Search results for: multinomial logistic regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3430

Search results for: multinomial logistic regression

1900 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data

Procedia PDF Downloads 350
1899 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 63
1898 Municipal Solid Waste Management and Analysis of Waste Generation: A Case Study of Bangkok, Thailand

Authors: Pitchayanin Sukholthaman

Abstract:

Gradually accumulated, the enormous amount of waste has caused tremendous adverse impacts to the world. Bangkok, Thailand, is chosen as an urban city of a developing country having coped with serious MSW problems due to the vast amount of waste generated, ineffective and improper waste management problems. Waste generation is the most important factor for successful planning of MSW management system. Thus, the prediction of MSW is a very important role to understand MSW distribution and characteristic; to be used for strategic planning issues. This study aims to find influencing variables that affect the amount of Bangkok MSW generation quantity.

Keywords: MSW generation, MSW quantity prediction, MSW management, multiple regression, Bangkok

Procedia PDF Downloads 421
1897 The Importance of Self-Efficacy and Collective Competence Beliefs in Managerial Competence of Sports Managers'

Authors: Şenol Yanar, Sinan Çeli̇kbi̇lek, Mehmet Bayansalduz, Yusuf Can

Abstract:

Managerial competence defines as the skills that managers in managerial positions have in relation to managerial responsibilities and managerial duties. Today's organizations, which are in a competitive environment, have the desire to work with effective managers in order to be more advantageous position than the other organizations they are competing with. In today's organizations, self-efficacy and collective competence belief that determine managerial competencies of managers to assume managerial responsibility are of special importance. In this framework, the aim of this study is to examine the effects of sports managers' perceptions of self-efficacy and collective competence in managerial competence perceptions. In the study, it has also been analyzed if there is a significant difference between self-efficacy, collective competence and managerial competence levels of sports managers in terms of their gender, age, duty status, year of service and level of education. 248 sports managers, who work at the department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the self-efficacy scale which was developed by Schwarzer, R. & Jerusalem, M. (1995), collective competence scale developed by Goddard, Hoy and Woolfolk-Hoy (2000) and managerial competence scale developed by Cetinkaya (2009) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, Pearson Correlation Analysis has been used for defining the correlation among self-efficacy, collective competence belief, and managerial competence levels in sports managers and regression analysis have been used to define the affect of self-efficacy and collective competence belief on the perception of managerial competence. T-test for binary grouping and ANOVA analysis have been used for more than binary groups in order to determine if there is any significant difference in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers' self-efficacy, collective competence beliefs, and managerial competence levels. According to the results of the regression analysis, it is understood that the managers’ perception of self-efficacy and collective competence belief significantly defines the perception of managerial competence. Also, the results show that there is no significant difference in self-efficacy, collective competence, and level of managerial competence of sports managers in terms of duty status, year of service and level of education.

Keywords: sports manager, self-efficacy, collective competence, managerial competence

Procedia PDF Downloads 234
1896 Injection Practices among Private Medical Practitioners of Karachi Pakistan

Authors: Mohammad Tahir Yousafzai, Nighat Nisar, Rehana Khalil

Abstract:

The aim of this study is to assess the practices of sharp injuries and factors leading to it among medical practitioners in slum areas of Karachi, Pakistan. A cross sectional study was conducted in slum areas of Landhi Town Karachi. All medical practitioners (317) running the private clinics in the areas were asked to participate in the study. Data was collected on self administered pre-tested structured questionnaires. The frequency with percentage and 95% confidence interval was calculated for at least one sharp injury (SI) in the last one year. The factors leading to sharp injuries were assessed using multiple logistic regressions. About 80% of private medical practitioners consented to participate. Among these 87% were males and 13% were female. The mean age was 38±11 years and mean work experience was 12±9 years. The frequency of at least one sharp injury in the last one year was 27%(95% CI: 22.2-32). Almost 47% of Sharp Injuries were caused by needle recapping, less work experience, less than 14 years of schooling, more than 20 patients per day, administering more than 30 injections per day, reuse of syringes and needle recapping after use were significantly associated with sharp injuries. Injection practices were found inadequate among private medical practitioners in slum areas of Karachi, and the frequency of Sharp Injuries was found high in these areas. There is a risk of occupational transmission of blood borne infections among medical practitioners warranting an urgent need for launching awareness and training on standard precautions for private medical practitioners in the slum areas of Karachi.

Keywords: injection practices, private practitioners, sharp injuries, blood borne infections

Procedia PDF Downloads 421
1895 Exploratory Study of Individual User Characteristics That Predict Attraction to Computer-Mediated Social Support Platforms and Mental Health Apps

Authors: Rachel Cherner

Abstract:

Introduction: The current study investigates several user characteristics that may predict the adoption of digital mental health supports. The extent to which individual characteristics predict preferences for functional elements of computer-mediated social support (CMSS) platforms and mental health (MH) apps is relatively unstudied. Aims: The present study seeks to illuminate the relationship between broad user characteristics and perceived attraction to CMSS platforms and MH apps. Methods: Participants (n=353) were recruited using convenience sampling methods (i.e., digital flyers, email distribution, and online survey forums). The sample was 68% male, and 32% female, with a mean age of 29. Participant racial and ethnic breakdown was 75% White, 7%, 5% Asian, and 5% Black or African American. Participants were asked to complete a 25-minute self-report questionnaire that included empirically validated measures assessing a battery of characteristics (i.e., subjective levels of anxiety/depression via PHQ-9 (Patient Health Questionnaire 9-item) and GAD-7 (Generalized Anxiety Disorder 7-item); attachment style via MAQ (Measure of Attachment Qualities); personality types via TIPI (The 10-Item Personality Inventory); growth mindset and mental health-seeking attitudes via GM (Growth Mindset Scale) and MHSAS (Mental Help Seeking Attitudes Scale)) and subsequent attitudes toward CMSS platforms and MH apps. Results: A stepwise linear regression was used to test if user characteristics significantly predicted attitudes towards key features of CMSS platforms and MH apps. The overall regression was statistically significant (R² =.20, F(1,344)=14.49, p<.000). Conclusion: This original study examines the clinical and sociocultural factors influencing decisions to use CMSS platforms and MH apps. Findings provide valuable insight for increasing adoption and engagement with digital mental health support. Fostering a growth mindset may be a method of increasing participant/patient engagement. In addition, CMSS platforms and MH apps may empower under-resourced and minority groups to gain basic access to mental health support. We do not assume this final model contains the best predictors of use; this is merely a preliminary step toward understanding the psychology and attitudes of CMSS platform/MH app users.

Keywords: computer-mediated social support platforms, digital mental health, growth mindset, health-seeking attitudes, mental health apps, user characteristics

Procedia PDF Downloads 92
1894 Automating and Optimization Monitoring Prognostics for Rolling Bearing

Authors: H. Hotait, X. Chiementin, L. Rasolofondraibe

Abstract:

This paper presents a continuous work to detect the abnormal state in the rolling bearing by studying the vibration signature analysis and calculation of the remaining useful life. To achieve these aims, two methods; the first method is the classification to detect the degradation state by the AOM-OPTICS (Acousto-Optic Modulator) method. The second one is the prediction of the degradation state using least-squares support vector regression and then compared with the linear degradation model. An experimental investigation on ball-bearing was conducted to see the effectiveness of the used method by applying the acquired vibration signals. The proposed model for predicting the state of bearing gives us accurate results with the experimental and numerical data.

Keywords: bearings, automatization, optimization, prognosis, classification, defect detection

Procedia PDF Downloads 120
1893 Factors Influencing Capital Structure: Evidence from the Oil and Gas Industry of Pakistan

Authors: Muhammad Tahir, Mushtaq Muhammad

Abstract:

Capital structure is one of the key decisions taken by the financial managers. This study aims to investigate the factors influencing capital structure decision in Oil and Gas industry of Pakistan using secondary data from published annual reports of listed Oil and Gas Companies of Pakistan. This study covers the time-period from 2008-2014. Capital structure can be affected by profitability, firm size, growth opportunities, dividend payout, liquidity, business risk, and ownership structure. Panel data technique with Ordinary least square (OLS) regression model has been used to find the impact of set of explanatory variables on the capital structure using the Stata. OLS regression results suggest that dividend payout, firm size and government ownership have the most significant impact on financial leverage. Dividend payout and government ownership are found to have significant negative association with financial leverage however firm size indicated positive relationship with financial leverage. Other variables having significant link with financial leverage includes growth opportunities, liquidity and business risk. Results reveal significant positive association between growth opportunities and financial leverage whereas liquidity and business risk are negatively correlated with financial leverage. Profitability and managerial ownership exhibited insignificant relationship with financial leverage. This study contributes to existing Managerial Finance literature with certain managerial implications. Academically, this research study describes the factors affecting capital structure decision of Oil and Gas Companies in Pakistan and adds latest empirical evidence to existing financial literature in Pakistan. Researchers have studies capital structure in Pakistan in general and industry at specific, nevertheless still there is limited literature on this issue. This study will be an attempt to fill this gap in the academic literature. This study has practical implication on both firm level and individual investor/ lenders level. Results of this study can be useful for investors/ lenders in making investment and lending decisions. Further, results of this study can be useful for financial managers to frame optimal capital structure keeping in consideration the factors that can affect capital structure decision as revealed by this study. These results will help financial managers to decide whether to issue stock or issue debt for future investment projects.

Keywords: capital structure, multicollinearity, ordinary least square (OLS), panel data

Procedia PDF Downloads 293
1892 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference

Procedia PDF Downloads 108
1891 Lifelong Distance Learning and Skills Development: A Case Study Analysis in Greece

Authors: Eleni Giouli

Abstract:

Distance learning provides a flexible approach to education, enabling busy learners to complete their coursework at their own pace, on their own schedule, and from a convenient location. This flexibility combined with a series of other issues; make the benefits of lifelong distance learning numerous. The purpose of the paper is to investigate whether distance education can contribute to the improvement of adult skills in Greece, highlighting in this way the necessity of the lifelong distance learning. To investigate this goal, a questionnaire is constructed and analyzed based on responses from 3,016 attendees of lifelong distance learning programs in the e-learning of the National and Kapodistrian University of Athens in Greece. In order to do so, a series of relationships is examined including the effects of a) the gender, b) the previous educational level, c) the current employment status, and d) the method used in the distance learning program, on the development of new general, technical, administrative, social, cultural, entrepreneurial and green skills. The basic conclusions that emerge after using a binary logistic framework are that the following factors are critical in order to develop new skills: the gender, the education level and the educational method used in the lifelong distance learning program. The skills more significantly affected by those factors are the acquiring new skills in general, as well as acquiring general, language and cultural, entrepreneurial and green skills, while for technical and social skills only gender and educational method play a crucial role. Moreover, routine skills and social skills are not affected by the four factors included in the analysis.

Keywords: adult skills, distance learning, education, lifelong learning

Procedia PDF Downloads 137
1890 Farmers Willingness to Pay for Irrigated Maize Production in Rural Kenya

Authors: Dennis Otieno, Lilian Kirimi Nicholas Odhiambo, Hillary Bii

Abstract:

Kenya is considered to be a middle level income country and usuaaly does not meet household food security needs especially in North and South eastern parts. Approximately half of the population is living under the poverty line (www, CIA 1, 2012). Agriculture is the largest sector in the country, employing 80% of the population. These are thereby directly dependent on the sufficiency of outputs received. This makes efficient, easy-accessible and cheap agricultural practices an important matter in order to improve food security. Maize is the prime staple food commodity in Kenya and represents a substantial share of people’s nutritional intake. This study is the result of questionnaire based interviews, Key informant and focus group discussion involving 220 small scale maize farmers Kenyan. The study was located to two separated areas; Lower Kuja, Bunyala, Nandi, Lower Nzoia, Perkerra, Mwea Bura, Hola and Galana Kulalu in Kenya. The questionnaire captured the farmers’ use and perceived importance of the use irrigation services and irrigated maize production. Viability was evaluated using the four indices which were all positive with NPV giving positive cash flows in less than 21 years at most for one season output. The mean willingness to pay was found to be KES 3082 and willingness to pay increased with increase in irrigation premiums. The economic value of water was found to be greater than the willingness to pay implying that irrigated maize production is sustainable. Farmers stated that viability was influenced by high output levels, good produce quality, crop of choice, availability of sufficient water and enforcement the last two factors had a positive influence while the other had negative effect on the viability of irrigated maize. A regression was made over the correlation between the willingness to pay for irrigated maize production using scheme and plot level factors. Farmers that already use other inputs such as animal manure, hired labor and chemical fertilizer should also have a demand for improved seeds according to Liebig's law of minimum and expansion path theory. The regression showed that premiums, and high yields have a positive effect on willingness to pay while produce quality, efficient fertilizer use, and crop season have a negative effect.

Keywords: maize, food security, profits, sustainability, willingness to pay

Procedia PDF Downloads 220
1889 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning

Authors: Jiahao Tian, Michael D. Porter

Abstract:

Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.

Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation

Procedia PDF Downloads 66
1888 The Genuine Happiness Scale: Preliminary Results

Authors: Myriam Rudaz, Thomas Ledermann, Frank D. Fincham

Abstract:

We provide initial findings on the development and validation of the Genuine Happiness Scale (GHS). Based on the Buddhist view of happiness, genuine happiness can be described as an unlimited, everlasting inner joy and peace that gives a person the inner resources to deal with whatever comes his or her way in life. The sample consisted of 678 young adults, with 432 adults participating twice, approximately six weeks apart. Exploratory and confirmatory factor analysis supported a unidimensional factor structure of the GHS. Hierarchical regression analysis revealed that caring for bliss, mindfulness, and compassion predicted genuine happiness longitudinally above and beyond genuine happiness at baseline. We discuss the usefulness of the GHS as an outcome measure for evaluating mindfulness- and compassion-based intervention programs.

Keywords: happiness, bliss, well-being, caring for bliss, mindfulness, compassion

Procedia PDF Downloads 118
1887 Medial Axis Analysis of Valles Marineris

Authors: Dan James

Abstract:

The Medial Axis of the Main Canyon of Valles Marineris is determined geometrically with maximally inscribed discs aligned with the boundaries or rims of the Main Canyon. Inscribed discs are placed at evenly spaced longitude intervals and, using the radius function, the locus of the centre of all discs is determined, together with disc centre co-ordinates. These centre co-ordinates result in arrays of x, y co-ordinates which are curve fitted to a Sinusoidal function and residuals appropriate for nonlinear regression are evaluated using the R-squared value (R2) and the Root Mean Squared Error (RMSE). This evaluation demonstrates that a Sinusoidal Curve closely fits to the co-ordinate data

Keywords: medial axis, MAT, valles marineris, sinusoidal

Procedia PDF Downloads 100
1886 Impact of Board Characteristics on Financial Performance: A Study of Manufacturing Sector of Pakistan

Authors: Saad Bin Nasir

Abstract:

The research will examine the role of corporate governance (CG) practices on firm’s financial performance. Population of this research will be manufacture sector of Pakistan. For the purposes of measurement of impact of corporate governance practices such as board size, board independence, ceo/chairman duality, will take as independent variables and for the measurement of firm’s performance return on assets and return on equity will take as dependent variables. Panel data regression model will be used to estimate the impact of CG on firm performance.

Keywords: corporate governance, board size, board independence, leadership

Procedia PDF Downloads 525
1885 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537
1884 Material Saving Strategies, Technologies and Effects on Return on Sales

Authors: Jasna Prester, Najla Podrug, Davor Filipović

Abstract:

Manufacturing companies invest a significant amount of sales into material resources for production. In our sample, 58% of sales is used for manufacturing inputs, while only 24% of sales is used for salaries. This means that if a company is looking to reduce costs, the greater potential is in reduction of material costs than downsizing. This research shows that manufacturing companies in Croatia did realize material savings in last three years. It is also shown by which technologies they achieved materials cost savings. Through literature research, we found research gap as to which technologies reduce material consumption. As methodology of research four regression analyses are used to prove our findings.

Keywords: Croatia, materials savings strategies, technologies, return on sales

Procedia PDF Downloads 300
1883 A Note on the Fractal Dimension of Mandelbrot Set and Julia Sets in Misiurewicz Points

Authors: O. Boussoufi, K. Lamrini Uahabi, M. Atounti

Abstract:

The main purpose of this paper is to calculate the fractal dimension of some Julia Sets and Mandelbrot Set in the Misiurewicz Points. Using Matlab to generate the Julia Sets images that match the Misiurewicz points and using a Fractal software, we were able to find different measures that characterize those fractals in textures and other features. We are actually focusing on fractal dimension and the error calculated by the software. When executing the given equation of regression or the log-log slope of image a Box Counting method is applied to the entire image, and chosen settings are available in a FracLAc Program. Finally, a comparison is done for each image corresponding to the area (boundary) where Misiurewicz Point is located.

Keywords: box counting, FracLac, fractal dimension, Julia Sets, Mandelbrot Set, Misiurewicz Points

Procedia PDF Downloads 216
1882 The Spatial Analysis of Wetland Ecosystem Services Valuation on Flood Protection in Tone River Basin

Authors: Tingting Song

Abstract:

Wetlands are significant ecosystems that provide a variety of ecosystem services for humans, such as, providing water and food resources, purifying water quality, regulating climate, protecting biodiversity, and providing cultural, recreational, and educational resources. Wetlands also provide benefits, such as reduction of flood, storm damage, and soil erosion. The flood protection ecosystem services of wetlands are often ignored. Due to climate change, the flood caused by extreme weather in recent years occur frequently. Flood has a great impact on people's production and life with more and more economic losses. This study area is in the Tone river basin in the Kanto area, Japan. It is the second-longest river with the largest basin area in Japan, and it is still suffering heavy economic losses from floods. Tone river basin is one of the rivers that provide water for Tokyo and has an important impact on economic activities in Japan. The purpose of this study was to investigate land-use changes of wetlands in the Tone River Basin, and whether there are spatial differences in the value of wetland functions in mitigating economic losses caused by floods. This study analyzed the land-use change of wetland in Tone River, based on the Landsat data from 1980 to 2020. Combined with flood economic loss, wetland area, GDP, population density, and other social-economic data, a geospatial weighted regression model was constructed to analyze the spatial difference of wetland ecosystem service value. Now, flood protection mainly relies on such a hard project of dam and reservoir, but excessive dependence on hard engineering will cause the government huge financial pressure and have a big impact on the ecological environment. However, natural wetlands can also play a role in flood management, at the same time they can also provide diverse ecosystem services. Moreover, the construction and maintenance cost of natural wetlands is lower than that of hard engineering. Although it is not easy to say which is more effective in terms of flood management. When the marginal value of a wetland is greater than the economic loss caused by flood per unit area, it may be considered to rely on the flood storage capacity of the wetland to reduce the impact of the flood. It can promote the sustainable development of wetlands ecosystem. On the other hand, spatial analysis of wetland values can provide a more effective strategy for flood management in the Tone river basin.

Keywords: wetland, geospatial weighted regression, ecosystem services, environment valuation

Procedia PDF Downloads 101
1881 Determination of Small Shear Modulus of Clayey Sand Using Bender Element Test

Authors: R. Sadeghzadegan, S. A. Naeini, A. Mirzaii

Abstract:

In this article, the results of a series of carefully conducted laboratory test program were represented to determine the small strain shear modulus of sand mixed with a range of kaolinite including zero to 30%. This was experimentally achieved using a triaxial cell equipped with bender element. Results indicate that small shear modulus tends to increase, while clay content decreases and effective confining pressure increases. The exponent of stress in the power model regression analysis was not sensitive to the amount of clay content for all sand clay mixtures, while coefficient A was directly affected by change in clay content.

Keywords: small shear modulus, bender element test, plastic fines, sand

Procedia PDF Downloads 471
1880 The Effects of Governmental Regulation on Technological Innovation in Korean Firms

Authors: SeungKu Ahn, Sewon Lee

Abstract:

This study examines the effects of regulatory policies on corporate R&D activities and innovation and suggests regulatory directions for the enhancement of corporate performance. This study employs a regression model with R&D activities as dependent variables and the regulatory index as an independent variable. The results of this study are as follows: The regulation is negatively associated with the input and output of R&D activities. The regulation encourages small and medium-sized firms to invest in R&D. The regulation has a positive effect on patent applications for small and medium-sized firms.

Keywords: governmental regulation, research and development performance, small and medium-sized firms, technological innovation

Procedia PDF Downloads 268
1879 Factorial Design Analysis for Quality of Video on MANET

Authors: Hyoup-Sang Yoon

Abstract:

The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.

Keywords: evalvid, full factorial design, mobile ad hoc networks, ns-2

Procedia PDF Downloads 414
1878 Geotechnical Characteristics of Miocenemarl in the Region of Medea North-South Highway, Algeria

Authors: Y. Yongli, M. H. Aissa

Abstract:

The purpose of this paper aims for a geotechnical analysis based on experimental physical and mechanical characteristics of Miocene marl situated at Medea region in Algeria. More than 150 soil samples were taken in the investigation part of the North-South Highway which extends over than 53 km from Chiffa in the North to Berrouaghia in the South of Algeria. The analysis of data in terms of Atterberg limits, plasticity index, and clay content reflects an acceptable correlation justified by a high coefficient of regression which was compared with the previous works in the region. Finally, approximated equations that serve as a guideline for geotechnical design locally have been suggested.

Keywords: correlation, geotechnical properties, miocene marl, north-south highway

Procedia PDF Downloads 296
1877 The Effects of Logistical Centers Realization on Society and Economy

Authors: Anna Dolinayova, Juraj Camaj, Martin Loch

Abstract:

Presently it is necessary to ensure the sustainable development of passenger and freight transport. Increasing performance of road freight have been a negative impact to environment and society. It is therefore necessary to increase the competitiveness of intermodal transport, which is more environmentally friendly. The study describe the effectiveness of logistical centers realization for companies and society and research how the partial internalization of external costs reflected in the efficient use of these centers and increase the competitiveness of intermodal transport to road freight. In our research, we use the method of comparative analysis and market research to describe the advantages of logistic centers for their users as well as for society as a whole. Method normal costing is used for calculation infrastructure and total costs, method of conversion costing for determine the external costs. We modelling of total society costs for road freight transport and inter modal transport chain (we assumed that most of the traffic is carried by rail) with different loading schemes for condition in the Slovak Republic. Our research has shown that higher utilization of inter modal transport chain do good not only for society, but for companies providing freight services too. Increase in use of inter modal transport chain can bring many benefits to society that do not bring direct immediate financial return. They often bring the multiplier effects, such as greater use of environmentally friendly transport mode and reduce the total society costs.

Keywords: delivery time, economy effectiveness, logistical centers, ecological efficiency, optimization, society

Procedia PDF Downloads 443
1876 Knowledge and Eating Behavior of Teenage Pregnancy

Authors: Udomporn Yingpaisuk, Premwadee Karuhadej

Abstract:

The purposed of this research was to study the eating habit of teenage pregnancy and its relationship to the knowledge of nutrition during pregnancy. The 100 samples were derived from simple random sampling technique of the teenage pregnancy in Bangkae District. The questionnaire was used to collect data with the reliability of 0.8. The data were analyzed by SPSS for Windows with multiple regression technique. Percentage, mean and the relationship of knowledge of eating and eating behavior were obtained. The research results revealed that their knowledge in nutrition was at the average of 4.07 and their eating habit that they mentioned most was to refrain from alcohol and caffeine at 82% and the knowledge in nutrition influenced their eating habits at 54% with the statistically significant level of 0.001.

Keywords: teenage pregnancy, knowledge of eating, eating behavior, alcohol, caffeine

Procedia PDF Downloads 358
1875 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 103
1874 Influence of Chemical Treatment on Elastic Properties of the Band Cotton Crepe 100%

Authors: Bachir Chemani, Rachid Halfaoui, Madani Maalem

Abstract:

The manufacturing technology of band cotton is very delicate and depends to choice of certain parameters such as torsion of warp yarn. The fabric elasticity is achieved without the use of any elastic material, chemical expansion, artificial or synthetic and it’s capable of creating pressures useful for therapeutic treatments.Before use, the band is subjected to treatments of specific preparation for obtaining certain elasticity, however, during its treatment, there are some regression parameters. The dependence of manufacturing parameters on the quality of the chemical treatment was confirmed. The aim of this work is to improve the properties of the fabric through the development of manufacturing technology appropriately. Finally for the treatment of the strip pancake 100% cotton, a treatment method is recommended.

Keywords: elastic, cotton, processing, torsion

Procedia PDF Downloads 388
1873 Effects of Exhibition Firms' Resource Investment Behavior on Their Booth Staffs' Role Perceptions, Goal Acceptance and Work Effort during the Exhibition Period

Authors: Po-Chien Li

Abstract:

Despite the extant literature has hosted a wide-range of knowledge about trade shows, this knowledge base deserves to be further expanded and extended because there exist many unclear issues and overlooked topics. One area that needs much research attention is regarding the behavior and performance of booth workers at the exhibition site. Booth staffs play many key roles in interacting with booth visitors. Their exhibiting-related attitudes and motivations might have significant consequences on a firm’s exhibition results. However, to date, little research, if any, has studied how booth workers are affected and behave in the context of trade fair. The primary purpose of the current study is to develop and test a research model, derived from role theory and resource-based viewpoint, that depicts the effects of a firm’s pre-exhibition resource investment behavior on booth staff’s role perceptions and work behavior during the exhibition period. The author collects data with two survey questionnaires at two trade shows in 2016. One questionnaire is given to the booth head of an exhibiting company, asking about the firm’s resource commitment behavior prior to the exhibition period. In contrast, another questionnaire is provided for a booth worker of the same firm, requesting the individual staff to report his/her own role perceptions, degree of exhibition goal acceptance, and level of work effort during the exhibition period. The study has utilized the following analytic methods, including descriptive statistics, exploratory factor analysis, reliability analysis, and regression analysis. The results of a set of regression analyses show that a firm’s pre-exhibition resource investment behavior has significant effects on a booth staff’s exhibiting perceptions and attitudes. Specifically, an exhibitor’s resource investment behavior has impacts on the factors of booth staff’s role clarity and role conflict. In addition, a booth worker’s role clarity is related to the degree of exhibition goal acceptance, but his/her role conflict is not. Finally, a booth worker’s exhibiting effort is significantly related to the individual’s role clarity, role conflict and goal acceptance. In general, the major contribution of the current research is that it offers insight into and early evidence on the links between an exhibiting firm’s resource commitment behavior and the work perceptions and attitudes of booth staffs during the exhibition period. The current research’s results can benefit the extant literature of exhibition marketing.

Keywords: exhibition resource investment, role perceptions, goal acceptance, work effort

Procedia PDF Downloads 217
1872 Attention Problems among Adolescents: Examining Educational Environments

Authors: Zhidong Zhang, Zhi-Chao Zhang, Georgianna Duarte

Abstract:

This study investigated the attention problems with the instrument of Achenbach System of Empirically Based Assessment (ASEBA). Two thousand eight hundred and ninety-four adolescents were surveyed by using a stratified sampling method. We examined the relationships between relevant background variables and attention problems. Multiple regression models were applied to analyze the data. Relevant variables such as sports activities, hobbies, age, grade and the number of close friends were included in this study as predictive variables. The analysis results indicated that educational environments and extracurricular activities are important factors which influence students’ attention problems.

Keywords: adolescents, ASEBA, attention problems, educational environments, stratified sampling

Procedia PDF Downloads 284
1871 The Determinants of Financing to Deposit Ratio of Islamic Bank in Malaysia

Authors: Achsania Hendratmi, Puji Sucia Sukmaningrum, Fatin Fadhilah Hasib, Nisful Laila

Abstract:

The research aimed to know the influence of Capital Adequacy Ratio (CAR), Return on Assets (ROA) and Size of the Financing to Deposit Ratio (FDR) Islamic Banks in Malaysia by using eleven Islamic Banks in Indonesia and fifteen Islamic Banks in Malaysia in the period 2012 to 2016 as samples. The research used a quantitative approach method, and the analysis technique used multiple linear regression. Based on the result of t-test (partial), CAR, ROA and size significantly affect of FDR. While the results of f-test (simultaneous) showed that CAR, ROA and Size significant effect on FDR.

Keywords: capital adequacy ratio, financing to deposit ratio, return on assets, size

Procedia PDF Downloads 339