Search results for: physicochemical properties of banana starch
7982 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates
Authors: Gavin Gengan, Hsein Kew
Abstract:
Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concreteKeywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic
Procedia PDF Downloads 2137981 Optimization of Fenton Process for the Treatment of Young Municipal Leachate
Authors: Bouchra Wassate, Younes Karhat, Khadija El Falaki
Abstract:
Leachate is a source of surface water and groundwater contamination if it has not been pretreated. Indeed, due to its complex structure and its pollution load make its treatment extremely difficult to achieve the standard limits required. The objective of this work is to show the interest of advanced oxidation processes on leachate treatment of urban waste containing high concentrations of organic pollutants. The efficiency of Fenton (Fe2+ +H2O2 + H+) reagent for young leachate recovered from collection trucks household waste in the city of Casablanca, Morocco, was evaluated with the objectives of chemical oxygen demand (COD) and discoloration reductions. The optimization of certain physicochemical parameters (initial pH value, reaction time, and [Fe2+], [H2O2]/ [Fe2+] ratio) has yielded good results in terms of reduction of COD and discoloration of the leachate.Keywords: COD removal, color removal, Fenton process, oxidation process, leachate
Procedia PDF Downloads 2887980 Characterization and Antimicrobial Properties of Functional Polypropylene Films Incorporated with AgSiO2, AgZn, and AgZ Useful as Returnable Packaging in Seafood Distribution
Authors: Suman Singh, Myungho Lee, Insik Park, Yangjai Shin, Youn Suk Lee
Abstract:
Active antimicrobial films prepared by incorporating AgSiO2, AgZn, and AgZ at 1%, 3%, 5%, 10% (w/w) into polypropylene (PP) matrix. Complete thermal, structural, mechanical and functional characterization were carried out of all formulations and determined the antimicrobial efficiency and returnable antimicrobial efficiency according to the Japanese Industrial Standard method. The morphology of the films showed agglomerates of particles in the composites. The active formulation had decreased elongation compared to the pure PP sample. Thermal analyses indicated that the active formulation compositions had increased thermal stability. The films showed 50% antimicrobial properties after the fifth wash against the tested microorganisms, presenting better activity against Gram negative organisms than Gram positive ones. These findings suggest that PP films with AgSiO2, AgZn, and AgZ particles could provide a significant contribution to the quality and safety of seafood in the distribution chain.Keywords: antimicrobial film, properties and characterization, returnable packaging, sea food
Procedia PDF Downloads 3697979 Investigation of Garment Fit Using Virtual Try-On Technology
Authors: Kristina Ancutiene, Agne Lage, Ada Gulbiniene
Abstract:
Virtual garment fitting has gotten considerable attention for researchers currently. Virtual try-on technologies provide the opportunity to check garment fit using various fabrics and sizes. Differences in fabric mechanical properties produce differences in garment fit. This research aimed to investigate the virtual garment fit concerning the fabric's mechanical properties by determining distance ease between the body and the garment. In this research, virtual women mannequin was covered with straight fit virtual dress stitched in Modaris 3D (CAD Lectra). Garment fitting was investigated using seven cotton/cotton blended plain weave fabrics. Ease allowance value at bust, waist and hip girths in 2D basic patterns was changed uniformly from 0 cm to 8 cm. The values of distance ease in 3D virtual garments at the three main girths were investigated. Distance ease distribution in the virtual garment was investigated also. It was defined that by increasing of 2D patterns ease allowance, 3D garment distance ease changes proportionally but differently using various fabrics. Correlation analysis between 3D garment ease and mechanical properties showed that tensile strain in weft direction had the strongest relation.Keywords: 3D CAD, distance ease, fabric, garment fit, virtual try-on
Procedia PDF Downloads 1837978 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads
Authors: Behzad Mohammadzadeh, Huyk Chun Noh
Abstract:
The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.Keywords: impulsive loaded plates, dynamic analysis, ABAQUS, material nonlinearity
Procedia PDF Downloads 5257977 The Haemoglobin, Transferrin, Ceruloplasmin and Glutathione Polymorphism of Native Goat Breeds of Turkey, I-Angora and Hair
Authors: Ayse Ozge Demir, Nihat Mert
Abstract:
This study has been carried out in order to determine the polymorphic traits of various biochemical parameters in goat breeds which are native to Turkey. For this purpose, Angora and Hair goats breeds were chosen as live materials. Two different herds for each breed were selected from Ankara and Antalya, respectively. Blood samples were taken from a total of 120 goats aged between 2 and 4 which was made up of 60 Angora goats and 60 Hair goats. All which derived equally from 4 lots of herds. Analyses were performed for the polymorphic determination of the Haemoglobin (Hb), Transferrine (Tf), Ceruloplasmin (Cp) and Glutathione (GSH). Hb types were determined by starch gel electrophoresis and Tf types were detected by SDS-PAGE electrophoresis. Furthermore, Cp and GSH analyses were performed by spectrophotometrically. Following the analysis, Hb types were found as 3 genotypes (AA, AB, BB) controlled by 2 allel genes. Tf types were found as 6 genotypes (AA, AB, AC, BB, BC, CC) controlled by 3 allele genes. Findings for Hb was in line with the Hardy-Weinberg Equilibrium (HWE) in Angora goats while the Hair goat was not found to be in line. Moreover, Tf was found in line with the HWE for 2 separate goat breeds. The levels of Cp and GSH of two breeds were significantly different from other (P<0.0001). The findings are recorded as a source of reference for prospective polymorphism studies.Keywords: electrophoresis, genetic resources, goats, spectrophotometer
Procedia PDF Downloads 3007976 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete
Authors: Farzad Danaei, Yilmaz Akkaya
Abstract:
In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient
Procedia PDF Downloads 827975 Optimization of Processing Parameters of Acrylonitrile–Butadiene–Styrene Sheets Integrated by Taguchi Method
Authors: Fatemeh Sadat Miri, Morteza Ehsani, Seyed Farshid Hosseini
Abstract:
The present research is concerned with the optimization of extrusion parameters of ABS sheets by the Taguchi experimental design method. In this design method, three parameters of % recycling ABS, processing temperature and degassing time on mechanical properties, hardness, HDT, and color matching of ABS sheets were investigated. The variations of this research are the dosage of recycling ABS, processing temperature, and degassing time. According to experimental test data, the highest level of tensile strength and HDT belongs to the sample with 5% recycling ABS, processing temperature of 230°C, and degassing time of 3 hours. Additionally, the minimum level of MFI and color matching belongs to this sample, too. The present results are in good agreement with the Taguchi method. Based on the outcomes of the Taguchi design method, degassing time has the most effect on the mechanical properties of ABS sheets.Keywords: ABS, process optimization, Taguchi, mechanical properties
Procedia PDF Downloads 777974 Utilization of Rice and Corn Bran with Dairy By-Product in Tarhana Production
Authors: Kübra Aktaş, Nihat Akin
Abstract:
Tarhana is a traditional Turkish fermented food. It is widely consumed as soup and includes many different ingredients such as wheat flour, various vegetables, and spices, yoghurt, bakery yeast. It can also be enriched by adding other ingredients. Thus, its nutritional properties can be enhanced. In this study, tarhana was supplemented with two different types of brans (rice bran and corn bran) and WPC (whey protein concentrate powder) to improve its nutritional and functional properties. Some chemical properties of tarhana containing two different brans and their levels (0, 5, 10 and 15%) and WPC (0, 5, 10%) were investigated. The results indicated that addition of WPC increased ash content in tarhanas which were fortified with rice and corn bran. The highest antioxidant and phenolic content values were obtained with addition of rice bran in tarhana formulation. Compared to tarhana with corn bran, rice bran addition gave higher oil content values. The cellulose content of tarhana samples was determined between 0.75% and 2.74% and corn bran showed an improving effect on cellulose contents of samples. In terms of protein content, addition of WPC into the tarhana raised protein content for the samples.Keywords: corn, rice, tarhana, whey
Procedia PDF Downloads 3427973 Quantum Confinement in LEEH Capped CdS Nanocrystalline
Authors: Mihir Hota, Namita Jena, S. N. Sahu
Abstract:
LEEH (L-cysteine ethyl ester hydrochloride) capped CdS semiconductor nanocrystals are grown at 800C using a simple chemical route. Photoluminescence (PL), Optical absorption (UV) and Transmission Electron Microscopy (TEM) have been carried out to evaluate the structural and optical properties of the nanocrystal. Optical absorption studies have been carried out to optimize the sample. XRD and TEM analysis shows that the nanocrystal belongs to FCC structure having average size of 3nm while a bandgap of 2.84eV is estimated from Photoluminescence analysis. The nanocrystal emits bluish light when excited with 355nm LASER.Keywords: cadmium sulphide, nanostructures, luminescence, optical properties
Procedia PDF Downloads 3997972 Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation
Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan
Abstract:
Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.Keywords: PALF, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope
Procedia PDF Downloads 1567971 Effect of Aging on Hardness and Corrosion Resistance of WE43 Magnesium Alloy
Authors: Ziya Esen, Özgür Duygulu, Nazlı S. Büyükatak
Abstract:
This study investigates the effects of aging heat treatment on corrosion resistance and mechanical properties of WE43 Magnesium alloy. The heat treatment of alloys was conducted by solutionizing at 525oC for 16 h, followed by aging at 190, 210 and 230oC for up to 48 h. The type and the size of precipitates formed upon aging have influenced both the mechanical properties and corrosion behavior of the alloy. Solutionized alloy displayed the worst corrosion resistance in simulated body fluid, while peak hardness and the best corrosion resistance were observed in the alloy aged at 210oC for 24 h as a result of β’ precipitate formation. Longer aging duration at 210oC decreased the corrosion rate due to the coarsening of the precipitates and formation of precipitate-free zones. The increased corrosion resistance of the peak aged samples was attributed to the slowing down effect of the Mg(OH)₂/MgO corrosion layer by the pinning effect of β’-precipitates.Keywords: WE43 magnesium alloy, simulated body fluid, corrosion, mechanical properties
Procedia PDF Downloads 167970 Electrocatalytic Properties of Ru-Pd Bimetal Quantum Dots/TiO₂ Nanotube Arrays Electrodes Composites with Double Schottky Junctions
Authors: Shiying Fan, Xinyong Li
Abstract:
The development of highly efficient multifunctional catalytic materials towards HER, ORR and Photo-fuel cell applications in terms of combined electrochemical and photo-electrochemical principles have currently confronted with dire challenges. In this study, novel palladium (Pd) and ruthenium (Ru) Bimetal Quantum Dots (BQDs) co-anchored on Titania nanotube (NTs) arrays electrodes have been successfully constructed by facial two-step electrochemical strategy. Double Schottky junctions with superior performance in electrocatalytic (EC) hydrogen generations and solar fuel cell energy conversions (PE) have been found. Various physicochemical techniques including UV-vis spectroscopy, TEM/EDX/HRTEM, SPV/TRV and electro-chemical strategy including EIS, C-V, I-V, and I-T, etc. were chronically utilized to systematically characterize the crystal-, electronic and micro-interfacial structures of the composites with double Schottky junction, respectively. The characterizations have implied that the marvelous enhancement of separation efficiency of electron-hole pairs generations is mainly caused by the Schottky-barriers within the nanocomposites, which would greatly facilitate the interfacial charge transfer for H₂ generations and solar fuel cell energy conversions. Moreover, the DFT calculations clearly indicated that the oriented growth of Ru and Pd bimetal atoms at the anatase (101) surface is mainly driven by the interaction between Ru/Pd and surface atoms, and the most active site for bimetal Ru and Pd adatoms on the perfect TiO₂ (101) surface is the 2cO-6cTi-3cO bridge sites and the 2cO-bridge sites with the highest adsorption energy of 9.17 eV. Furthermore, the electronic calculations show that in the nanocomposites, the number of impurity (i.e., co-anchored Ru-Pd BQDs) energy levels near Fermi surface increased and some were overlapped with original energy level, promoting electron energy transition and reduces the band gap. Therefore, this work shall provide a deeper insight for the molecular design of Bimetal Quantum Dots (BQDs) assembled onto Tatiana NTs composites with superior performance for electrocatalytic hydrogen productions and solar fuel cell energy conversions (PE) simultaneously.Keywords: eletrocatalytic, Ru-Pd bimetallic quantum dots, titania nanotube arrays, double Schottky junctions, hydrogen production
Procedia PDF Downloads 1447969 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films
Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit
Abstract:
Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy
Procedia PDF Downloads 2857968 Synthesis, Growth, Characterization and Quantum Chemical Investigations of an Organic Single Crystal: 2-Amino- 4-Methylpyridinium Quinoline- 2-Carboxylate
Authors: Anitha Kandasamy, Thirumurugan Ramaiah
Abstract:
Interestingly, organic materials exhibit large optical nonlinearity with quick responses and having the flexibility of molecular tailoring using computational modelling and favourable synthetic methodologies. Pyridine based organic compounds and carboxylic acid contained aromatic compounds play a crucial role in crystal engineering of NCS complexes that displays admirable optical nonlinearity with fast response and favourable physicochemical properties such as low dielectric constant, wide optical transparency and large laser damage threshold value requires for optoelectronics device applications. Based on these facts, it was projected to form an acentric molecule of π-conjugated system interaction with appropriately replaced electron donor and acceptor groups for achieving higher SHG activity in which quinoline-2-carboyxlic acid is chosen as an electron acceptor and capable of acting as an acid as well as a base molecule, while 2-amino-4-methylpyridine is used as an electron donor and previously employed in numerous proton transfer complexes for synthesis of NLO materials for optoelectronic applications. 2-amino-4-mehtylpyridinium quinoline-2-carboxylate molecular complex (2AQ) is having π-donor-acceptor groups in which 2-amino-4-methylpyridine donates one of its electron to quinoline -2-carboxylic acid thereby forming a protonated 2-amino-4-methyl pyridinium moiety and mono ionized quinoline-2-carboxylate moiety which are connected via N-H…O intermolecular interactions with non-centrosymmetric crystal packing arrangement at microscopic scale is accountable to the enhancement of macroscopic second order NLO activity. The 2AQ crystal was successfully grown by a slow evaporation solution growth technique and its structure was determined in orthorhombic crystal system with acentric, P212121, space group. Hirshfeld surface analysis reveals that O…H intermolecular interactions primarily contributed with 31.0 % to the structural stabilization of 2AQ. The molecular structure of title compound has been confirmed by 1H and 13C NMR spectral studies. The vibrational modes of functional groups present in 2AQ have been assigned by using FTIR and FT-Raman spectroscopy. The grown 2AQ crystal exhibits high optical transparency with lower cut-off wavelength (275 nm) within the region of 275-1500 nm. The laser study confirmed that 2AQ exhibits high SHG efficiency of 12.6 times greater than that of KDP. TGA-DTA analysis revealed that 2AQ crystal had a thermal stability of 223 °C. The low dielectric constant and low dielectric loss at higher frequencies confirmed good crystalline nature with fewer defects of grown 2AQ crystal. The grown crystal exhibits soft material and positive photoconduction behaviour. Mulliken atomic distribution and FMOs analysis suggested that the strong intermolecular hydrogen bonding which lead to the enhancement of NLO activity. These properties suggest that 2AQ crystal is a suitable material for optoelectronic and laser frequency conversion applications.Keywords: crystal growth, NLO activity, proton transfer complex, quantum chemical investigation
Procedia PDF Downloads 1277967 Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing
Authors: Tim Dunne, Jiaxiang Ren, Lei Zhao, Peng Cheng, Yi Song, Yu Liu, Wenhan Yue, Xiongwen Yang
Abstract:
Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.Keywords: equal channel angular processing, dissolvable magnesium, frac plug, mechanical properties
Procedia PDF Downloads 1217966 Review on Green Synthesis of Gold Nanoparticles
Authors: Shabnam, Jagdeep Kumar
Abstract:
Because of the impact of their greater surface area and smaller quantum sizes in comparison with other metal atoms or bulk metals, metal nanoparticles, such as those formed of gold, exhibit a variety of unusual chemical and physical properties. The size- and shape-dependent properties of gold nanoparticles (GNPs) are particularly notable. Metal nanoparticles have received a lot of attention due to their unique properties and exciting prospective uses in photonics, electronics, biological sensing, and imaging. The latest developments in GNP synthesis are discussed in this review. Green chemistry measures were used to assess the production of gold nanoparticles, with a focus on Process Mass Intensity (PMI). Based on these measurements, opportunities for improving synthetic approaches were found. With PMIs that were often in the thousands, solvent usage was found to be the main obstacle for nanoparticle synthesis, even ones that were otherwise considered to be environmentally friendly. Since ligated metal nanoparticles are the most industrially relevant but least environmentally friendly, their synthesis by arrested precipitation was chosen as the best chance for significant advances. Gold nanoparticles of small sizes and bio-stability are produced biochemically, and they are used in many biological applications.Keywords: gold, nanoparticles, green synthesis, AuNP
Procedia PDF Downloads 867965 An Alternative Way to Mapping Cone
Authors: Yousuf Alkhezi
Abstract:
Since most of the literature on algebra does not make much deal with the special case of mapping cone. This paper is an alternative way to examine the special tensor product and mapping cone. Also, we show that the isomorphism that implies the mapping cone commutes with the tensor product for the ordinary tensor product no longer holds for the pinched tensor product. However, we show there is a morphism. We will introduce an alternative way of mapping cone. We are looking for more properties which is our future project. Also, we want to apply these new properties in some application. Many results and examples with classical algorithms will be provided.Keywords: complex, tensor product, pinched tensore product, mapping cone
Procedia PDF Downloads 1347964 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood
Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty
Abstract:
We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.Keywords: FT-NIR, mechanical properties, pre-processing, PLS
Procedia PDF Downloads 3657963 BaFe12O19/Polythiophene Nanocomposite as Electrochemical Supercapacitor Electrode
Authors: H. Farokhi, A. Bahadoran
Abstract:
This paper is focused on the absorbance and magnetic properties of a novel nanocomposite based on conducting polymer, carbon black and barium hexaferrite in epoxy resin on the E-glass fibre substrate. The highly conductive nanocomposite was provided by in-situ polymerization of aniline in the presence of carbon black (C) and barium hexaferrite (BaFe12O19) as electromagnetic absorbance material. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). SEM images showed the uniformly coated PAni on the surface of carbon black and barium hexaferrite. XRD peaks also verified the presence of carbon black and barium hexaferrite in the nanocomposite. The microwave characteristics determined from the magnetic and dielectric properties of the elastomeric composites obtained from scattering data by fitting the samples in a waveguide, where measured in the frequency in X-band frequency range, the range of 8 to 12 GHz. The reflection losses were evaluated to be less than −5dB over the whole X-band frequency (8–12 GHz) for the thickness of 1.4mm.Keywords: conductive polymer, magnetic materials, capacitance, electrochemical cell
Procedia PDF Downloads 2507962 Microfluidization for Processing of Carbonized Chicken Feather Fiber (CCFF) Modified Epoxy Suspensions and the Thermal Properties of the Resulting Composites
Authors: A. Tuna, Y. Okumuş, A. T. Seyhan, H. Çelebi
Abstract:
In this study, microfluidization was considered a promising approach to breaking up of carbonized chicken feather fibers (CCFFs) flocs to synthesizing epoxy suspensions containing (1 wt. %) CCFFs. For comparison, CCFF was also treated using sonication. The energy consumed to break up CCFFs in the ethanol was the same for both processes. CCFFs were found to be dispersed in ethanol in a significantly shorter time with the high shear processor. The CCFFs treated by both sonication and microfluidization were dispersed in epoxy by sonication. SEM examination revealed that CCFFs were broken up into smaller pieces using the high shear processor while being not agglomerated. Further, DSC, TMA, and DMA were systematically used to measure thermal properties of the resulting composites. A significant improvement was observed in the composites including CCFFs treated with microfluidization.Keywords: carbonized chicken feather fiber (CCFF), modulated differential scanning calorimetry (MDSC), modulated thermomechanical analysis (MTMA), thermal properties
Procedia PDF Downloads 3197961 Using Complete Soil Particle Size Distributions for More Precise Predictions of Soil Physical and Hydraulic Properties
Authors: Habib Khodaverdiloo, Fatemeh Afrasiabi, Farrokh Asadzadeh, Martinus Th. Van Genuchten
Abstract:
The soil particle-size distribution (PSD) is known to affect a broad range of soil physical, mechanical and hydraulic properties. Complete descriptions of a PSD curve should provide more information about these properties as opposed to having only information about soil textural class or the soil sand, silt and clay (SSC) fractions. We compared the accuracy of 19 different models of the cumulative PSD in terms of fitting observed data from a large number of Iranian soils. Parameters of the six most promising models were correlated with measured values of the field saturated hydraulic conductivity (Kfs), the mean weight diameter of soil aggregates (MWD), bulk density (ρb), and porosity (∅). These same soil properties were correlated also with conventional PSD parameters (SSC fractions), selected geometric PSD parameters (notably the mean diameter dg and its standard deviation σg), and several other PSD parameters (D50 and D60). The objective was to find the best predictions of several soil physical quality indices and the soil hydraulic properties. Neither SSC nor dg, σg, D50 and D60 were found to have a significant correlation with both Kfs or logKfs, However, the parameters of several cumulative PSD models showed statistically significant correlation with Kfs and/or logKfs (|r| = 0.42 to 0.65; p ≤ 0.05). The correlation between MWD and the model parameters was generally also higher than either with SSC fraction and dg, or with D50 and D60. Porosity (∅) and the bulk density (ρb) also showed significant correlation with several PSD model parameters, with ρb additionally correlating significantly with various geometric (dg), mechanical (D50 and D60), and agronomic (clay and sand) representations of the PSD. The fitted parameters of selected PSD models furthermore showed statistically significant correlations with Kfs,, MWD and soil porosity, which may be viewed as soil quality indices. Results of this study are promising for developing more accurate pedotransfer functions.Keywords: particle size distribution, soil texture, hydraulic conductivity, pedotransfer functions
Procedia PDF Downloads 2847960 Classification of Barley Varieties by Artificial Neural Networks
Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran
Abstract:
In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.Keywords: physical properties, artificial neural networks, barley, classification
Procedia PDF Downloads 1837959 Impact of Corn Gluten Hydrolysate on Seedling Growth
Authors: Jyotika Chopra, Dinesh Goyal
Abstract:
A study was initiated to examine the effects of corn gluten hydrolysate on seedlings growth and its development. Corn gluten is the byproduct of starch industry rich in proteins was hydrolysed by acid and alkali, and the impact of hydrolysate was studied on seed germination of Vigna radiata, Phaseolus vulagris (Fabaceae) and Triticum aestivum and Oryza sativa (Gramineae). For this, the optimum hydrolysis was obtained by 4NHCl and 4M NaOH where insoluble protein in gluten was broken down to glutamic acid, alanine, aspartic acid which was initially confirmed by biuret test, xanthoproteic, solubility and chromatographic tests. The seeds of above families were separately treated with different dilutions of corn gluten hydrolysate ranging from 1-100% to see effects produced by these dilutions on seed germination, plumule, and radical growth. The seedlings were put in the Petri plates and placed in the optimized conditions of temperature (37˚C) and photoperiod of 16:8 hours. The results indicate the plumule of all seeds shows the increase in growth pattern up to 25.75%. Whereas radical shows the increase in growth up to 25.88% till 10% of dilution of corn and wheat gluten hydrolysate with respect to water as blank. Further, there is decrease in growth from 30- 100% of dilutions of both, the hydrolysate indicates the inhibitory effects which unveil about the careful usage of gluten hydrolysate.Keywords: corn gluten, characterization, hydrolysis, seedling growth
Procedia PDF Downloads 1187958 Effect of Substrate Temperature on Some Physical Properties of Doubly doped Tin Oxide Thin Films
Authors: Ahmet Battal, Demet Tatar, Bahattin Düzgün
Abstract:
Various transparent conducting oxides (TCOs) are mostly used much applications due to many properties such as cheap, high transmittance/electrical conductivity etc. One of the clearest among TCOs, indium tin oxide (ITO), is the most widely used in many areas. However, as ITO is expensive and very low regarding reserve, other materials with suitable properties (especially SnO2 thin films) are be using instead of it. In this report, tin oxide thin films doubly doped with antimony and fluorine (AFTO) were deposited by spray at different substrate temperatures on glass substrate. It was investigated their structural, optical, electrical and luminescence properties. The substrate temperature was varied from 320 to 480 ˚C at the interval of 40 (±5) ºC. X-ray results were shown that the films are polycrystalline with tetragonal structure and oriented preferentially along (101), (200) and (210) directions. It was observed that the preferential orientations of crystal growth are not dependent on substrate temperature, but the intensity of preferential orientation was increased with increasing substrate temperature until 400 ºC. After this substrate temperature, they decreased. So, substrate temperature impact structure of these thin films. It was known from SEM analysis, the thin films have rough and homogenous and the surface of the films was affected by the substrate temperature i.e. grain size are increasing with increasing substrate temperature until 400 ºC. Also, SEM and AFM studies revealed the surface of AFTO thin films to be made of nanocrystalline particles. The average transmittance of the films in the visible range is 70-85%. Eg values of the films were investigated using the absorption spectra and found to be in the range 3,20-3,93 eV. The electrical resistivity decreases with increasing substrate temperature, then the electrical resistivity increases. PL spectra were found as a function of substrate temperature. With increasing substrate temperature, emission spectra shift a little bit to a UV region. Finally, tin oxide thin films were successfully prepared by this method and a spectroscopic characterization of the obtained films was performed. It was found that the films have very good physical properties. It was concluded that substrate temperature impacts thin film structure.Keywords: thin films, spray pyrolysis, SnO2, doubly doped
Procedia PDF Downloads 4807957 The Effect of Gamma-Aminobutyric Acid on Mechanical Properties, Water Vapor Permeability and Solubility of Pectin Films
Authors: Jitrawadee Meerasri, Rungsinee Sothornvit
Abstract:
Pectin is a structural polysaccharide from plant cell walls and can be used as a stabilizer, gelling and film-forming agents to improve many food products. Moreover, pectin film as a natural biopolymer can be a carrier of several active ingredients such as antioxidant and antimicrobial to provide an active or functional film. Gamma-aminobutyric acid (GABA) is a well-known agent to reduce neuronal excitability throughout the nervous system and it is interesting to investigate the GABA effect as a substitute of normal plasticizer (glycerol) on edible film properties. Therefore, the objective of this study was to determine the effect of GABA concentrations (5-15% of pectin) on film mechanical properties, moisture content, water vapor permeability, and solubility compared with those from glycerol (10% of pectin) plasticized pectin film including a control film (pectin film without any plasticizer). It was found that an increase in GABA concentrations decreased film tensile strength, modulus, solubility and water vapor permeability, but elongation was increased without a change in the moisture content. The smaller amount of GABA showed the equivalent film properties as using a higher amount of glycerol. Consequently, GABA can act as an alternative plasticizer substitute of glycerol at the lower amount used. Moreover, GABA provides the nutritional high value in the food products when the edible packaging material is consumed with products.Keywords: gamma-aminobutyric acid, pectin, plasticizer, edible film
Procedia PDF Downloads 1347956 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites
Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita
Abstract:
The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength
Procedia PDF Downloads 2847955 Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System
Authors: Aung Kyaw Moe, Lukin Evgeny Stepanovich, Popova Nelya Alexandrovna
Abstract:
In this paper, the effect of the additive content in the Al2O3-TiO2-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives.Keywords: ceramic, composite material, sintering, corundum
Procedia PDF Downloads 3137954 Indoleamines (Serotonin & Melatonin) in Edible Plants: Its Influence on Human Health
Authors: G. A. Ravishankar, A. Ramakrishna
Abstract:
Melatonin (MEL) and Serotonin (SER), also known as [5-Hydroxytryptamine (5-HT)] are reported to be in a range of plant types which are edible. Their occurrence in plants species appears to be ubiquitous. Their presence in high quantities in plants assumes significance owing to their physiological effects upon consumption by human beings. MEL is a well known animal hormone mainly released by the pineal gland known to influence circadian rhythm, sleep, apart from immune enhancement. Similarly, SER is a neurotransmitter that regulates mood, sleep and anxiety in mammals. It is implicated in memory, behavioral changes, scavenging reactive oxygen species, antipsychotic, etc. Similarly Role of SER and MEL in plant morphogenesis, and various physiological processes through intense research is beginning to unfold. These molecules are in common foods viz banana, pineapple, plum, nuts, milk, grape wine. N- Feruloyl serotonin and p-coumaroyl serotonin found in certain seeds are found to possess antioxidant, anti-inflammatory, antitumor, antibacterial, and anti-stress potential apart from reducing depression and anxiety. MEL is found in Mediterranean diets, nuts, cherries, tomato berries, and olive products. Consumption of foods rich in MEL is known to increase blood MEL levels which have been implicated in protective effect against cardiovascular damage, cancer initiation and growth. MEL is also found in wines, green tea, beer, olive oil etc. Moreover, presence of SER and MEL in Coffee beans (green and roasted beans) and decoction has been reported us. In this communication we report the occurrence of indole amines in edible plants and their implications in human health.Keywords: serotonin, melatonin, edible plants, neurotransmitters, physiological effects
Procedia PDF Downloads 2817953 Filled Polymer Composite
Authors: Adishirin Mammadov
Abstract:
Polymers and polymer composites play vital roles in diverse industries, including food and beverage packaging, transportation innovations, and medical advancements. However, the advancements in polymer technology bring certain risks, particularly concerning water and soil pollution due to the presence of polymers. The creation of new polymers is a critical aspect of this field. While the primary focus is on improving their physical and chemical properties, ensuring their ecological compatibility is equally important. An advanced method for developing innovative polymer types involves integrating fillers with diverse characteristics, offering advantages such as cost reduction and improved quality indicators. In the conducted research, efforts were made to enhance environmental aspects by employing waste fillers. Specifically, low-density polyethylene (LDPE) was used as the polymer, and waste from cocoon factories was chosen as the filler. Following a process of cleaning, drying, and crushing the filler to specific dimensions, it was incorporated into polyethylene through a mechanical-chemical method under laboratory conditions. The varied rheological properties of the resulting polyethylene compositions examined at temperatures ranging from 145 to 165 degrees Celsius. These compositions demonstrated different rheological properties at various temperature intervals. Achieving homogeneity in the obtained compositions is crucial in the polymers mechanochemical process. Beyond rheological properties, swelling rates in different environments and percentages of mass loss at different temperatures learned using the differential thermal analysis method. The research revealed that, to a certain extent, the physico-chemical properties of polyethylene were not significantly affected by the polymer compositions. This suggests that incorporating cocoon waste enables cost reduction in composite production while positively impacting the environment.Keywords: polyethylene, polymer, composites, filler, reology
Procedia PDF Downloads 61