MOFs), quantum sieving

Procedia PDF Downloads 253
8063 Extracellular Production of the Oncolytic Enzyme, Glutaminase Free L-Asparaginase, from Newly Isolated Streptomyces Olivaceus NEAE-119: Optimization of Culture Conditions Using Response Surface Methodology

Authors: Noura El-Ahmady El-Naggar

Abstract:

Among the antitumour drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product(1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett–Burman experimental design and response surface methodology was carried out. Fifteen nutritional variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl and FeSO4. 7H2O) were screened using Plackett–Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age and agitation speed) were further optimized by the central composite face-centered design -response surface methodology. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase in the culture filtrate of Streptomyces olivaceus NEAE-119: Dextrose 3g, starch 20g, L-asparagine 10g, KNO3 1g, K2HPO4 1g, MgSO4.7H2O 0.1g, NaCl 0.1g, pH 7, temperature 37°C, agitation speed 200 rpm/min, inoculum size 4%, v/v, inoculum age 72 h and fermentation period 5 days.

Keywords: Streptomyces olivaceus NEAE-119, glutaminase free L-asparaginase, production, Plackett-Burman design, central composite face-centered design, 16S rRNA, scanning electron microscope

Procedia PDF Downloads 347
8062 Length-Weight and Length-Length Relationships of Oreochromis aureus in Relation to Body Size from Pakistan

Authors: Muhammad Naeem, Amina Zubari, Abdus Salam, Summera Yasmeen, Syed Ali Ayub Bukhari, Abir Ishtiaq

Abstract:

In the present study, eighty three wild Oreochromis aureus of different body size ranging 5.3-14.6 cm in total length were collected from the River Chenab, District Muzzafer Garh, Pakistan to investigate the parameters of length –weight, length-length relationships and condition factor in relation to size. Each fish was measured and weighed on arrival at laboratory. Log transformed regressions were used to test the allometric growth. Length-weight relationship was found highly significant (r = 0.964; P < 0.01). The values of exponent “ b” in Length–weight regression (W=aLb), deviated from 3, showing isometric growth (b = 2.75). Results for LLRs indicated that these are highly correlated (P< 0.001). Condition factor (K) found constant with increasing body weight, however, showed negative influence with increasing total length.

Keywords: Oreochromis aureus, weight-length relationship, condition factor, predictive equations

Procedia PDF Downloads 813
8061 Experimental Study to Determine the Effect of Wire Mesh Pore Size on Natural Draft Chimney Performance

Authors: Md. Mizanur Rahman, Chu Chi Ming, Mohd Suffian Bin Misaran

Abstract:

Chimney is an important part of the industries to remove waste heat from the processes side to the atmosphere. The increased demand of energy helps to restart to think about the efficiency of chimney as well as to find out a valid option to replace forced draft chimney system from industries. In this study natural draft chimney model is air flow rate; exit air temperature and pressure losses are studied through modification with wire mesh screen and compare the results with without wire mesh screen chimney model. The heat load is varies from 0.1 kW to 1kW and three different wire mesh screens that have pore size 0.15 mm2, 0.40 mm2 and 4.0 mm2 respectively are used. The experimental results show that natural draft chimney model with wire mesh screens significantly restored the flow losses compared to the system without wire mesh screen. The natural draft chimney model with 0.40 mm2 pore size wire mesh screen can minimize the draft losses better than others and able to enhance velocity about 54 % exit air temperature about 41% and pressure loss decreased by about 20%. Therefore, it can be decided that the wire mesh screens significantly minimize the draft losses in the natural draft chimney and 0.40 mm2 pore size screen will be a suitable option.

Keywords: natural draft dhimney, wire mesh screen, natural draft flow, mechanical engineering

Procedia PDF Downloads 307
8060 Seismic Analysis of Structurally Hybrid Wind Mill Tower

Authors: Atul K. Desai, Hemal J. Shah

Abstract:

The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.

Keywords: dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history

Procedia PDF Downloads 135
8059 Effect of Slope Height and Horizontal Forces on the Bearing Capacity of Strip Footings near Slopes in Cohesionless Soil

Authors: Sven Krabbenhoft, Kristian Krabbenhoft, Lars Damkilde

Abstract:

The problem of determining the bearing capacity of a strip foundation located near a slope of infinite height has been dealt with by several authors. Very often in practical problems the slope is of limited height, and furthermore the resulting load may be inclined at an angle to the horizontal, and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing capacity, both without and with using superposition as presupposed in the traditional bearing capacity equation. The results for friction angles 30, 35 and 40 degrees, slope inclinations 1:2, 1:3 and 1:4, for selfweight and surcharge are given as charts showing the slope inclination factors suitable for design.

Keywords: footings, bearing capacity, slopes, cohesionnless soil

Procedia PDF Downloads 449
8058 Quantification of Size Segregated Particulate Matter Deposition in Human Respiratory Tract and Health Risk to Residents of Glass City

Authors: Kalpana Rajouriya, Ajay Taneja

Abstract:

The objective of the present study is to investigate the regional and lobar deposition of size-segregated PM in respiratory tract of human body. PM in different fractions is monitored using the Grimm portable environmental dust monitor during winter season in Firozabad; a Glass city of India. PM10 concentration (200.817g/m³) was 4.46 and 2.0 times higher than the limits prescribed by WHO (45g/m⁻³) and NAAQS (100g/m⁻³) government agencies. PM2.5 concentration (83.538 g/m3) was 5.56 and 1.39 times higher from WHO (15g/m-3) and NAAQS (60g/m⁻³) limits. Results inferred that PM10 and PM2.5 was highest deposited in head region (0.3477-0.5622 & 0.366-0.4704) followed by pulmonary region, especially in the 9-21year old persons. The variation in deposition percentage in our study is mainly due to the airway geometry, PM size, and its deposition mechanisms. The coarse fraction, due to its large size, cannot follow the airway path and mostly gets deposited by inertial impaction in the head region and its bifurcations. The present study results inferred that Coarse and fine PM deposition was highly visualized in 9 (8.45610⁻⁴ g, 2.91110⁻⁴g) year and 3 (1.49610⁻⁴ g, 8.59310⁻⁵g) month age category. So, the 9year children and 3month infants category have high level of health risk.

Keywords: particulate matter, MPPD model, regional deposition, lobar deposition, health risk

Procedia PDF Downloads 44
8057 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing

Authors: Leonie Bradfield, Stephen Fityus, John Simmons

Abstract:

The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.

Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump

Procedia PDF Downloads 153
8056 Assessment of Gamma Radiation Exposure of Soils Associated with Granitic Rocks in Kapıdağ Peninsula, Turkey

Authors: Buket Canbaz Öztürk, N. Füsun Çam, Günseli Yaprak, Osman Candan

Abstract:

The external terrestrial radiation exposure is related to the types of rock from which the soils originate. Higher radiation levels are associated with igneous rocks, such as granite, and lower levels with sedimentary rocks. Therefore, this study aims to assess the gamma radiation exposure of soils associated with granitic rocks in Kapıdağ Peninsula, Turkey. In the ongoing study, a comprehensive survey carried out systematically as a part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters (238U, 232Th and 40K) in the surface soil samples and the granitic rocks carried out by means of NaI(Tl) gamma-ray spectrometry system. To evaluate the radiological hazard of the natural radioactivity, the absorbed dose rate (D), the annual effective dose rate (AED), the radium equivalent activity (Raeq) and the external (Hex) hazard index were calculated according to the UNSCEAR 2000 report. The corresponding absorbed dose rates in air from all natural radionuclides were always much lower than 200 nGy h-1 and did not exceed the typical range of worldwide average values noticed in the UNSCEAR (2000) report. Furthermore, the correlation between soil and granitic rock samples were utilized, and external gamma radiation exposure distribution was mapped in Kapıdağ Peninsula.

Keywords: external absorbed dose, granitic rocks, Kapıdağ Peninsula, soil

Procedia PDF Downloads 221
8055 BigCrypt: A Probable Approach of Big Data Encryption to Protect Personal and Business Privacy

Authors: Abdullah Al Mamun, Talal Alkharobi

Abstract:

As data size is growing up, people are became more familiar to store big amount of secret information into cloud storage. Companies are always required to need transfer massive business files from one end to another. We are going to lose privacy if we transmit it as it is and continuing same scenario repeatedly without securing the communication mechanism means proper encryption. Although asymmetric key encryption solves the main problem of symmetric key encryption but it can only encrypt limited size of data which is inapplicable for large data encryption. In this paper we propose a probable approach of pretty good privacy for encrypt big data using both symmetric and asymmetric keys. Our goal is to achieve encrypt huge collection information and transmit it through a secure communication channel for committing the business and personal privacy. To justify our method an experimental dataset from three different platform is provided. We would like to show that our approach is working for massive size of various data efficiently and reliably.

Keywords: big data, cloud computing, cryptography, hadoop, public key

Procedia PDF Downloads 306
8054 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman

Abstract:

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstressed. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is the loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhancing agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and anti-nutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

Keywords: anti-nutritional, healthy livelihood, nutritional waste, organic waste

Procedia PDF Downloads 367
8053 Evaluation of Durability Performance for Bio-Energy Co-Product

Authors: Bo Yang, Hali̇l Ceylan, Ali Ulvi̇ Uzer

Abstract:

This experimental study was performed to investigate the effect of biofuel co-products (BCPs) with sulfur-free lignin addition on the unconsolidated on strength and durability behavior in pavement soil stabilization subjected to freezing–thawing cycles. For strength behavior, a series of unconfined compression tests were conducted. Mass losses were also calculated after freezing–thawing cycles as criteria for durability behavior. To investigate the effect of the biofuel co-products on the durability behavior of the four type’s soils, mass losses were calculated after 12 freezing–thawing cycles. The co-products tested are promising additives for improving durability under freeze-thaw conditions, and each type has specific advantages.

Keywords: durability, mass lose, freezing–thawing test, bio-energy co-product, soil stabilization

Procedia PDF Downloads 356
8052 Synthesis of Rare Earth Doped Nano-Phosphors through the Use of Isobutyl Nitrite and Urea Fuels: Study of Microstructure and Luminescence Properties

Authors: Seyed Mahdi Rafiaei

Abstract:

In this investigation, red emitting Eu³⁺ doped YVO₄ nano-phosphors have been synthesized via the facile combustion method using isobutyl nitrite and urea fuels, individually. Field-emission scanning electron microscope (FE-SEM) images, high resolution transmission electron microscope (TEM) images and X-ray diffraction (XRD) spectra reveal that the mentioned fuels can be used successfully to synthesis YVO₄: Eu³⁺ nano-particles. Interestingly, the fuels have a large effect on the size and morphology of nano-phosphors as well as luminescence properties. Noteworthy the use of isobutyl nitrite provides an average particle size of 65 nm, while the employment of urea, results in the formation of larger particles and also provides higher photoluminescence emission intensity. The improved luminescence performance is attributed to the condition of chemical reaction via the combustion synthesis and the size of synthesized phosphors.

Keywords: phosphors, combustion, fuels, luminescence, nanostructure

Procedia PDF Downloads 122
8051 Fouling of Regenerated Ultrafiltration Membrane in Treatment of Oily Wastewater of Palm Oil Refinery

Authors: K. F. Md Yunos, N. S. Pajar, N. S. Azmi

Abstract:

Oily wastewater in Malaysian refinery has become a big issue of water and environment pollution to be solved urgently. The results of an experimental study on separation of oily wastewaters are presented. The characteristic of filtration behavior of commercial polymer ultrafiltration (UF) membranes was evaluated in the treatment of oily wastewater from palm oil refinery. The performance of different molecular weight cut off 5kDa and 10kDa regenerated cellulose membrane were evaluated and compared and the fouling behavior were analyzed by scanning electron microscopy (SEM). The effect of pressure (0.5, 1.0, 1.5, 2.0, 2.5 bar) and sample concentration (100%, 75%, 50%, 25%) on fouling of 5kDa and 10kDa membrane were evaluated. The characteristic of the sample solutions were analyzed for turbidity, total dissolved solid (TDS), total suspended solid (TSS), BOD, and COD. The results showed that the best fit to experimental data corresponds to the cake layer formation followed by the intermediate blocking for the experimental conditions tested. A more detailed analysis of the fouling mechanisms was studied by dividing the filtration curves into different regions corresponding to the different fouling mechanisms. Intermediate blocking and cake layer formation or combinations of them were found to occur during the UF experiments depending on the operating conditions.

Keywords: fouling, oily wastewater, regenerated cellulose, ultrafiltration

Procedia PDF Downloads 402
8050 Acoustic Echo Cancellation Using Different Adaptive Algorithms

Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil

Abstract:

An adaptive filter is a filter that self-adjusts its transfer function according to an optimization algorithm driven by an error signal. Because of the complexity of the optimization algorithms, most adaptive filters are digital filters. Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications, including adaptive noise cancellation and echo cancellation. Acoustic echo cancellation is a common occurrence in today’s telecommunication systems. The signal interference caused by acoustic echo is distracting to both users and causes a reduction in the quality of the communication. In this paper, we review different techniques of adaptive filtering to reduce this unwanted echo. In this paper, we see the behavior of techniques and algorithms of adaptive filtering like Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step-Size Least Mean Square (VSLMS), Variable Step-Size Normalized Least Mean Square (VSNLMS), New Varying Step Size LMS Algorithm (NVSSLMS) and Recursive Least Square (RLS) algorithms to reduce this unwanted echo, to increase communication quality.

Keywords: adaptive acoustic, echo cancellation, LMS algorithm, adaptive filter, normalized least mean square (NLMS), variable step-size least mean square (VSLMS)

Procedia PDF Downloads 64
8049 Synchrotron X-Ray Based Investigation of As and Fe Bonding Environment in Collard Green Tissue Samples at Different Growth Stages

Authors: Sunil Dehipawala, Aregama Sirisumana, stephan Smith, P. Schneider, G. Tremberger Jr, D. Lieberman, Todd Holden, T. Cheung

Abstract:

The arsenic and iron environments in different growth stages have been studied with EXAFS and XANES using Brookhaven Synchrotron Light Source. Collard Greens plants were grown and tissue samples were harvested. The project studied the EXAFS and XANES of tissue samples using As and Fe K-edges. The Fe absorption and the Fourier transform bond length information were used as a control comparison. The Fourier transform of the XAFS data revealed the coexistence of As (III) and As (V) in the As bonding environment inside the studied plant tissue samples, although the soil only had As (III). The data suggests that Collard Greens has a novel pathway to handle arsenic absorption in soil.

Keywords: EXAFS, fourier transform, metalloproteins, XANES

Procedia PDF Downloads 309