Search results for: machine learning techniques
12665 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics
Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink
Abstract:
Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.Keywords: photovoltaic, system dynamics, technological learning, learning curve
Procedia PDF Downloads 9612664 A Student Centered Learning Environment in Engineering Education: Design and a Longitudinal Study of Impact
Authors: Tom O'Mahony
Abstract:
This article considers the design of a student-centered learning environment in engineering education. The learning environment integrates a number of components, including project-based learning, collaborative learning, two-stage assignments, active learning lectures, and a flipped-classroom. Together these elements place the individual learner and their learning at the center of the environment by focusing on understanding, enhancing relevance, applying learning, obtaining rich feedback, making choices, and taking responsibility. The evolution of this environment from 2014 to the present day is outlined. The impact of this environment on learners and their learning is evaluated via student questionnaires that consist of both open and closed-ended questions. The closed questions indicate that students found the learning environment to be really interesting and enjoyable (rated as 4.7 on a 5 point scale) and encouraged students to adopt a deep approach towards studying the course materials (rated as 4.0 on a 5 point scale). A content analysis of the open-ended questions provides evidence that the project, active learning lectures, and flipped classroom all contribute to the success of this environment. Furthermore, this analysis indicates that the two-stage assessment process, in which feedback is provided between a draft and final assignment, is the key component and the dominant theme. A limitation of the study is the small class size (less than 20 learners per year), but, to some degree, this is compensated for by the longitudinal nature of the study.Keywords: deep approaches, formative assessment, project-based learning, student-centered learning
Procedia PDF Downloads 11212663 Parameters Influencing Human Machine Interaction in Hospitals
Authors: Hind Bouami
Abstract:
Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.Keywords: life-critical systems, situation awareness, human-machine interaction, decision-making
Procedia PDF Downloads 18112662 Efficacy of Technology for Successful Learning Experience; Technology Supported Model for Distance Learning: Case Study of Botho University, Botswana
Authors: Ivy Rose Mathew
Abstract:
The purpose of this study is to outline the efficacy of technology and the opportunities it can bring to implement a successful delivery model in Distance Learning. Distance Learning has proliferated over the past few years across the world. Some of the current challenges faced by current students of distance education include lack of motivation, a sense of isolation and a need for greater and improved communication. Hence the author proposes a creative technology supported model for distance learning exactly mirrored on the traditional face to face learning that can be adopted by distance learning providers. This model suggests the usage of a range of technologies and social networking facilities, with the aim of creating a more engaging and sustaining learning environment to help overcome the isolation often noted by distance learners. While discussing the possibilities, the author also highlights the complexity and practical challenges of implementing such a model. Design/methodology/approach: Theoretical issues from previous research related to successful models for distance learning providers will be considered. And also the analysis of a case study from one of the largest private tertiary institution in Botswana, Botho University will be included. This case study illustrates important aspects of the distance learning delivery model and provides insights on how curriculum development is planned, quality assurance is done, and learner support is assured for successful distance learning experience. Research limitations/implications: While some of the aspects of this study may not be applicable to other contexts, a number of new providers of distance learning can adapt the key principles of this delivery model.Keywords: distance learning, efficacy, learning experience, technology supported model
Procedia PDF Downloads 24712661 Factors Affecting General Practitioners’ Transfer of Specialized Self-Care Knowledge to Patients
Authors: Weidong Xia, Malgorzata Kolotylo, Xuan Tan
Abstract:
This study examines the key factors that influence general practitioners’ learning and transfer of specialized arthritis knowledge and self-care techniques to patients during normal patient visits. Drawing on the theory of planed behavior and using matched survey data collected from general practitioners before and after training sessions provided by specialized orthopedic physicians, the study suggests that the general practitioner’s intention to use and transfer learned knowledge was influenced mainly by intrinsic motivation, organizational learning culture and absorptive capacity, but was not influenced by extrinsic motivation. The results provide both theoretical and practical implications.Keywords: empirical study, healthcare knowledge management, patient self-care, physician knowledge transfer
Procedia PDF Downloads 29912660 Addressing Differentiation Using Mobile-Assisted Language Learning
Authors: Ajda Osifo, Fatma Elshafie
Abstract:
Mobile-assisted language learning favors social-constructivist and connectivist theories to learning and adaptive approaches to teaching. It offers many opportunities to differentiated instruction in meaningful ways as it enables learners to become more collaborative, engaged and independent through additional dimensions such as web-based media, virtual learning environments, online publishing to an imagined audience and digitally mediated communication. MALL applications can be a tool for the teacher to personalize and adjust instruction according to the learners’ needs and give continuous feedback to improve learning and performance in the process, which support differentiated instruction practices. This paper explores the utilization of Mobile Assisted Language Learning applications as a supporting tool for effective differentiation in the language classroom. It reports overall experience in terms of implementing MALL to shape and apply differentiated instruction and expand learning options. This session is structured in three main parts: first, a review of literature and effective practice of academically responsive instruction will be discussed. Second, samples of differentiated tasks, activities, projects and learner work will be demonstrated with relevant learning outcomes and learners’ survey results. Finally, project findings and conclusions will be given.Keywords: academically responsive instruction, differentiation, mobile learning, mobile-assisted language learning
Procedia PDF Downloads 41712659 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine
Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef
Abstract:
Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation
Procedia PDF Downloads 19912658 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements
Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath
Abstract:
Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing
Procedia PDF Downloads 17512657 Experiential Learning: A Case Study for Teaching Operating System Using C and Unix
Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni, Raghavendra Nakod
Abstract:
In most of the universities and colleges Operating System (OS) course is treated as theoretical and usually taught in a classroom using conventional teaching methods. In this paper we are presenting a new approach of teaching OS through experiential learning, the course is designed to suit the requirement of undergraduate engineering program of Instrumentation Technology. This new approach has benefited us to improve our student’s programming skills, presentation skills and understanding of the operating system concepts.Keywords: pedagogy, interactive learning, experiential learning, OS, C, UNIX
Procedia PDF Downloads 60612656 The Impact of E-Learning on the Performance of History Learners in Eswatini General Certificate of Secondary Education
Authors: Joseph Osodo, Motsa Thobekani Phila
Abstract:
The study investigated the impact of e-learning on the performance of history learners in Eswatini general certificate of secondary education in the Manzini region of Eswatini. The study was guided by the theory of connectivism. The study had three objectives which were to find out the significance of e-learning during the COVID-19 era in learning History subject; challenges faced by history teachers’ and learners’ in e-learning; and how the challenges were mitigated. The study used a qualitative research approach and descriptive research design. Purposive sampling was used to select eight History teachers and eight History learners from four secondary schools in the Manzini region. Data were collected using face to face interviews. The collected data were analyzed and presented in thematically. The findings showed that history teachers had good knowledge on what e-learning was, while students had little understanding of e-learning. Some of the forms of e-learning that were used during the pandemic in teaching history in secondary schools included TV, radio, computer, projectors, and social media especially WhatsApp. E-learning enabled the continuity of teaching and learning of history subject. The use of e-learning through the social media was more convenient to the teacher and the learners. It was concluded that in some secondary school in the Manzini region, history teacher and learners encountered challenges such as lack of finances to purchase e-learning gadgets and data bundles, lack of skills as well as access to the Internet. It was recommended that History teachers should create more time to offer additional learning support to students whose performance was affected by the COVID-19 pandemic effects.Keywords: e-learning, performance, COVID-19, history, connectivism
Procedia PDF Downloads 7612655 Using Facebook as an Alternative Learning Tools in Malaysian Higher Learning Institutions: A Structural Equation Modelling Approach
Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmed
Abstract:
Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modelling was employed for data analysis and hypothesis testing. This study findings have provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.Keywords: Learning Management Tool, social networking, education, Malaysia
Procedia PDF Downloads 42412654 Application of Digital Tools for Improving Learning
Authors: José L. Jiménez
Abstract:
The use of technology in the classroom is an issue that is constantly evolving. Digital age students learn differently than their teachers did, so now the teacher should be constantly evolving their methods and teaching techniques to be more in touch with the student. In this paper a case study presents how were used some of these technologies by accompanying a classroom course, this in order to provide students with a different and innovative experience as their teacher usually presented the activities to develop. As students worked in the various activities, they increased their digital skills by employing unknown tools that helped them in their professional training. The twenty-first century teacher should consider the use of Information and Communication Technologies in the classroom thinking in skills that students of the digital age should possess. It also takes a brief look at the history of distance education and it is also highlighted the importance of integrating technology as part of the student's training.Keywords: digital tools, on-line learning, social networks, technology
Procedia PDF Downloads 40312653 A Context Aware Mobile Learning System with a Cognitive Recommendation Engine
Authors: Jalal Maqbool, Gyu Myoung Lee
Abstract:
Using smart devices for context aware mobile learning is becoming increasingly popular. This has led to mobile learning technology becoming an indispensable part of today’s learning environment and platforms. However, some fundamental issues remain - namely, mobile learning still lacks the ability to truly understand human reaction and user behaviour. This is due to the fact that current mobile learning systems are passive and not aware of learners’ changing contextual situations. They rely on static information about mobile learners. In addition, current mobile learning platforms lack the capability to incorporate dynamic contextual situations into learners’ preferences. Thus, this thesis aims to address these issues highlighted by designing a context aware framework which is able to sense learner’s contextual situations, handle data dynamically, and which can use contextual information to suggest bespoke learning content according to a learner’s preferences. This is to be underpinned by a robust recommendation system, which has the capability to perform these functions, thus providing learners with a truly context-aware mobile learning experience, delivering learning contents using smart devices and adapting to learning preferences as and when it is required. In addition, part of designing an algorithm for the recommendation engine has to be based on learner and application needs, personal characteristics and circumstances, as well as being able to comprehend human cognitive processes which would enable the technology to interact effectively and deliver mobile learning content which is relevant, according to the learner’s contextual situations. The concept of this proposed project is to provide a new method of smart learning, based on a capable recommendation engine for providing an intuitive mobile learning model based on learner actions.Keywords: aware, context, learning, mobile
Procedia PDF Downloads 24512652 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable
Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack
Abstract:
In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32
Procedia PDF Downloads 12812651 Human Machine Interface for Controlling a Robot Using Image Processing
Authors: Ambuj Kumar Gautam, V. Vasu
Abstract:
This paper introduces a head movement based Human Machine Interface (HMI) that uses the right and left movements of head to control a robot motion. Here we present an approach for making an effective technique for real-time face orientation information system, to control a robot which can be efficiently used for Electrical Powered Wheelchair (EPW). Basically this project aims at application related to HMI. The system (machine) identifies the orientation of the face movement with respect to the pixel values of image in a certain areas. Initially we take an image and divide that whole image into three parts on the basis of its number of columns. On the basis of orientation of face, maximum pixel value of approximate same range of (R, G, and B value of a pixel) lie in one of divided parts of image. This information we transfer to the microcontroller through serial communication port and control the motion of robot like forward motion, left and right turn and stop in real time by using head movements.Keywords: electrical powered wheelchair (EPW), human machine interface (HMI), robotics, microcontroller
Procedia PDF Downloads 29212650 Introducing Transcending Pedagogies
Authors: Wajeehah Aayeshah, Joy Higgs
Abstract:
The term “transcending pedagogies” has been created to refer to teaching and learning strategies that transcend the mode of student enrolment, the needs of different students, and different learning spaces. The value of such pedagogies in the current arena when learning spaces, technologies and preferences are more volatile than ever before, is a key focus of this paper. The paper will examine current and emerging pedagogies that transcend the learning spaces and enrollment modes of on campus, distance, virtual and workplace learning contexts. A further point of interest is how academics in professional and higher education settings interpret and implement pedagogies in the current global conversation space and re-creation of higher education. This study questioned how the notion and practice of transcending pedagogies enables us to re-imagine and reshape university curricula. It explored the nature of teaching and learning spaces and those professional and higher education (current and emerging) pedagogies that can be implemented across these spaces. We set out to identify how transcending pedagogies can assist students in learning to deal with complexity, uncertainty and change in the practice worlds and better appeal to students who are making decisions on where to enrol. The data for this study was collected through in-depth interviews and focus groups with academics and policy makers within academia.Keywords: Transcending Pedagogies, teaching and learning strategies, learning spaces, pedagogies
Procedia PDF Downloads 53812649 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.Keywords: CNN, location identification, tracking, GPS, GSM
Procedia PDF Downloads 16612648 Investigating The Use Of Socially Assistive Robots To Support Learner Engagement For Students With Learning Disabilities In One-to-one Instructional Settings
Authors: Jennifer Fane, Mike Gray, Melissa Sager
Abstract:
Children with diagnosed or suspected learning disabilities frequently experience significant skill gaps in foundational learning areas such as reading, writing, and math. Remedial one-to-one instruction is a highly effective means of supporting children with learning differences in building these foundational skills and closing the learning gap between them and their same-age peers. However, due to the learning challenges children with learning disabilities face, and ensuing challenges with self-confidence, many children with learning differences struggle with motivation and self-regulation within remedial one-to-one learning environments - despite the benefits of these sessions. Socially Assistive Robots (SARs) are an innovative educational technology tool that has been trialled in a range of educational settings to support diverse learning needs. Yet, little is known about the impact of SARs on the learning of children with learning differences in a one-to-one remedial instructional setting. This study sought to explore the impact of SARs on the engagement of children (n=9) with learning differences attending one-to-one remedial instruction sessions at a non-profit remedial education provider. The study used a mixed-methods design to explore learner engagement during learning tasks both with and without the use of a SAR to investigate how the use of SARs impacts student learning. The study took place over five weeks, with each session within the study followed the same procedure with the SAR acting as a teaching assistant when in use. Data from the study included analysis of time-sample video segments of the instructional sessions, instructor recorded information about the student’s progress towards their session learning goal and student self-reported mood and energy levels before and after the session. Analysis of the findings indicates that the use of SARs resulted in fewer instances of off-task behaviour and less need for instructor re-direction during learning tasks, allowing students to work in more sustained ways towards their learning goals. This initial research indicates that the use of SARs does have a material and measurable impact on learner engagement for children with learning differences and that further exploration of the impact of SARs during one-to-one remedial instruction is warranted.Keywords: engagement, learning differences, learning disabilities, instruction, social robotics.
Procedia PDF Downloads 21312647 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 17812646 The Impact of WhatsApp Groups as Supportive Technology in Teaching
Authors: Pinn Tsin Isabel Yee
Abstract:
With the advent of internet technologies, students are increasingly turning toward social media and cross-platform messaging apps such as WhatsApp, Line, and WeChat to support their teaching and learning processes. Although each messaging app has varying features, WhatsApp remains one of the most popular cross-platform apps that allow for fast, simple, secure messaging and free calls anytime, anywhere. With a plethora of advantages, students could easily assimilate WhatsApp as a supportive technology in their learning process. There could be peer to peer learning, and a teacher will be able to share knowledge digitally via the creation of WhatsApp groups. Content analysis techniques were utilized to analyze data collected by closed-ended question forms. Studies demonstrated that 98.8% of college students (n=80) from the Monash University foundation year agreed that the employment of WhatsApp groups was helpful as a learning tool. Approximately 71.3% disagreed that notifications and alerts from the WhatsApp group were disruptions in their studies. Students commented that they could silence the notifications and hence, it would not disturb their flow of thoughts. In fact, an overwhelming majority of students (95.0%) found it enjoyable to participate in WhatsApp groups for educational purposes. It was a common perception that some students felt pressured to post a reply in such groups, but data analysis showed that 72.5% of students did not feel pressured to comment or reply. It was good that 93.8% of students felt satisfactory if their posts were not responded to speedily, but was eventually attended to. Generally, 97.5% of students found it useful if their teachers provided their handphone numbers to be added to a WhatsApp group. If a teacher posts an explanation or a mathematical working in the group, all students would be able to view the post together, as opposed to individual students asking their teacher a similar question. On whether students preferred using Facebook as a learning tool, there was a 50-50 divide in the replies from the respondents as 51.3% of students liked WhatsApp, while 48.8% preferred Facebook as a supportive technology in teaching and learning. Taken altogether, the utilization of WhatsApp groups as a supportive technology in teaching and learning should be implemented in all classes to continuously engage our generation Y students in the ever-changing digital landscape.-Keywords: education, learning, messaging app, technology, WhatsApp groups
Procedia PDF Downloads 15712645 The Impact of Content Familiarity of Receptive Skills on Language Learning
Authors: Sara Fallahi
Abstract:
This paper reviews the importance of content familiarity of receptive skills and offers solutions to the issue of content unfamiliarity in language learning materials. Presently, language learning materials are mainly comprised of global issues and target language speakers’ culture(s) in receptive skills. This might leadlearners to focus on content rather than the language. As a solution, materials on receptive skills can be developed with a focus on learners’culture and social concerns, especially in the beginner levels of learning. Language learners often learn their target language through the receptive skills of listening and reading before language production ensues through speaking and writing. Students’ journey from receptive skills to productive skills is mainly concentrated on by teachers. There are barriers to language learning, such as time and energy, that can hinder learners’ understanding and ability to build the required background knowledge of the content. This is generated due to learners’ unfamiliarity with the skill’s content. Therefore, materials that improve content familiarity will help learners improve their language comprehension, learning, and usage. This presentation will conclude with practical solutions to help teachers and learners more authentically integrate language and culture to elevate language learning.Keywords: language learning, listening content, reading content, content familiarity, ESL books, language learning books, cultural familiarity
Procedia PDF Downloads 11812644 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach
Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh
Abstract:
Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling
Procedia PDF Downloads 4112643 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching
Authors: Angel Daniel Muñoz Guzmán
Abstract:
E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.Keywords: student, experience, e-learning, e-teaching, e-tools, technology, education
Procedia PDF Downloads 11012642 An Experience Report on Course Teaching in Information Systems
Authors: Carlos Oliveira
Abstract:
This paper is a criticism of the traditional model of teaching and presents alternative teaching methods, different from the traditional lecture. These methods are accompanied by reports of experience of their application in a class. It was concluded that in the lecture, the student has a low learning rate and that other methods should be used to make the most engaging learning environment for the student, contributing (or facilitating) his learning process. However, the teacher should not use a single method, but rather a range of different methods to ensure the learning experience does not become repetitive and fatiguing for the student.Keywords: educational practices, experience report, IT in education, teaching methods
Procedia PDF Downloads 39712641 Monitor Student Concentration Levels on Online Education Sessions
Authors: M. K. Wijayarathna, S. M. Buddika Harshanath
Abstract:
Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user
Procedia PDF Downloads 9912640 An Experimental Study of Online Peer-to-Peer Language Learning
Authors: Abrar Al-Hasan
Abstract:
Web 2.0 has significantly increased the amount of information available to users not only about firms and their offerings, but also about the activities of other individuals in their networks and markets. It is widely acknowledged that this increased availability of ‘social’ information, particularly about other individuals, is likely to influence a user’s behavior and choices. However, there are very few systematic studies of how such increased information transparency on the behavior of other users in a focal users’ network influences a focal users’ behavior in the emerging marketplace of online language learning. This study seeks to examine the value and impact of ‘social activities’ – wherein, a user sees and interacts with the learning activities of her peers – on her language learning efficiency. An online experiment in a peer-to-peer language marketplace was conducted to compare the learning efficiency of users with ‘social’ information versus users with no ‘social’ information. The results of this study highlight the impact and importance of ‘social’ information within the language learning context. The study concludes by exploring how these insights may inspire new developments in online education.Keywords: e-Learning, language learning marketplace, peer-to-peer, social network
Procedia PDF Downloads 38512639 Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management
Authors: Marcos Devaner, Marcela Alves, Cledson Braga, Fabiano Alves, Wilton Bezerra
Abstract:
This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process.Keywords: experience report, accessible systems, software testing, testing process, systems, e-learning
Procedia PDF Downloads 39712638 Investigating the Experiences of Higher Education Academics on the Blended Approach Used during the Induction Course
Authors: Ann-May Marais
Abstract:
South African higher education institutions are following the global adoption of a blended approach to teaching and learning. Blended learning is viewed as a transformative teaching-learning approach, as it provides students with the optimum experience by mixing the best of face-to-face and online learning. Although academics realise the benefits of blended learning, they find it challenging and time-consuming to implement blended strategies. Professional development is a critical component of the adoption of higher education teaching-learning approaches. The Institutional course for higher education academics offered at a South African University was designed in a blended model, implemented and evaluated. This paper reports on a study that investigated the experiences of academics on the blended approach used during the induction course. A qualitative design-based research methodology was employed, and data was collected using participant feedback and document analysis. The data gathered from each of the four ICNL offerings were used to inform the design of the next course. Findings indicated that lecturers realised that blended learning could cater to student diversity, different learning styles, engagement, and innovation. Furthermore, it emerged that the course has to cater for diversity in technology proficiency and readiness of participants. Participants also require ongoing support in technology usage and discipline-specific blended learning workshops. This paper contends that the modelling of a blended approach to professional development can be an effective way to motivate academics to apply blended learning in their teaching-learning experiences.Keywords: blended learning, professional development, induction course, integration of technology
Procedia PDF Downloads 16212637 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 5012636 Analysis of Roll-Forming for High-Density Wire of Reed
Authors: Yujeong Shin, Seong Jin Cho, Jin Ho Kim
Abstract:
In the textile-weaving machine, the reed is the core component to separate thousands of strands of yarn and to produce the fabric in a continuous high-speed movement. In addition, the reed affects the quality of the fiber. Therefore, the wire forming analysis of the main raw materials of the reed needs to be considered. Roll-forming is a key technology among the manufacturing process of reed wire using textile machine. A simulation of roll-forming line in accordance with the reduction rate is performed using LS-DYNA. The upper roller, fixed roller and reed wire are modeled by finite element. The roller is set to be rigid body and the wire of SUS430 is set to be flexible body. We predict the variation of the cross-sectional shape of the wire depending on the reduction ratio.Keywords: textile machine, reed, rolling, reduction ratio, wire
Procedia PDF Downloads 375