Search results for: military noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1687

Search results for: military noise

157 Calls for a Multi-Stakeholder Funding Strategy for Live Births Registration: A Case Study of Rivers State, Nigeria

Authors: Moses Obenade, Francis I. Okpiliya, Gordon T. Amangabara

Abstract:

According to the 2006 Census of Nigeria, there are 2,525,690 females out of the total population of 5,198,716 of Rivers State. Of that figure, about 90 percent are still within the reproductive age of (0-49). With an annual growth rate of 3.4 percent, the population of Rivers State is estimated to grow to 7,262,755 by 2016. This means an increase of 2,064,039 within a ten year period. From a projected population increase of 182,766 in 2007 only 30,394 live births were registered while an astronomical increase of 543,275 live births were registered in 2008 as against the anticipated increase of 188,980. Preliminary investigations revealed that this exceptional figure in 2008 was occasioned by manpower and logistics support provided by the Rivers State Government for the Port Harcourt office of the National Population Commission (NPC). The mop-up exercise of 2008 by NPC that was engineered from the support provided by the Rivers State Government indicates that the agency needs the co-operation and partnership of the three tiers of government and the communities in performing its statutory duties that is pertinent to national planning, growth and development. Because the incentives received from Rivers State Government did not continue in 2009, live births registration noise-dived to only 60,546 from the expected increase of 195,405. It was further observed that Port Harcourt City and Obio/Akpor Local Government Areas which constitute the state capital have the highest number of live births registration during the period of 2007 to 2014 covered by this paper. This trend of not adequately accounting for or registering all live births in the state has continued till date without being addressed by the authorities concerned. The current situation if left unchecked portend serious danger for the state and indeed Nigeria, as paucity of data could hamper sound economic planning as well as proper allocation of resources to targeted sectors. This paper therefore recommends an innovative multi-stakeholder funding strategy comprising the federal, state, local government and communities. Their participation in an integrated manner will aid the achievement of comprehensive live births registration in the state. It is hoped that investments in education, health and social sectors could help in addressing most of the problems bedeviling the nation as such as lowering of fertility and improving lives.

Keywords: live births registration, population, rivers state, national population commission, Nigeria

Procedia PDF Downloads 268
156 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method

Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer

Abstract:

This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.

Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper

Procedia PDF Downloads 322
155 Iterative Reconstruction Techniques as a Dose Reduction Tool in Pediatric Computed Tomography Imaging: A Phantom Study

Authors: Ajit Brindhaban

Abstract:

Background and Purpose: Computed Tomography (CT) scans have become the largest source of radiation in radiological imaging. The purpose of this study was to compare the quality of pediatric Computed Tomography (CT) images reconstructed using Filtered Back Projection (FBP) with images reconstructed using different strengths of Iterative Reconstruction (IR) technique, and to perform a feasibility study to assess the use of IR techniques as a dose reduction tool. Materials and Methods: An anthropomorphic phantom representing a 5-year old child was scanned, in two stages, using a Siemens Somatom CT unit. In stage one, scans of the head, chest and abdomen were performed using standard protocols recommended by the scanner manufacturer. Images were reconstructed using FBP and 5 different strengths of IR. Contrast-to-Noise Ratios (CNR) were calculated from average CT number and its standard deviation measured in regions of interest created in the lungs, bone, and soft tissues regions of the phantom. Paired t-test and the one-way ANOVA were used to compare the CNR from FBP images with IR images, at p = 0.05 level. The lowest strength value of IR that produced the highest CNR was identified. In the second stage, scans of the head was performed with decreased mA(s) values relative to the increase in CNR compared to the standard FBP protocol. CNR values were compared in this stage using Paired t-test at p = 0.05 level. Results: Images reconstructed using IR technique had higher CNR values (p < 0.01.) in all regions compared to the FBP images, at all strengths of IR. The CNR increased with increasing IR strength of up to 3, in the head and chest images. Increases beyond this strength were insignificant. In abdomen images, CNR continued to increase up to strength 5. The results also indicated that, IR techniques improve CNR by a up to factor of 1.5. Based on the CNR values at strength 3 of IR images and CNR values of FBP images, a reduction in mA(s) of about 20% was identified. The images of the head acquired at 20% reduced mA(s) and reconstructed using IR at strength 3, had similar CNR as FBP images at standard mA(s). In the head scans of the phantom used in this study, it was demonstrated that similar CNR can be achieved even when the mA(s) is reduced by about 20% if IR technique with strength of 3 is used for reconstruction. Conclusions: The IR technique produced better image quality at all strengths of IR in comparison to FBP. IR technique can provide approximately 20% dose reduction in pediatric head CT while maintaining the same image quality as FBP technique.

Keywords: filtered back projection, image quality, iterative reconstruction, pediatric computed tomography imaging

Procedia PDF Downloads 126
154 Application of Compressed Sensing and Different Sampling Trajectories for Data Reduction of Small Animal Magnetic Resonance Image

Authors: Matheus Madureira Matos, Alexandre Rodrigues Farias

Abstract:

Magnetic Resonance Imaging (MRI) is a vital imaging technique used in both clinical and pre-clinical areas to obtain detailed anatomical and functional information. However, MRI scans can be expensive, time-consuming, and often require the use of anesthetics to keep animals still during the imaging process. Anesthetics are commonly administered to animals undergoing MRI scans to ensure they remain still during the imaging process. However, prolonged or repeated exposure to anesthetics can have adverse effects on animals, including physiological alterations and potential toxicity. Minimizing the duration and frequency of anesthesia is, therefore, crucial for the well-being of research animals. In recent years, various sampling trajectories have been investigated to reduce the number of MRI measurements leading to shorter scanning time and minimizing the duration of animal exposure to the effects of anesthetics. Compressed sensing (CS) and sampling trajectories, such as cartesian, spiral, and radial, have emerged as powerful tools to reduce MRI data while preserving diagnostic quality. This work aims to apply CS and cartesian, spiral, and radial sampling trajectories for the reconstruction of MRI of the abdomen of mice sub-sampled at levels below that defined by the Nyquist theorem. The methodology of this work consists of using a fully sampled reference MRI of a female model C57B1/6 mouse acquired experimentally in a 4.7 Tesla MRI scanner for small animals using Spin Echo pulse sequences. The image is down-sampled by cartesian, radial, and spiral sampling paths and then reconstructed by CS. The quality of the reconstructed images is objectively assessed by three quality assessment techniques RMSE (Root mean square error), PSNR (Peak to Signal Noise Ratio), and SSIM (Structural similarity index measure). The utilization of optimized sampling trajectories and CS technique has demonstrated the potential for a significant reduction of up to 70% of image data acquisition. This result translates into shorter scan times, minimizing the duration and frequency of anesthesia administration and reducing the potential risks associated with it.

Keywords: compressed sensing, magnetic resonance, sampling trajectories, small animals

Procedia PDF Downloads 44
153 A Sociological Study of the Potential Role of Retired Soldiers in the Post War Development and Reconstruction in Sri Lanka

Authors: Amunupura Kiriwandeiye Gedara, Asintha Saminda Gnanaratne

Abstract:

The security forces can be described as a workforce that goes beyond the role of ensuring the national security and contributes to the development process of the country. Soldiers are following combatant training courses during their tenure, they are equipped with a variety of vocational training courses to satisfy the needs of the army, to equip them with vocational training capabilities to achieve the development and reconstruction goals of the country as well as for the betterment of society in the event of emergencies. But with retirement, their relationship with the military is severed, and they are responsible for the future of their lives. The main purpose of this study was to examine how such professional capabilities can contribute to the development of the country, the current socio-economic status of the retired soldiers, and the current application of the vocational training skills they have mastered in the army to develop and rebuild the country in an effective manner. After analyzing the available research literature related to this field, a conceptual framework was developed and according to qualitative research methodology, and data obtained from Case studies and interviews are analyzed by using thematic analysis. Factors influencing early retirement include a lack of understanding of benefits, delays in promotions, not being properly evaluated for work, getting married on hasty decisions, and not having enough time to spend on family and household chores. Most of the soldiers are not aware about various programs and benefits available to retirees. They do not have a satisfactory attitude towards the retirement guidance they receive from the army at the time of retirement. Also, due to the lack of understanding about how to use their vocational capabilities successfully pursue their retirement life, the majority of people are employed in temporary jobs, and some are successful in post-retirement life due to their successful use of training received. Some live on pensions without engaging in any income-generating activities, and those who retire after 12 years of service are facing severe economic hardships as they do not get pensions. Although they have received training in various fields, they do not use them for their benefit due to lack of proper guidance. Although the government implements programs, they are not clearly aware of them. Barriers to utilization of training include an absence of a system to identify the professional skills of retired soldiers, interest in civil society affairs, exploration of opportunities in the civil and private sectors, and politicization of services. If they are given the opportunity, they will be able to contribute to the development and reconstruction process. The findings of the study further show that it has many social, economic, political, and psychological benefits not only for individuals but also for a country. Entrepreneurship training for all retired soldiers, improving officers' understanding, streamlining existing mechanisms, creating new mechanisms, setting up a separate unit for retirees, and adapting them to civil society, private and non-governmental contributions, and training courses can be identified as potential means to improve the current situation.

Keywords: development, reconstruction, retired soldiers, vocational capabilities

Procedia PDF Downloads 100
152 Factors Determining the Vulnerability to Occupational Health Risk and Safety of Call Center Agents in the Philippines

Authors: Lito M. Amit, Venecio U. Ultra, Young-Woong Song

Abstract:

The business process outsourcing (BPO) in the Philippines is expanding rapidly attracting more than 2% of total employment. Currently, the BPO industry is confronted with several issues pertaining to sustainable productivity such as meeting the staffing gap, high rate of employees’ turnover and workforce retention, and the occupational health and safety (OHS) of call center agents. We conducted a survey of OHS programs and health concerns among call center agents in the Philippines and determined the sociocultural factors that affect the vulnerability of call center agents to occupational health risks and hazards. The majority of the agents affirmed that OHS are implemented and OHS orientation and emergency procedures were conducted at employment initiations, perceived favorable and convenient working environment except for occasional noise disturbances and acoustic shock, visual, and voice fatigues. Male agents can easily adjust to the demands and changes in their work environment and flexible work schedules than female agents. Female agents have a higher tendency to be pressured and humiliated by low work performance, experience a higher incidence of emotional abuse, psychological abuse, and experience more physical stress than male agents. The majority of the call center agents had a night-shift schedule and regardless of other factors, night shift work brings higher stress to agents. While working in a call center, higher incidence of headaches and insomnia, burnout, suppressed anger, anxiety, and depressions were experienced by female, younger (21-25 years old) and those at night shift than their counterpart. Most common musculoskeletal disorders include body pain in the neck, shoulders and back; and hand and wrist disorders and these are commonly experienced by female and younger workers. About 30% experienced symptoms of cardiovascular and gastrointestinal disorders and weakened immune systems. Overall, these findings have shown the variable vulnerability by a different subpopulation of call center agents and are important in the occupational health risk prevention and management towards a sustainable human resource for BPO industry in the Philippines.

Keywords: business process outsourcing industry, health risk of call center agents, socio-cultural determinants, Philippines

Procedia PDF Downloads 468
151 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou

Abstract:

Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.

Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity

Procedia PDF Downloads 250
150 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section

Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert

Abstract:

Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.

Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics

Procedia PDF Downloads 232
149 Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests

Authors: Md. Kausar Alam, Ramin Motamed

Abstract:

The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures.

Keywords: excess pore water pressure, foundation settlement, press-in sheet pile, soil liquefaction

Procedia PDF Downloads 77
148 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection

Authors: Ali Hamza

Abstract:

Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.

Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network

Procedia PDF Downloads 54
147 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms

Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson

Abstract:

This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.

Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection

Procedia PDF Downloads 443
146 Impact of Urban Densification on Travel Behaviour: Case of Surat and Udaipur, India

Authors: Darshini Mahadevia, Kanika Gounder, Saumya Lathia

Abstract:

Cities, an outcome of natural growth and migration, are ever-expanding due to urban sprawl. In the Global South, urban areas are experiencing a switch from public transport to private vehicles, coupled with intensified urban agglomeration, leading to frequent longer commutes by automobiles. This increase in travel distance and motorized vehicle kilometres lead to unsustainable cities. To achieve the nationally pledged GHG emission mitigation goal, the government is prioritizing a modal shift to low-carbon transport modes like mass transit and paratransit. Mixed land-use and urban densification are crucial for the economic viability of these projects. Informed by desktop assessment of mobility plans and in-person primary surveys, the paper explores the challenges around urban densification and travel patterns in two Indian cities of contrasting nature- Surat, a metropolitan industrial city with a 5.9 million population and a very compact urban form, and Udaipur, a heritage city attracting large international tourists’ footfall, with limited scope for further densification. Dense, mixed-use urban areas often improve access to basic services and economic opportunities by reducing distances and enabling people who don't own personal vehicles to reach them on foot/ cycle. But residents travelling on different modes end up contributing to similar trip lengths, highlighting the non-uniform distribution of land-uses and lack of planned transport infrastructure in the city and the urban-peri urban networks. Additionally, it is imperative to manage these densities to reduce negative externalities like congestion, air/noise pollution, lack of public spaces, loss of livelihood, etc. The study presents a comparison of the relationship between transport systems with the built form in both cities. The paper concludes with recommendations for managing densities in urban areas along with promoting low-carbon transport choices like improved non-motorized transport and public transport infrastructure and minimizing personal vehicle usage in the Global South.

Keywords: India, low-carbon transport, travel behaviour, trip length, urban densification

Procedia PDF Downloads 194
145 A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback

Authors: Kai-Chieh Lin, Chih-Fu Wu, Hsiang Ling Hsu, Yung-Hsiang Tu, Chia-Chen Wu

Abstract:

With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.

Keywords: input performance, mobile device, slim keyboard, tactile feedback

Procedia PDF Downloads 277
144 Applying Napoleoni's 'Shell-State' Concept to Jihadist Organisations's Rise in Mali, Nigeria and Syria/Iraq, 2011-2015

Authors: Francesco Saverio Angiò

Abstract:

The Islamic State of Iraq and the Levant / Syria (ISIL/S), Al-Qaeda in the Islamic Maghreb (AQIM) and People Committed to the Propagation of the Prophet's Teachings and Jihad, also known as ‘Boko Haram’ (BH), have fought successfully against Syria and Iraq, Mali, Nigeria’s government, respectively. According to Napoleoni, the ‘shell-state’ concept can explain the economic dimension and the financing model of the ISIL insurgency. However, she argues that AQIM and BH did not properly plan their financial model. Consequently, her idea would not be suitable to these groups. Nevertheless, AQIM and BH’s economic performances and their (short) territorialisation suggest that their financing models respond to a well-defined strategy, which they were able to adapt to new circumstances. Therefore, Napoleoni’s idea of ‘shell-state’ can be applied to the three jihadist armed groups. In the last five years, together with other similar entities, ISIL/S, AQIM and BH have been fighting against governments with insurgent tactics and terrorism acts, conquering and ruling a quasi-state; a physical space they presented as legitimate territorial entity, thanks to a puritan version of the Islamic law. In these territories, they have exploited the traditional local economic networks. In addition, they have contributed to the development of legal and illegal transnational business activities. They have also established a justice system and created an administrative structure to supply services. Napoleoni’s ‘shell-state’ can describe the evolution of ISIL/S, AQIM and BH, which has switched from an insurgency to a proto or a quasi-state entity, enjoying a significant share of power over territories and populations. Napoleoni first developed and applied the ‘Shell-state’ concept to describe the nature of groups such as the Palestine Liberation Organisation (PLO), before using it to explain the expansion of ISIL. However, her original conceptualisation emphasises on the economic dimension of the rise of the insurgency, focusing on the ‘business’ model and the insurgents’ financing management skills, which permits them to turn into an organisation. However, the idea of groups which use, coordinate and grab some territorial economic activities (at the same time, encouraging new criminal ones), can also be applied to administrative, social, infrastructural, legal and military levels of their insurgency, since they contribute to transform the insurgency to the same extent the economic dimension does. In addition, according to Napoleoni’s view, the ‘shell-state’ prism is valid to understand the ISIL/S phenomenon, because the group has carefully planned their financial steps. Napoleoni affirmed that ISIL/S carries out activities in order to promote their conversion from a group relying on external sponsors to an entity that can penetrate and condition local economies. On the contrary, ‘shell-state’ could not be applied to AQIM or BH, which are acting more like smugglers. Nevertheless, despite its failure to control territories, as ISIL has been able to do, AQIM and BH have responded strategically to their economic circumstances and have defined specific dynamics to ensure a flow of stable funds. Therefore, Napoleoni’s theory is applicable.

Keywords: shell-state, jihadist insurgency, proto or quasi-state entity economic planning, strategic financing

Procedia PDF Downloads 323
143 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving

Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco

Abstract:

Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.

Keywords: augmented reality, driving, physiological signals, test platform

Procedia PDF Downloads 110
142 Carbon Based Wearable Patch Devices for Real-Time Electrocardiography Monitoring

Authors: Hachul Jung, Ahee Kim, Sanghoon Lee, Dahye Kwon, Songwoo Yoon, Jinhee Moon

Abstract:

We fabricated a wearable patch device including novel patch type flexible dry electrode based on carbon nanofibers (CNFs) and silicone-based elastomer (MED 6215) for real-time ECG monitoring. There are many methods to make flexible conductive polymer by mixing metal or carbon-based nanoparticles. In this study, CNFs are selected for conductive nanoparticles because carbon nanotubes (CNTs) are difficult to disperse uniformly in elastomer compare with CNFs and silver nanowires are relatively high cost and easily oxidized in the air. Wearable patch is composed of 2 parts that dry electrode parts for recording bio signal and sticky patch parts for mounting on the skin. Dry electrode parts were made by vortexer and baking in prepared mold. To optimize electrical performance and diffusion degree of uniformity, we developed unique mixing and baking process. Secondly, sticky patch parts were made by patterning and detaching from smooth surface substrate after spin-coating soft skin adhesive. In this process, attachable and detachable strengths of sticky patch are measured and optimized for them, using a monitoring system. Assembled patch is flexible, stretchable, easily skin mountable and connectable directly with the system. To evaluate the performance of electrical characteristics and ECG (Electrocardiography) recording, wearable patch was tested by changing concentrations of CNFs and thickness of the dry electrode. In these results, the CNF concentration and thickness of dry electrodes were important variables to obtain high-quality ECG signals without incidental distractions. Cytotoxicity test is conducted to prove biocompatibility, and long-term wearing test showed no skin reactions such as itching or erythema. To minimize noises from motion artifacts and line noise, we make the customized wireless, light-weight data acquisition system. Measured ECG Signals from this system are stable and successfully monitored simultaneously. To sum up, we could fully utilize fabricated wearable patch devices for real-time ECG monitoring easily.

Keywords: carbon nanofibers, ECG monitoring, flexible dry electrode, wearable patch

Procedia PDF Downloads 159
141 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 79
140 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 47
139 Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques

Authors: Chen-Chang Lee, Po-Chou Chen, Jo-Chi Jao, Chun-Chung Lui, Leung-Chit Tsang, Lain-Chyr Hwang

Abstract:

Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis.

Keywords: fetal MRI, FIESTA, FSPGR, motion artifact, SSFSE

Procedia PDF Downloads 493
138 The Lacuna in Understanding of Forensic Science amongst Law Practitioners in India

Authors: Poulomi Bhadra, Manjushree Palit, Sanjeev P. Sahni

Abstract:

Forensic science uses all branches of science for criminal investigation and trial and has increasingly emerged as an important tool in the administration of justice. However, the growth and development of this field in India has not been as rapid or widespread as compared to the more developed Western countries. For successful administration of justice, it is important that all agencies involved in law enforcement adopt an inter-professional approach towards forensic science, which is presently lacking. In light of the alarmingly high average acquittal rate in India, this study aims to examine the lack of understanding and appreciation of the importance and scope of forensic evidence and expert opinions amongst law professionals such as lawyers and judges. Based on a study of trial court cases from Delhi and surrounding areas, the study underline the areas in forensics where the criminal justice system has noticeably erred. Using this information, the authors examine the extent of forensic understanding amongst legal professionals and attempt to conclusively identify the areas in which they need further appraisal. A cross-sectional study done using a structured questionnaire was conducted amongst law professionals across age, gender, type and years of experience in court, to determine their understanding of DNA, fingerprints and other interdisciplinary scientific materials used as forensic evidence. In our study, we understand the levels of understanding amongst lawyers with regards to DNA and fingerprint evidence, and how it affects trial outcomes. We also aim to understand the factors that prevent credible and advanced awareness amongst legal personnel, amongst others. The survey identified the areas in modern and advanced forensics, such as forensic entomology, anthropology, cybercrime etc., in which Indian legal professionals are yet to attain a functional understanding. It also brings to light, what is commonly termed as the ‘CSI-effect’ in the Western courtrooms, and provides scope to study the existence of this phenomenon and its effects on the Indian courts and their judgements. This study highlighted the prevalence of unchallenged expert testimony presented by the prosecution in criminal trials and impressed upon the judicial system the need for independent analysis and evaluation of the scientist’s data and/or testimony by the defense. Overall, this study aims to define a clearer and rigid understanding of why legal professionals should have basic understanding of the interdisciplinary nature of forensic sciences. Based on the aforementioned findings, the author suggests various measures by which judges and lawyers might obtain an extensive knowledge of the advances and promising potentialities of forensic science. This includes promoting a forensic curriculum in legal studies at Bachelor’s and Master’s level as well as in mid-career professional courses. Formation of forensic-legal consultancies, in consultation with the Department of Justice, will not only assist in training police, military and law personnel but will also encourage legal research in this field. These suggestions also aim to bridge the communication gap that presently exists between law practitioners, forensic scientists and the general community’s awareness of the criminal justice system.

Keywords: forensic science, Indian legal professionals, interdisciplinary awareness, legal education

Procedia PDF Downloads 319
137 Border Security: Implementing the “Memory Effect” Theory in Irregular Migration

Authors: Iliuta Cumpanasu, Veronica Oana Cumpanasu

Abstract:

This paper focuses on studying the conjunction between the new emerged theory of “Memory Effect” in Irregular Migration and Related Criminality and the notion of securitization, and its impact on border management, bringing about a scientific advancement in the field by identifying the patterns corresponding to the linkage of the two concepts, for the first time, and developing a theoretical explanation, with respect to the effects of the non-military threats on border security. Over recent years, irregular migration has experienced a significant increase worldwide. The U.N.'s refugee agency reports that the number of displaced people is at its highest ever - surpassing even post-World War II numbers when the world was struggling to come to terms with the most devastating event in history. This is also the fresh reality within the core studied coordinate, the Balkan Route of Irregular Migration, which starts from Asia and Africa and continues to Turkey, Greece, North Macedonia or Bulgaria, Serbia, and ends in Romania, where thousands of migrants find themselves in an irregular situation concerning their entry to the European Union, with its important consequences concerning the related criminality. The data from the past six years was collected by making use of semi-structured interviews with experts in the field of migration and desk research within some organisations involved in border security, pursuing the gathering of genuine insights from the aforementioned field, which was constantly addressed the existing literature and subsequently subjected to the mixed methods of analysis, including the use of the Vector Auto-Regression estimates model. Thereafter, the analysis of the data followed the processes and outcomes in Grounded Theory, and a new Substantive Theory emerged, explaining how the phenomena of irregular migration and cross-border criminality are the decisive impetus for implementing the concept of securitization in border management by using the proposed pattern. The findings of the study are therefore able to capture an area that has not yet benefitted from a comprehensive approach in the scientific community, such as the seasonality, stationarity, dynamics, predictions, or the pull and push factors in Irregular Migration, also highlighting how the recent ‘Pandemic’ interfered with border security. Therefore, the research uses an inductive revelatory theoretical approach which aims at offering a new theory in order to explain a phenomenon, triggering a practically handy contribution for the scientific community, research institutes or Academia and also usefulness to organizational practitioners in the field, among which UN, IOM, UNHCR, Frontex, Interpol, Europol, or national agencies specialized in border security. The scientific outcomes of this study were validated on June 30, 2021, when the author defended his dissertation for the European Joint Master’s in Strategic Border Management, a two years prestigious program supported by the European Commission and Frontex Agency and a Consortium of six European Universities and is currently one of the research objectives of his pending PhD research at the West University Timisoara.

Keywords: migration, border, security, memory effect

Procedia PDF Downloads 57
136 The Study of Intangible Assets at Various Firm States

Authors: Gulnara Galeeva, Yulia Kasperskaya

Abstract:

The study deals with the relevant problem related to the formation of the efficient investment portfolio of an enterprise. The structure of the investment portfolio is connected to the degree of influence of intangible assets on the enterprise’s income. This determines the importance of research on the content of intangible assets. However, intangible assets studies do not take into consideration how the enterprise state can affect the content and the importance of intangible assets for the enterprise`s income. This affects accurateness of the calculations. In order to study this problem, the research was divided into several stages. In the first stage, intangible assets were classified based on their synergies as the underlying intangibles and the additional intangibles. In the second stage, this classification was applied. It showed that the lifecycle model and the theory of abrupt development of the enterprise, that are taken into account while designing investment projects, constitute limit cases of a more general theory of bifurcations. The research identified that the qualitative content of intangible assets significant depends on how close the enterprise is to being in crisis. In the third stage, the author developed and applied the Wide Pairwise Comparison Matrix method. This allowed to establish that using the ratio of the standard deviation to the mean value of the elements of the vector of priority of intangible assets makes it possible to estimate the probability of a full-blown crisis of the enterprise. The author has identified a criterion, which allows making fundamental decisions on investment feasibility. The study also developed an additional rapid method of assessing the enterprise overall status based on using the questionnaire survey with its Director. The questionnaire consists only of two questions. The research specifically focused on the fundamental role of stochastic resonance in the emergence of bifurcation (crisis) in the economic development of the enterprise. The synergetic approach made it possible to describe the mechanism of the crisis start in details and also to identify a range of universal ways of overcoming the crisis. It was outlined that the structure of intangible assets transforms into a more organized state with the strengthened synchronization of all processes as a result of the impact of the sporadic (white) noise. Obtained results offer managers and business owners a simple and an affordable method of investment portfolio optimization, which takes into account how close the enterprise is to a state of a full-blown crisis.

Keywords: analytic hierarchy process, bifurcation, investment portfolio, intangible assets, wide matrix

Procedia PDF Downloads 186
135 Drivetrain Comparison and Selection Approach for Armored Wheeled Hybrid Vehicles

Authors: Çağrı Bekir Baysal, Göktuğ Burak Çalık

Abstract:

Armored vehicles may have different traction layouts as a result of terrain capabilities and mobility needs. Two main categories of layouts can be separated as wheeled and tracked. Tracked vehicles have superior off-road capabilities but what they gain on terrain performance they lose on mobility front. Wheeled vehicles on the other hand do not have as good terrain capabilities as tracked vehicles but they have superior mobility capabilities such as top speed, range and agility with respect to tracked vehicles. Conventional armored vehicles employ a diesel ICE as main power source. In these vehicles ICE is mechanically connected to the powertrain. This determines the ICE rpm as a result of speed and torque requested by the driver. ICE efficiency changes drastically with torque and speed required and conventional vehicles suffer in terms of fuel consumption because of this. Hybrid electric vehicles employ at least one electric motor in order to improve fuel efficiency. There are different types of hybrid vehicles but main types are Series Hybrid, Parallel Hybrid and Series-Parallel Hybrid. These vehicles introduce an electric motor for traction and also can have a generator electric motor for range extending purposes. Having an electric motor as the traction power source brings the flexibility of either using the ICE as an alternative traction source while it is in efficient range or completely separating the ICE from traction and using it solely considering efficiency. Hybrid configurations have additional advantages for armored vehicles in addition to fuel efficiency. Heat signature, silent operation and prolonged stationary missions can be possible with the help of the high-power battery pack that will be present in the vehicle for hybrid drivetrain. Because of the reasons explained, hybrid armored vehicles are becoming a target area for military and also for vehicle suppliers. In order to have a better idea and starting point when starting a hybrid armored vehicle design, hybrid drivetrain configuration has to be selected after performing a trade-off study. This study has to include vehicle mobility simulations, integration level, vehicle level and performance level criteria. In this study different hybrid traction configurations possible for an 8x8 vehicle is compared using above mentioned criteria set. In order to compare hybrid traction configurations ease of application, cost, weight advantage, reliability, maintainability, redundancy and performance criteria have been used. Performance criteria points have been defined with the help of vehicle simulations and tests. Results of these simulations and tests also help determining required tractive power for an armored vehicle including conditions like trench and obstacle crossing, gradient climb. With the method explained in this study, each configuration is assigned a point for each criterion. This way, correct configuration can be selected objectively for every application. Also, key aspects of armored vehicles, mine protection and ballistic protection will be considered for hybrid configurations. Results are expected to vary for different types of vehicles but it is observed that having longitudinal differential locking capability improves mobility and having high motor count increases complexity in general.

Keywords: armored vehicles, electric drivetrain, electric mobility, hybrid vehicles

Procedia PDF Downloads 61
134 Innocent Victims and Immoral Women: Sex Workers in the Philippines through the Lens of Mainstream Media

Authors: Sharmila Parmanand

Abstract:

This paper examines dominant media representations of prostitution in the Philippines and interrogates sex workers’ interactions with the media establishment. This analysis of how sex workers are constituted in media, often as both innocent victims and immoral actors, contributes to an understanding of public discourse on sex work in the Philippines, where decriminalisation has recently been proposed and sex workers are currently classified as potential victims under anti-trafficking laws but also as criminals under the penal code. The first part is an analysis of media coverage of two prominent themes on prostitution: first, raid and rescue operations conducted by law enforcement; and second, prostitution on military bases and tourism hotspots. As a result of pressure from activists and international donors, these two themes often define the policy conversations on sex work in the Philippines. The discourses in written and televised news reports and documentaries from established local and international media sources that address these themes are explored through content analysis. Conclusions are drawn based on specific terms commonly used to refer to sex workers, how sex workers are seen as performing their cultural roles as mothers and wives, how sex work is depicted, associations made between sex work and public health, representations of clients and managers and ‘rescuers’ such as the police, anti-trafficking organisations, and faith-based groups, and which actors are presumed to be issue experts. Images of how prostitution is used as a metaphor for relations between the Philippines and foreign nations are also deconstructed, along with common tropes about developing world female subjects. In general, sex workers are simultaneously portrayed as bad mothers who endanger their family’s morality but also as long-suffering victims who endure exploitation for the sake of their children. They are also depicted as unclean, drug-addicted threats to public health. Their managers and clients are portrayed as cold, abusive, and sometimes violent, and their rescuers as moral and altruistic agents who are essential for sex workers’ rehabilitation and restoration as virtuous citizens. The second part explores sex workers’ own perceptions of their interactions with media, through interviews with members of the Philippine Sex Workers Collective, a loose organisation of sex workers around the Philippines. They reveal that they are often excluded by media practitioners and that they do not feel that they have space for meaningful self-revelation about their work when they do engage with journalists, who seem to have an overt agenda of depicting them as either victims or women of loose morals. In their assessment, media narratives do not necessarily reflect their lived experiences, and in some cases, coverage of rescues and raid operations endangers their privacy and instrumentalises their suffering. Media representations of sex workers may produce subject positions such as ‘victims’ or ‘criminals’ and legitimize specific interventions while foreclosing other ways of thinking. Further, in light of media’s power to reflect and shape public consciousness, it is a valuable academic and political project to examine whether sex workers are able to assert agency in determining how they are represented.

Keywords: discourse analysis, news media, sex work, trafficking

Procedia PDF Downloads 359
133 Influence of Ride Control Systems on the Motions Response and Passenger Comfort of High-Speed Catamarans in Irregular Waves

Authors: Ehsan Javanmardemamgheisi, Javad Mehr, Jason Ali-Lavroff, Damien Holloway, Michael Davis

Abstract:

During the last decades, a growing interest in faster and more efficient waterborne transportation has led to the development of high-speed vessels for both commercial and military applications. To satisfy this global demand, a wide variety of arrangements of high-speed crafts have been proposed by designers. Among them, high-speed catamarans have proven themselves to be a suitable Roll-on/Roll-off configuration for carrying passengers and cargo due to widely spaced demi hulls, a wide deck zone, and a high ratio of deadweight to displacement. To improve passenger comfort and crew workability and enhance the operability and performance of high-speed catamarans, mitigating the severity of motions and structural loads using Ride Control Systems (RCS) is essential.In this paper, a set of towing tank tests was conducted on a 2.5 m scaled model of a 112 m Incat Tasmania high-speed catamaran in irregular head seas to investigate the effect of different ride control algorithms including linear and nonlinear versions of the heave control, pitch control, and local control on motion responses and passenger comfort of the full-scale ship. The RCS included a centre bow-fitted T-Foil and two transom-mounted stern tabs. All the experiments were conducted at the Australian Maritime College (AMC) towing tank at a model speed of 2.89 m/s (37 knots full scale), a modal period of 1.5 sec (10 sec full scale) and two significant wave heights of 60 mm and 90 mm, representing full-scale wave heights of 2.7 m and 4 m, respectively. Spectral analyses were performed using Welch’s power spectral density method on the vertical motion time records of the catamaran model to calculate heave and pitch Response Amplitude Operators (RAOs). Then, noting that passenger discomfort arises from vertical accelerations and that the vertical accelerations vary at different longitudinal locations within the passenger cabin due to the variations in amplitude and relative phase of the pitch and heave motions, the vertical accelerations were calculated at three longitudinal locations (LCG, T-Foil, and stern tabs). Finally, frequency-weighted Root Mean Square (RMS) vertical accelerations were calculated to estimate Motion Sickness Dose Value (MSDV) of the ship based on ISO 2631-recommendations. It was demonstrated that in small seas, implementing a nonlinear pitch control algorithm reduces the peak pitch motions by 41%, the vertical accelerations at the forward location by 46%, and motion sickness at the forward position by around 20% which provides great potential for further improvement in passenger comfort, crew workability, and operability of high-speed catamarans.

Keywords: high-speed catamarans, ride control system, response amplitude operators, vertical accelerations, motion sickness, irregular waves, towing tank tests.

Procedia PDF Downloads 53
132 Environmental Related Mortality Rates through Artificial Intelligence Tools

Authors: Stamatis Zoras, Vasilis Evagelopoulos, Theodoros Staurakas

Abstract:

The association between elevated air pollution levels and extreme climate conditions (temperature, particulate matter, ozone levels, etc.) and mental consequences has been, recently, the focus of significant number of studies. It varies depending on the time of the year it occurs either during the hot period or cold periods but, specifically, when extreme air pollution and weather events are observed, e.g. air pollution episodes and persistent heatwaves. It also varies spatially due to different effects of air quality and climate extremes to human health when considering metropolitan or rural areas. An air pollutant concentration and a climate extreme are taking a different form of impact if the focus area is countryside or in the urban environment. In the built environment the climate extreme effects are driven through the formed microclimate which must be studied more efficiently. Variables such as biological, age groups etc may be implicated by different environmental factors such as increased air pollution/noise levels and overheating of buildings in comparison to rural areas. Gridded air quality and climate variables derived from the land surface observations network of West Macedonia in Greece will be analysed against mortality data in a spatial format in the region of West Macedonia. Artificial intelligence (AI) tools will be used for data correction and prediction of health deterioration with climatic conditions and air pollution at local scale. This would reveal the built environment implications against the countryside. The air pollution and climatic data have been collected from meteorological stations and span the period from 2000 to 2009. These will be projected against the mortality rates data in daily, monthly, seasonal and annual grids. The grids will be operated as AI-based warning models for decision makers in order to map the health conditions in rural and urban areas to ensure improved awareness of the healthcare system by taken into account the predicted changing climate conditions. Gridded data of climate conditions, air quality levels against mortality rates will be presented by AI-analysed gridded indicators of the implicated variables. An Al-based gridded warning platform at local scales is then developed for future system awareness platform for regional level.

Keywords: air quality, artificial inteligence, climatic conditions, mortality

Procedia PDF Downloads 87
131 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit

Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey

Abstract:

Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.

Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D

Procedia PDF Downloads 161
130 Ecological Crisis: A Buddhist Approach

Authors: Jaharlal Debbarma

Abstract:

The ecological crisis has become a threat to earth’s well-being. Man’s ambitious desire of wealth, pleasure, fame, longevity and happiness has extracted natural resources so vastly that it is unable to sustain a healthy life. Man’s greed for wealth and power has caused the setting up of vast factories which further created the problem of air, water and noise pollution, which have adversely affected both fauna and flora.It is no secret that man uses his inherent powers of reason, intelligence and creativity to change his environment for his advantage. But man is not aware that the moral force he himself creates brings about corresponding changes in his environment to his weal or woe whether he likes it or not. As we are facing the global warming and the nature’s gift such as air and water has been so drastically polluted with disastrous consequences that man seek for a ways and means to overcome all this pollution problem as his health and life sustainability has been threaten and that is where man try to question about the moral ethics and value.It is where Buddhist philosophy has been emphasized deeply which gives us hope for overcoming this entire problem as Buddha himself emphasized in eradicating human suffering and Buddhism is the strongest form of humanism we have. It helps us to learn to live with responsibility, compassion, and loving kindness.It teaches us to be mindful in our action and thought as the environment unites every human being. If we fail to save it we will perish. If we can rise to meet the need to all which ecology binds us - humans, other species, other everything will survive together.My paper will look into the theory of Dependent Origination (Pratītyasamutpāda), Buddhist understanding of suffering (collective suffering), and Non-violence (Ahimsa) and an effort will be made to provide a new vision to Buddhist ecological perspective. The above Buddhist philosophy will be applied to ethical values and belief systems of modern society. The challenge will be substantially to transform the modern individualistic and consumeristic values. The stress will be made on the interconnectedness of the nature and the relation between human and planetary sustainability. In a way environmental crisis will be referred to “spiritual crisis” as A. Gore (1992) has pointed out. The paper will also give important to global consciousness, as well as to self-actualization and self-fulfillment. In the words of Melvin McLeod “Only when we combine environmentalism with spiritual practice, will we find the tools to make the profound personal transformations needed to address the planetary crisis?”

Keywords: dependent arising, collective ecological suffering, remediation, Buddhist approach

Procedia PDF Downloads 242
129 Effect of Lullabies on Babies Stress and Relaxation Symptoms in the Neonatal Intensive Care Units

Authors: Meltem Kürtüncü, Işın Alkan

Abstract:

Objective: This study was carried out with an experimental design in order to determine whether the lullaby, which was listened from mother’s voice and a stranger’s voice to the babies born at term and hospitalized in neonatal intensive care unit, had an effect on stress and relaxation symptoms of the infants. Method: Data from the study were obtained from 90 newborn babies who were hospitalized in Neonatal Intensive Care Unit of Zonguldak Maternity And Children Hospital between September 2015-January 2016 and who met the eligibility criteria. Lullaby concert was performed by choosing one of the suitable care hours. Stress and relaxation symptoms were recorded by the researcher on “Newborn response follow-up form” at pre-care and post-care. Results: After lullaby concert when stress symptoms compared to infants in the experimental and control groups before the care was not detected statistically significant difference between crying, contraction, facial grimacing, flushing, cyanosis and the rates of increase in temperature. After care, crying, contractions, facial grimacing, flushing, and restlessness revealed a statistically significant difference between the groups, but as the cyanosis and temperature increased stress responses did not result in a significant difference between the groups. In the control group babies the crying, contraction, facial grimacing, flushing, and restlessness behaviors rates were found to be significantly higher than experimental group babies. After lullaby concert when relaxation symptoms compared to infants in the experimental and control groups before the care, eye contact rates who listen to lullaby from mother’s voice was found to be significantly higher than infants who listen to lullaby from stranger’s voice and infants in the control group. After care as eye contact, smiling, sucking/searching, yawning, non-crying and sleep behaviors relaxation symptoms revealed statistically significant results. In the control group, these behaviors were found statistically lower degree than the experimental groups. Conclusion: Lullaby concerts as masking the ambient noise, reducing the stress symptoms and increasing the relaxation symptoms, and also for soothing and stimulant affects, due to ease the transition to the sleep state should be preferred in the neonatal intensive care units.

Keywords: lullaby, mother voice, relaxation, stress

Procedia PDF Downloads 210
128 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: slow onset hypoxia, hypobaric chamber training, altitude sickness, symptoms and altitude, pressure cabin

Procedia PDF Downloads 97