Search results for: estimating cyclone intensity
946 Motivational Qualities of and Flow State Responses to Participant-Selected Music and Researcher-Selected Music
Authors: Nurul A. Hamzah, Tony Morris, Dan Van Der Westhuizen
Abstract:
Music listening can potentially promote the achievement of flow state during exercise. Selecting music for exercise should consider the motivational factors-internal factors (music tempo and musicality) and external factors (cultural impact and association). This study was a cross-over study which was designed to examine the motivational qualities of music (participant-selected music and researcher-selected music) and flow state responses during exercise accompanying with music. 17 healthy participants (M=30.2, SD=6.3 years old) were among low physical activity individuals. Participants completed two separate sessions of 30 minutes of moderate intensity exercise (40-60% of Heart Rate Reserve) while listening to music. Half the participants at random were assigned to exercise with participant-selected music first, and half were assigned to exercise with researcher-selected music first. Parameters including flow state responses (Flow State Scale-2) and motivational music rating (Brunel Music Rating Inventory-2) were administered immediately after the exercise. Results from this study showed that there were no significant differences for both flow state t(32)=0.00, p>0.05 and motivational music rating t(32)= .393, p>0.05 between exercise with participant-selected music and exercise with researcher-selected music. Listening to music either participant or researcher selected music could promote flow experience during exercise when music is perceived as motivational. Music tempo and music preference are factors that could influence individuals to enjoy exercise and improve the exercise performance.Keywords: motivational music, flow state, researcher-selected music, participant-selected music
Procedia PDF Downloads 384945 Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency
Authors: Shun-Chang Yen, You-Lun Peng, Kuo-Ching San
Abstract:
A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc.Keywords: bluff body with multiple holes, computational fluid dynamics, swirl-jet flow, mixing efficiency
Procedia PDF Downloads 357944 Photocatalytic Degradation of Phenolic Compounds in Wastewater Using Magnetically Recoverable Catalyst
Authors: Ahmed K. Sharaby, Ahmed S. El-Gendy
Abstract:
Phenolic compounds (PCs) exist in the wastewater effluents of some industries such as oil refinery, pharmaceutical and cosmetics. Phenolic compounds are extremely hazardous pollutants that can cause severe problems to the aquatic life and human beings if disposed of without treatment. One of the most efficient treatment methods of PCs is photocatalytic degradation. The current work studies the performance of composite nanomaterial of titanium dioxide with magnetite as a photo-catalyst in the degradation of PCs. The current work aims at optimizing the synthesized photocatalyst dosage and contact time as part of the operational parameters at different initial concentrations of PCs and pH values in the wastewater. The study was performed in a lab-scale batch reactor under fixed conditions of light intensity and aeration rate. The initial concentrations of PCs and the pH values were in the range of (10-200 mg/l) and (3-9), respectively. Results of the study indicate that the dosage of the catalyst and contact time for total mineralization is proportional to the initial concentrations of PCs, while the optimum pH conditions for highly efficient degradation is at pH 3. Exceeding the concentration levels of the catalyst beyond certain limits leads to the decrease in the degradation efficiency due to the dissipation of light. The performance of the catalyst for degradation was also investigated in comparison to the pure TiO2 Degussa (P-25). The dosage required for the synthesized catalyst for photocatalytic degradation was approximately 1.5 times that needed from the pure titania.Keywords: industrial, optimization, phenolic compounds, photocatalysis, wastewater
Procedia PDF Downloads 316943 Seismic Behaviour of Bi-Symmetric Buildings
Authors: Yogendra Singh, Mayur Pisode
Abstract:
Many times it is observed that in multi-storeyed buildings the dynamic properties in the two directions are similar due to which there may be a coupling between the two orthogonal modes of the building. This is particularly observed in bi-symmetric buildings (buildings with structural properties and periods approximately equal in the two directions). There is a swapping of vibrational energy between the modes in the two orthogonal directions. To avoid this coupling the draft revision of IS:1893 proposes a minimum separation of more than 15% between the frequencies of the fundamental modes in the two directions. This study explores the seismic behaviour of bi-symmetrical buildings under uniaxial and bi-axial ground motions. For this purpose, three different types of 8 storey buildings symmetric in plan are modelled. The first building has square columns, resulting in identical periods in the two directions. The second building, with rectangular columns, has a difference of 20% in periods in orthogonal directions, and the third building has half of the rectangular columns aligned in one direction and other half aligned in the other direction. The numerical analysis of the seismic response of these three buildings is performed by using a set of 22 ground motions from PEER NGA database and scaled as per FEMA P695 guidelines to represent the same level of intensity corresponding to the Design Basis Earthquake. The results are analyzed in terms of the displacement-time response of the buildings at roof level and corresponding maximum inter-storey drift ratios.Keywords: bi-symmetric buildings, design code, dynamic coupling, multi-storey buildings, seismic response
Procedia PDF Downloads 241942 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air
Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli
Abstract:
Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.Keywords: air pollution, dust, numerical modeling, urban
Procedia PDF Downloads 187941 Physics-Based Earthquake Source Models for Seismic Engineering: Analysis and Validation for Dip-Slip Faults
Authors: Percy Galvez, Anatoly Petukhin, Paul Somerville, Ken Miyakoshi, Kojiro Irikura, Daniel Peter
Abstract:
Physics-based dynamic rupture modelling is necessary for estimating parameters such as rupture velocity and slip rate function that are important for ground motion simulation, but poorly resolved by observations, e.g. by seismic source inversion. In order to generate a large number of physically self-consistent rupture models, whose rupture process is consistent with the spatio-temporal heterogeneity of past earthquakes, we use multicycle simulations under the heterogeneous rate-and-state (RS) friction law for a 45deg dip-slip fault. We performed a parametrization study by fully dynamic rupture modeling, and then, a set of spontaneous source models was generated in a large magnitude range (Mw > 7.0). In order to validate rupture models, we compare the source scaling relations vs. seismic moment Mo for the modeled rupture area S, as well as average slip Dave and the slip asperity area Sa, with similar scaling relations from the source inversions. Ground motions were also computed from our models. Their peak ground velocities (PGV) agree well with the GMPE values. We obtained good agreement of the permanent surface offset values with empirical relations. From the heterogeneous rupture models, we analyzed parameters, which are critical for ground motion simulations, i.e. distributions of slip, slip rate, rupture initiation points, rupture velocities, and source time functions. We studied cross-correlations between them and with the friction weakening distance Dc value, the only initial heterogeneity parameter in our modeling. The main findings are: (1) high slip-rate areas coincide with or are located on an outer edge of the large slip areas, (2) ruptures have a tendency to initiate in small Dc areas, and (3) high slip-rate areas correlate with areas of small Dc, large rupture velocity and short rise-time.Keywords: earthquake dynamics, strong ground motion prediction, seismic engineering, source characterization
Procedia PDF Downloads 144940 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.Keywords: seismic slope stability, mainshock, aftershock, landslide, earthquake, flexible slopes
Procedia PDF Downloads 146939 Sustainable Use of Laura Lens during Drought
Authors: Kazuhisa Koda, Tsutomu Kobayashi
Abstract:
Laura Island, which is located about 50 km away from downtown, is a source of water supply in Majuro atoll, which is the capital of the Republic of the Marshall Islands. Low and flat Majuro atoll has neither river nor lake. It is very important for Majuro atoll to ensure the conservation of its water resources. However, up-coning, which is the process of partial rising of the freshwater-saltwater boundary near the water-supply well, was caused by the excess pumping from it during the severe drought in 1998. Up-coning will make the water usage of the freshwater lens difficult. Thus, appropriate water usage is required to prevent up-coning in the freshwater lens because there is no other water source during drought. Numerical simulation of water usage applying SEAWAT model was conducted at the central part of Laura Island, including the water-supply well, which was affected by up-coning. The freshwater lens was created as a result of infiltration of consistent average rainfall. The lens shape was almost the same as the one in 1985. 0 of monthly rainfall and variable daily pump discharge were used to calculate the sustainable pump discharge from the water-supply well. Consequently, the total amount of pump discharge was increased as the daily pump discharge was increased, indicating that it needs more time to recover from up-coning. Thus, a pump standard to reduce the pump intensity is being proposed, which is based on numerical simulation concerning the occurrence of the up-coning phenomenon in Laura Island during the drought.Keywords: freshwater lens, islands, numerical simulation, sustainable water use
Procedia PDF Downloads 294938 Analysis of Impact of Air Pollution over Megacity Delhi Due to Agricultural Biomass Burning in the Neighbouring States
Authors: Ankur P. Sati, Manju Mohan
Abstract:
The hazardous combination of smoke and pollutant gases, smog, is harmful for health. There are strong evidences that the Agricultural waste burning (AWB) in the Northern India leads to adverse air quality in Delhi and its surrounding regions. A severe smog episode was observed over Delhi, India during November 2012 which resulted in very low visibility and various respiratory problems. Very high values of pollutants (PM10 as high as 989 µg m-3, PM2.5 as high as 585 µg m-3 an NO2 as high as 540 µg m-3) were measured all over Delhi during the smog episode. Ultra Violet Aerosol Index (UVAI) from Aura satellite and Aerosol Optical Depth (AOD) are used in the present study along with the output trajectories from HYSPLIT model and the in-situ data. Satellite data also reveal that AOD, UVAI are always at its highest during the farmfires duration in Punjab region of India and the extent of these farmfires may be increasing. It is observed that during the smog episode all the AOD, UVAI, PM2.5 and PM10 values surpassed those of the Diwali period (one of the most polluted events in the city) by a considerable amount at all stations across Delhi. The parameters used from the remote sensing data and the ground based observations at various stations across Delhi are very well in agreement about the intensity of Smog episode. The analysis clearly shows that regional pollution can have greater contributions in deteriorating the air quality than the local under adverse meteorological conditions.Keywords: smog, farmfires, AOD, remote sensing
Procedia PDF Downloads 245937 Wood Diversity and Carbon Stock in Evergreen Forests in Cameroon: Case of the Ngambe-Ndom-Nyanon Communal Forest
Authors: Maffo Maffo Nicole Liliane, Mounmemi Kpoumie Hubert, Libalah Moses, Ouandji Angele, Zapfack Louis
Abstract:
Forest degradation causes biodiversity and carbon loss and thus indirectly contributes to climate change. In order to assess the contribution of forests to climate change mitigation, the present study was conducted in the Ngambe-Ndom-Nyanon Communal Forest with the main objective of assessing the floristic diversity and estimating the carbon stock in the different reservoirs of the said forest. Nine plots of 2000 m² each were installed in 3 TOSs of the forest (young secondary forests, gallery forests and fallow lands) with a total area of 18,000 m² or 1,8 ha. All trees with a Diameter at Breast Height (DBH) ≥ 5 cm were inventoried at 1.30 m from the ground in each plot. Species richness, floristic diversity indices, and structural parameters were studied. 1542 trees divided into 162 species, 122 genera and 44 families were identified. The most important families were listed: Myristicaceae (30.22%), Apocynaceae (25.20%), Fabaceae (24.41%), Euphorbiaceae (22.91%) and Phyllanthaceae (20.23%). The richest genera are: Cola, Macaranga, Oncoba (4 species each); the genera Diospyros, Trichilia, Vitex and Zanthoxylum (3 species each). The ecologically important species within the forest studied are: Funtumia africana (26.14%), Coelocaryon preussii (18.46%), Pycnanthus angolensis (15.57%), Tabernaemontana crassa (14.85%) and Olax subscorpioidea (13.04%). Assessment of carbon stocks in the six forest reservoirs studied (living trees and roots, understorey, dead wood, litter and rootlets) shows that they vary according to the land-use types. It is 119.41 t.C.ha-¹ in gallery forest, 115.2 t.C.ha-¹ in young secondary forest and 90.56 t.C.ha-¹ in fallow. The Wilcoxon statistical test shows that the carbon in the young secondary forest is identical to that in the fallow, which is identical to the carbon in the gallery forest. At the individual species level, the largest diameter class [25-35[ sequesters the most carbon (232.94 tC/ha). This work shows that the quantity of carbon sequestered by a biotope is a function of the age of the stand.Keywords: floristic diversity, carbon stocks, evergreen forests, communal forest, Ngambé-Ndom-Nyanon
Procedia PDF Downloads 52936 Weakly Non-Linear Stability Analysis of Newtonian Liquids and Nanoliquids in Shallow, Square and Tall High-Porosity Enclosures
Authors: Pradeep G. Siddheshwar, K. M. Lakshmi
Abstract:
The present study deals with weakly non-linear stability analysis of Rayleigh-Benard-Brinkman convection in nanoliquid-saturated porous enclosures. The modified-Buongiorno-Brinkman model (MBBM) is used for the conservation of linear momentum in a nanoliquid-saturated-porous medium under the assumption of Boussinesq approximation. Thermal equilibrium is imposed between the base liquid and the nanoparticles. The thermophysical properties of nanoliquid are modeled using phenomenological laws and mixture theory. The fifth-order Lorenz model is derived for the problem and is then reduced to the first-order Ginzburg-Landau equation (GLE) using the multi-scale method. The analytical solution of the GLE for the amplitude is then used to quantify the heat transport in closed form, in terms of the Nusselt number. It is found that addition of dilute concentration of nanoparticles significantly enhances the heat transport and the dominant reason for the same is the high thermal conductivity of the nanoliquid in comparison to that of the base liquid. This aspect of nanoliquids helps in speedy removal of heat. The porous medium serves the purpose of retainment of energy in the system due to its low thermal conductivity. The present model helps in making a unified study for obtaining the results for base liquid, nanoliquid, base liquid-saturated porous medium and nanoliquid-saturated porous medium. Three different types of enclosures are considered for the study by taking different values of aspect ratio, and it is observed that heat transport in tall porous enclosure is maximum while that of shallow is the least. Detailed discussion is also made on estimating heat transport for different volume fractions of nanoparticles. Results of single-phase model are shown to be a limiting case of the present study. The study is made for three boundary combinations, viz., free-free, rigid-rigid and rigid-free.Keywords: Boungiorno model, Ginzburg-Landau equation, Lorenz equations, porous medium
Procedia PDF Downloads 322935 Bayesian Networks Scoping the Climate Change Impact on Winter Wheat Freezing Injury Disasters in Hebei Province, China
Authors: Xiping Wang,Shuran Yao, Liqin Dai
Abstract:
Many studies report the winter is getting warmer and the minimum air temperature is obviously rising as the important climate warming evidences. The exacerbated air temperature fluctuation tending to bring more severe weather variation is another important consequence of recent climate change which induced more disasters to crop growth in quite a certain regions. Hebei Province is an important winter wheat growing province in North of China that recently endures more winter freezing injury influencing the local winter wheat crop management. A winter wheat freezing injury assessment Bayesian Network framework was established for the objectives of estimating, assessing and predicting winter wheat freezing disasters in Hebei Province. In this framework, the freezing disasters was classified as three severity degrees (SI) among all the three types of freezing, i.e., freezing caused by severe cold in anytime in the winter, long extremely cold duration in the winter and freeze-after-thaw in early season after winter. The factors influencing winter wheat freezing SI include time of freezing occurrence, growth status of seedlings, soil moisture, winter wheat variety, the longitude of target region and, the most variable climate factors. The climate factors included in this framework are daily mean and range of air temperature, extreme minimum temperature and number of days during a severe cold weather process, the number of days with the temperature lower than the critical temperature values, accumulated negative temperature in a potential freezing event. The Bayesian Network model was evaluated using actual weather data and crop records at selected sites in Hebei Province using real data. With the multi-stage influences from the various factors, the forecast and assessment of the event-based target variables, freezing injury occurrence and its damage to winter wheat production, were shown better scoped by Bayesian Network model.Keywords: bayesian networks, climatic change, freezing Injury, winter wheat
Procedia PDF Downloads 408934 Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles
Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks
Abstract:
Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs.Keywords: silicon quantum dots, silver nanoparticles (AgNPs), luminescence, plasmon
Procedia PDF Downloads 378933 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil
Authors: Md. Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed
Abstract:
The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm.Keywords: foundation settlement, liquefaction, peak ground acceleration, shake table test
Procedia PDF Downloads 77932 Correlation Between Forbush-Decrease Amplitude Detected by Mountain Chacaltaya Neutron Monitor and Solar Wind Electric Filed
Authors: Sebwato Nasurudiin, Akimasa Yoshikawa, Ahmed Elsaid, Ayman Mahrous
Abstract:
This study examines the correlation between the amplitude of Forbush Decreases (FDs) detected by the Mountain Chacaltaya neutron monitor and the solar wind electric field (E). Forbush Decreases, characterized by sudden drops in cosmic ray intensity, are typically associated with interplanetary coronal mass ejections (ICMEs) and high-speed solar wind streams. The Mountain Chacaltaya neutron monitor, located at a high altitude in Bolivia, offers an optimal setting for observing cosmic ray variations. The solar wind electric field, influenced by the solar wind velocity and interplanetary magnetic field, significantly impacts cosmic ray transport in the heliosphere. By analyzing neutron monitor data alongside solar wind parameters, we found a high correlation between E and FD amplitudes with a correlation factor of nearly 87%. The findings enhance our understanding of space weather processes, cosmic ray modulation, and solar-terrestrial interactions, providing valuable insights for predicting space weather events and mitigating their technological impacts. This study contributes to the broader astrophysics field by offering empirical data on cosmic ray modulation mechanisms.Keywords: cosmic rays, Forbush decrease, solar wind, neutron monitor
Procedia PDF Downloads 46931 Regional Flood Frequency Analysis in Narmada Basin: A Case Study
Authors: Ankit Shah, R. K. Shrivastava
Abstract:
Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency
Procedia PDF Downloads 419930 Antioxidant Effects of Regular Aerobic Exercise in Postmenopausal Women with Type 2 Diabetes Mellitus
Authors: Parvin Farzanegi
Abstract:
Background: Diabetes is a metabolic disorder associated with increased free radicals and oxidative stress. The evidence indicates that physical inactivity is a modifiable behavioral risk factor for a wide range of chronic disorders such as diabetes mellitus. We investigated the effects of eight-week aerobic exercise on some antioxidant enzyme activities in postmenopausal women with type 2 diabetes mellitus (T2DM). Methods: sixteen sedentary postmenopausal women with T2DM were randomly assigned to the control (n=8; CG) and exercise group (n=8; EG). The exercise consisted of progressive aerobic training at a moderate intensity (50-70% of the maximum heart rate), for 25-60 min/day, and 3 days/week for 8 weeks. Age, sex, and body mass index were similar in the two groups. Antioxidant status was evaluated by measuring the superoxide dismutase (SOD) and catalase (CAT) activity. Also levels of malondialdehyde (MDA) as an index of lipid peroxidation and glucose in the plasma were measured before and after the intervention. Results: Following the 8 weeks of exercise training, the plasma MDA and glucose levels were significantly reduced in EG compared to CG (P=0.001 and P=0.011 respectively). However, SOD (P=0.017) and CAT (P=0.011) activities were increased in EG compared to CG. Conclusion: The present study suggests regular aerobic exercise appears can exert protective effects against oxidative stress due to its ability to increase antioxidant defense and glucose control in postmenopausal women with T2DM.Keywords: aerobic exercise, antioxidant, diabetes mellitus, type 2
Procedia PDF Downloads 170929 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait
Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh
Abstract:
In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.Keywords: innovative methods in transportation data collection, integrated public transportation system, traffic forecasts, transportation modeling, travel behavior
Procedia PDF Downloads 222928 Low Back Pain among Nurses in Penang Public Hospitals: A Study on Prevalence and Factors Associated
Authors: Izani Uzair Zubair, Mohd Ismail Ibrahim, Mohd Nazri Shafei, Hassan Merican Omar Naina Merican, Mohamad Sabri Othman, Mohd Izmi Ahmad Ibrahim, Rasilah Ramli, Rajpal Singh Karam Singh
Abstract:
Nurses experience a higher prevalence of low back pain (LBP) and musculoskeletal complaints as compared to other hospital workers. Due to no proper policy related to LBP, the job has exposed them to the problem. Thus, the current study aims to look at the intensity of the problem and factors associated with development of LBP. Method and Tools: A cross sectional study was carried out among 1292 nurses from six public hospitals in Penang. They were randomly selected and those who were pregnant and have been diagnosed to have LBP were excluded. A Malay validated BACK Questionnaire was used. The associated factors were determined by using multiple logistic regression from SPSS version 20.0. Result: Most of the respondents were at mean age 30 years old and had mean working experience 86 months. The prevalence of LBP was identified as 76% (95% CI 74, 82). Factors that were associated with LBP among nurses include lifting a heavy object (OR2.626 (95% CI 1.978, 3.486) p =0.001 and the estimation weight of the lifted object (OR1.443 (95% CI 1.056, 1.970) p =0.021. Conclusion: Nurses who practice lifting heavy object and weight of the object lifted give a significant contribution to the development of LBP. The prevalence of the problem is significantly high. Thus, a proper no weight lifting policy should be considered.Keywords: low back pain, nurses, Penang public hospital, Penang
Procedia PDF Downloads 487927 Interaction of Hemoglobin with Sodium Dodecyl Sulfate and Ascorbic Acid: A Chemometrics Study
Authors: Radnoosh Mirzajani, Ebrahim Mirzajani, Heshmatollah Ebrahimi-Najafabadi
Abstract:
Introduction: Hydrogen peroxide can be produced over the interaction of sodium dodecyl sulfate (SDS) with hemoglobin which would facilitate the oxidation process of hemoglobin. The presence of ascorbic acid (AA) can hinder the extreme oxidation of oxyhemoglobin. Methods: Hemoglobin was purified from blood samples according to the method of Williams. UV-V is spectra of Hb solutions mixed with different concentrations of SDS and AA were recorded. Chemical components, concentration, and spectral profiles were estimated using MCR-ALS techniques. Results: The intensity of soret band of OxyHb decreased due to the interaction of Hb with SDS. Furthermore, changes were also observed for peaks at 575 and 540. Subspace plots confirm the presence of OxyHb, MetHb, and Hemichrom in each mixture. The resolved concentration profiles using MCR-ALS reveal that the mole fraction of OxyHb increased upon the presence of AA up to a concentration level of 3 mM. The higher concentration of AA shows a reverse effect. AA demonstrated a dual effect on the interaction of hemoglobin with SDS. AA disturbs the interaction of SDS and hemoglobin and exhibits an antioxidative effect. However, it caused a tiny decrease in the mole fraction of OxyHb. Conclusions: H2O2 produces upon the interaction of OxyHb with SDS. Oxidation of OxyHb facilitates due to overproduction of H2O2. Ascorbic acid interacts with H2O2 to form dehydroascorbic acid. Furthermore, the available free SDS was reduced because the Gibbs free energy for micelle production of SDS became more negative in the presence of AA.Keywords: hemoglobin, ascorbic acid, sodium dodecyl sulfate, multivariate curve resolution, antioxidant
Procedia PDF Downloads 119926 Contribution to the Development of a New Design of Dentist's Gowns: A Case Study of Using Infra-Red Technology and Pressure Sensors
Authors: Tran Thi Anh Dao, M. Arnold, L. Schacher, D. C. Adolphe, G. Reys
Abstract:
During tooth extraction or implant surgery, dentists are in contact with numerous infectious germs from patients' saliva and blood. For that reason, dentist's clothes have to play their role of protection from contamination. In addition, dentist's apparels should be not only protective but also comfortable and breathable because dentists have to perform many operations and treatments on patients throughout the day with high concentration and intensity. However, this type of protective garments has not been studied scientifically, whereas dentists are facing new risks and eager for looking for a comfortable personal protective equipment. For that reason, we have proposed some new designs of dentist's gown. They were expected to diminish heat accumulation that are considered as an important factor in reducing the level of comfort experienced by users. Experiments using infra-red technology were carried out in order to compare the breathable properties between a traditional gown and a new design with open zones. Another experiment using pressure sensors was also carried out to study ergonomic aspects trough the flexibility of movements of sleeves. The sleeves-design which is considered comfortable and flexible will be chosen for the further step. The results from the two experiments provide valuable information for the development of a new design of dentists' gowns in order to achieve maximum levels of cooling and comfort for the human body.Keywords: garment, dentists, comfort, design, protection, thermal
Procedia PDF Downloads 221925 Modelling Hydrological Time Series Using Wakeby Distribution
Authors: Ilaria Lucrezia Amerise
Abstract:
The statistical modelling of precipitation data for a given portion of territory is fundamental for the monitoring of climatic conditions and for Hydrogeological Management Plans (HMP). This modelling is rendered particularly complex by the changes taking place in the frequency and intensity of precipitation, presumably to be attributed to the global climate change. This paper applies the Wakeby distribution (with 5 parameters) as a theoretical reference model. The number and the quality of the parameters indicate that this distribution may be the appropriate choice for the interpolations of the hydrological variables and, moreover, the Wakeby is particularly suitable for describing phenomena producing heavy tails. The proposed estimation methods for determining the value of the Wakeby parameters are the same as those used for density functions with heavy tails. The commonly used procedure is the classic method of moments weighed with probabilities (probability weighted moments, PWM) although this has often shown difficulty of convergence, or rather, convergence to a configuration of inappropriate parameters. In this paper, we analyze the problem of the likelihood estimation of a random variable expressed through its quantile function. The method of maximum likelihood, in this case, is more demanding than in the situations of more usual estimation. The reasons for this lie, in the sampling and asymptotic properties of the estimators of maximum likelihood which improve the estimates obtained with indications of their variability and, therefore, their accuracy and reliability. These features are highly appreciated in contexts where poor decisions, attributable to an inefficient or incomplete information base, can cause serious damages.Keywords: generalized extreme values, likelihood estimation, precipitation data, Wakeby distribution
Procedia PDF Downloads 139924 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis
Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie
Abstract:
Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis
Procedia PDF Downloads 83923 Quantification of Lustre in Textile Fibers by Image Analysis
Authors: Neelesh Bharti Shukla, Suvankar Dutta, Esha Sharma, Shrikant Ralebhat, Gurudatt Krishnamurthy
Abstract:
A key component of the physical attribute of textile fibers is lustre. It is a complex phenomenon arising from the interaction of light with fibers, yarn and fabrics. It is perceived as the contrast difference between the bright areas (specular reflection) and duller backgrounds (diffused reflection). Lustre of fibers is affected by their surface structure, morphology, cross-section profile as well as the presence of any additives/registrants. Due to complexities in measurements, objective measurements such as gloss meter do not give reproducible quantification of lustre. Other instruments such as SAMBA hair systems are expensive. In light of this, lustre quantification has largely remained subjective, judged visually by experts, but prone to errors. In this development, a physics-based approach was conceptualized and demonstrated. We have developed an image analysis based technique to quantify visually observed differences in lustre of fibers. Cellulosic fibers, produced with different approaches, with visually different levels of lustre were photographed under controlled optics. These images were subsequently analyzed using a configured software system. The ratio of Intensity of light from bright (specular reflection) and dull (diffused reflection) areas was used to numerically represent lustre. In the next step, the set of samples that were not visually distinguishable easily were also evaluated by the technique and it was established that quantification of lustre is feasible.Keywords: lustre, fibre, image analysis, measurement
Procedia PDF Downloads 169922 Adsorption Performance of Hydroxyapatite Powder in the Removal of Dyes in Wastewater
Authors: Aderonke A. Okoya, Oluwaseun A. Somoye, Omotayo S. Amuda, Ifeanyi E. Ofoezie
Abstract:
This study assessed the efficiency of Hydroxyapatite Powder (HAP) in the removal of dyes in wastewater in comparison with Commercial Activated Carbon (CAC). This was with a view to developing cost effective method that could be more environment friendly. The HAP and CAC were used as adsorbent while Indigo dye was used as the adsorbate. The batch adsorption experiment was carried out by varying initial concentrations of the indigo dye, contact time and adsorbent dosage. Adsorption efficiency was classified by adsorption Isotherms using Langmuir, Freundlich and D-R isotherm models. Physicochemical parameters of a textile industry wastewater were determined before and after treatment with the adsorbents. The results from the batch experiments showed that at initial concentration of 125 mg/L of adsorbate in simulated wastewater, 0.9276 ± 0.004618 mg/g and 3.121 ± 0.006928 mg/g of indigo adsorbed per unit time (qt) of HAP and CAC respectively. The ratio of HAP to CAC required for the removal of indigo dye in simulated wastewater was 2:1. The isotherm model of the simulated wastewater fitted well to Freundlich model, the adsorption intensity (1/n) presented 1.399 and 0.564 for HAP and CAC, respectively. This revealed that the HAP had weaker bond than the electrostatic interactions which were present in CAC. The values of some physicochemical parameters (acidity, COD, Cr, Cd) of textile wastewater when treated with HAP decreased. The study concluded that HAP, an environment-friendly adsorbent, could be effectively used to remove dye from textile industrial wastewater with added advantage of being regenerated.Keywords: adsorption isotherm, commercial activated carbon, hydroxyapatite powder, indigo dye, textile wastewater
Procedia PDF Downloads 242921 Effect of the Food Distribution on Household Food Security Status in Iran
Authors: Delaram Ghodsi, Nasrin Omidvar, Hassan Eini-Zinab, Arash Rashidian, Hossein Raghfar
Abstract:
Food supplementary programs are policy approaches that aim to reduce financial barriers to healthy diets and tackle food insecurity. This study aimed to evaluate the effect of the supportive section of Multidisciplinary Supplementary Program for Improvement of Nutritional Status of Children (MuPINSC) on households’ food security status and nutritional status of mothers. MuPINSC is a national integrative program in Iran that distributes supplementary food basket to malnourished or growth retarded children living in low-income families in addition to providing health services, including sanitation, growth monitoring, and empowerment of families. This longitudinal study is part of a comprehensive evaluation of the program. The study participants included 359 mothers of children aged 6 to 72 month under coverage of the supportive section of the program in two provinces of Iran (Semnan and Qazvin). Demographic and economic characteristics of families were assessed by a questionnaire. Data on food security of family was collected by locally adapted Household Food Insecurity Access Scale (HFIAS) at the baseline of the study and six month thereafter. Weight and height of mothers were measured at the baseline and end of the study and mother’s BMI was calculated. Data were analysed, using paired t-test, GEE (Generalized Estimating Equation), and Chi-square tests. Based on the findings, at the baseline, only 4.7% of families were food-secure, while 13.1%, 38.7% and, 43.5% were categorized as mild, moderate and severe food insecure. After six months follow up, the distribution of different levels of food security changed significantly (P<0.001) to 7.9%, 11.6%, 42.6%, and 38%, respectively. At the end of the study, the chance of food insecurity was significantly 20% lower than the beginning (OR=0.796; 0.653-0.971). No significant difference was observed in maternal BMI based on food security (P>0.05). The findings show that the food supplementary program for children improved household food security status in the studied households. Further research is needed to assess other factors that affect the effectiveness of this large scale program on nutritional status and household’s food security.Keywords: food security, food supplementary program, household, malnourished children
Procedia PDF Downloads 401920 Keying Effect During Fracture of Stainless Steel
Authors: Farej Ahmed Emhmmed
Abstract:
Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor.Keywords: stainless steels, fracture toughness, crack keying effect, ligaments
Procedia PDF Downloads 360919 Microwave-Assisted Chemical Pre-Treatment of Waste Sorghum Leaves: Process Optimization and Development of an Intelligent Model for Determination of Volatile Compound Fractions
Authors: Daneal Rorke, Gueguim Kana
Abstract:
The shift towards renewable energy sources for biofuel production has received increasing attention. However, the use and pre-treatment of lignocellulosic material are inundated with the generation of fermentation inhibitors which severely impact the feasibility of bioprocesses. This study reports the profiling of all volatile compounds generated during microwave assisted chemical pre-treatment of sorghum leaves. Furthermore, the optimization of reducing sugar (RS) from microwave assisted acid pre-treatment of sorghum leaves was assessed and gave a coefficient of determination (R2) of 0.76, producing an optimal RS yield of 2.74 g FS/g substrate. The development of an intelligent model to predict volatile compound fractions gave R2 values of up to 0.93 for 21 volatile compounds. Sensitivity analysis revealed that furfural and phenol exhibited high sensitivity to acid concentration, alkali concentration and S:L ratio, while phenol showed high sensitivity to microwave duration and intensity as well. These findings illustrate the potential of using an intelligent model to predict the volatile compound fraction profile of compounds generated during pre-treatment of sorghum leaves in order to establish a more robust and efficient pre-treatment regime for biofuel production.Keywords: artificial neural networks, fermentation inhibitors, lignocellulosic pre-treatment, sorghum leaves
Procedia PDF Downloads 248918 Performance Improvement of Long-Reach Optical Access Systems Using Hybrid Optical Amplifiers
Authors: Shreyas Srinivas Rangan, Jurgis Porins
Abstract:
The internet traffic has increased exponentially due to the high demand for data rates by the users, and the constantly increasing metro networks and access networks are focused on improving the maximum transmit distance of the long-reach optical networks. One of the common methods to improve the maximum transmit distance of the long-reach optical networks at the component level is to use broadband optical amplifiers. The Erbium Doped Fiber Amplifier (EDFA) provides high amplification with low noise figure but due to the characteristics of EDFA, its operation is limited to C-band and L-band. In contrast, the Raman amplifier exhibits a wide amplification spectrum, and negative noise figure values can be achieved. To obtain such results, high powered pumping sources are required. Operating Raman amplifiers with such high-powered optical sources may cause fire hazards and it may damage the optical system. In this paper, we implement a hybrid optical amplifier configuration. EDFA and Raman amplifiers are used in this hybrid setup to combine the advantages of both EDFA and Raman amplifiers to improve the reach of the system. Using this setup, we analyze the maximum transmit distance of the network by obtaining a correlation diagram between the length of the single-mode fiber (SMF) and the Bit Error Rate (BER). This hybrid amplifier configuration is implemented in a Wavelength Division Multiplexing (WDM) system with a BER of 10⁻⁹ by using NRZ modulation format, and the gain uniformity noise ratio (signal-to-noise ratio (SNR)), the efficiency of the pumping source, and the optical signal gain efficiency of the amplifier are studied experimentally in a mathematical modelling environment. Numerical simulations were implemented in RSoft OptSim simulation software based on the nonlinear Schrödinger equation using the Split-Step method, the Fourier transform, and the Monte Carlo method for estimating BER.Keywords: Raman amplifier, erbium doped fibre amplifier, bit error rate, hybrid optical amplifiers
Procedia PDF Downloads 70917 Cognitive Fusion and Obstacles to Valued Living: Beyond Pain-Specific Events in Chronic Pain
Authors: Sergio A. Carvalho, Jose Pinto-Gouveia, David Gillanders, Paula Castilho
Abstract:
The role of psychological processes has long been recognized as crucial factors in depressive symptoms in chronic pain (CP). Although some studies have explored the negative impact of being entangled with internal experiences (e.g., thoughts, emotions, physical sensations) – cognitive fusion, it is not extensively explored 1) whether these are pain-related or rather general difficult experiences, and 2) how they relate to experiencing obstacles in committing to valued actions. The current study followed a cross-sectional design in a sample of 231 participants with CP, in which a mediational model was tested through path analyses in AMOS software. The model presented a very good model fit (Χ²/DF = 1.161; CFI = .999; TLI = .996; RMSEA = .026, PCLOSE = .550.), and results showed that pain intensity was not directly related to depressive symptoms (β = .055; p = .239) but was mediated by cognitive fusion with both general and pain-related internal experiences (β = .181, 95%CI [.097; .271]; p = .015). Additionally, results showed that only general cognitive fusion (but not pain-specific fusion) was associated with experiencing obstacles to living a meaningful life, which mediated its impact on depressive symptoms (β = .197, 95%CI [.102; .307]; p = .001). Overall, this study adds on current literature by suggesting that psychological interventions to pain management should not be focused only on management of pain-related experiences, but also on developing more effective ways of relating to overall internal experiences.Keywords: cognitive fusion, chronic pain, depressive symptoms, valued living
Procedia PDF Downloads 226