Search results for: correction factors for axisymmetric models
15363 Models Comparison for Solar Radiation
Authors: Djelloul Benatiallah
Abstract:
Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.Keywords: solar radiation, renewable energy, fossil, photovoltaic systems
Procedia PDF Downloads 7915362 Variations in Wood Traits across Major Gymnosperm and Angiosperm Tree Species and the Driving Factors in China
Authors: Meixia Zhang, Chengjun Ji, Wenxuan Han
Abstract:
Many wood traits are important functional attributes for tree species, connected with resource competition among species, community dynamics, and ecosystem functions. Large variations in these traits exist among taxonomic categories, but variation in these traits between gymnosperms and angiosperms is still poorly documented. This paper explores the systematic differences in 12 traits between the two tree categories and the potential effects of environmental factors and life form. Based on a database of wood traits for major gymnosperm and angiosperm tree species across China, the values of 12 wood traits and their driving factors in gymnosperms vs. angiosperms were compared. The results are summarized below: i) Means of wood traits were all significantly lower in gymnosperms than in angiosperms. ii) Air-dried density (ADD) and tangential shrinkage coefficient (TSC) reflect the basic information of wood traits for gymnosperms, while ADD and radial shrinkage coefficient (RSC) represent those for angiosperms, providing higher explanation power when used as the evaluation index of wood traits. iii) For both gymnosperm and angiosperm species, life form exhibits the largest explanation rate for large-scale spatial patterns of ADD, TSC (RSC), climatic factors the next, and edaphic factors have the least effect, suggesting that life form is the dominant factor controlling spatial patterns of wood traits. Variations in the magnitude and key traits between gymnosperms and angiosperms and the same dominant factors might indicate the evolutionary divergence and convergence in key functional traits among woody plants.Keywords: allometry, functional traits, phylogeny, shrinkage coefficient, wood density
Procedia PDF Downloads 27515361 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 33215360 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 22115359 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study on Fars’ Livestock and Poultry Manufacturing Companies
Authors: Mohsen Yaghmor, Sima Radmanesh
Abstract:
Rapid environmental changes have been threatening the life of many organizations. Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity and inability of human resource have been identified and reviewed at glance. Afterwards, answers were sought to questions "What are the factors effecting productivity and enabling of human resource?" and "What are the priority order based on effective management of human resource in Fars Poultry Complex?". A specified questionnaire has been designed regarding the priorities and effectiveness of the identified factors. Six factors were specified consisting of: individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then a questionnaire was specified for priority and effect measurement of specified factors that were reached after collecting information and using statistical tests of Keronchbakh alpha coefficient r = 0.792, so that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test their effects were categorized. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. Lastly, approaches has been introduced to increase productivity of manpower.Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation
Procedia PDF Downloads 26515358 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models
Authors: Nada Slimane, Foued Theljani, Faouzi Bouani
Abstract:
The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression
Procedia PDF Downloads 18215357 A Risk Pathway of Distal and Proximal Factors for Self-Injury among Adolescents
Authors: Sarit Gideoni Cohen
Abstract:
The aim of the study was to examine possible risk pathway which initiated by the distal risk factors of insecure attachment to the mother, the father and peers and then developed by means of proximal risk factors: stressful life events and emotional distress. 275 participants (aged 13-26) from high-schools, youth groups and university were requited. Twenty-two percent participants reported at least one episode of self-injury. The relationship between paternal and peer attachment were partly mediated by stressful life events and depressive symptoms. Paternal and peer attachment influences during adolescence as contributing to risk pathway for self-injury were acknowledged.Keywords: self-injury, attachment, depression, stressful life-events, adolescence
Procedia PDF Downloads 22915356 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection
Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón
Abstract:
Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.Keywords: aerial thermography, data processing, drone, low-cost, point cloud
Procedia PDF Downloads 14315355 The Adoption of Technological Innovations in a B2C Context: An Empirical Study on the Higher Education Industry in Egypt
Authors: Maha Mourad, Rania Samir
Abstract:
This paper seeks to explain the adoption of technological innovations in a business to consumer context. Specifically, the use of web based technology (WEBCT/blackboard) in the delivery of educational material and communication with students at universities in Egypt is the focus of this study. The analysis draws on existing research in a B2C context which highlights the importance of internal organization characteristics, perceived attributes of the innovation as well as consumer based factors as the main drivers of adoption. A distinctive B2C model is developed drawing on Roger’s innovation adoption model, as well as theoretical and empirical foundations in previous innovation adoption literature to study the adoption of technological innovations in higher education in Egypt. The model proposes that the adoption decision is dependent on a combination of perceived attributes of the innovation, inter-organization factors and consumer factors. The model is testified drawing on the results of empirical work in the form of a large survey conducted on students in three different universities in Egypt (one public, one private and one international). In addition to the attributes of the innovation, specific organization factors (such as university resources) as well as consumer factors were identified as likely to have an important influence on the adoption of technological innovations in higher education.Keywords: innovation, WEBCT, higher education, adoption, Egypt
Procedia PDF Downloads 54715354 Review of the Road Crash Data Availability in Iraq
Authors: Abeer K. Jameel, Harry Evdorides
Abstract:
Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.Keywords: road safety, Iraq, crash data, road risk assessment, The International Road Assessment Program (iRAP)
Procedia PDF Downloads 25615353 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction
Procedia PDF Downloads 16415352 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 1315351 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel
Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler
Abstract:
Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process
Procedia PDF Downloads 13515350 Observed Changes in Constructed Precipitation at High Resolution in Southern Vietnam
Authors: Nguyen Tien Thanh, Günter Meon
Abstract:
Precipitation plays a key role in water cycle, defining the local climatic conditions and in ecosystem. It is also an important input parameter for water resources management and hydrologic models. With spatial continuous data, a certainty of discharge predictions or other environmental factors is unquestionably better than without. This is, however, not always willingly available to acquire for a small basin, especially for coastal region in Vietnam due to a low network of meteorological stations (30 stations) on long coast of 3260 km2. Furthermore, available gridded precipitation datasets are not fine enough when applying to hydrologic models. Under conditions of global warming, an application of spatial interpolation methods is a crucial for the climate change impact studies to obtain the spatial continuous data. In recent research projects, although some methods can perform better than others do, no methods draw the best results for all cases. The objective of this paper therefore, is to investigate different spatial interpolation methods for daily precipitation over a small basin (approximately 400 km2) located in coastal region, Southern Vietnam and find out the most efficient interpolation method on this catchment. The five different interpolation methods consisting of cressman, ordinary kriging, regression kriging, dual kriging and inverse distance weighting have been applied to identify the best method for the area of study on the spatio-temporal scale (daily, 10 km x 10 km). A 30-year precipitation database was created and merged into available gridded datasets. Finally, observed changes in constructed precipitation were performed. The results demonstrate that the method of ordinary kriging interpolation is an effective approach to analyze the daily precipitation. The mixed trends of increasing and decreasing monthly, seasonal and annual precipitation have documented at significant levels.Keywords: interpolation, precipitation, trend, vietnam
Procedia PDF Downloads 27515349 Prognosis of Patients with COVID-19 and Hematologic Malignancies
Authors: Elizabeth Behrens, Anne Timmermann, Alexander Yerkan, Joshua Thomas, Deborah Katz, Agne Paner, Melissa Larson, Shivi Jain, Seo-Hyun Kim, Celalettin Ustun, Ankur Varma, Parameswaran Venugopal, Jamile Shammo
Abstract:
Coronavirus Disease-2019 (COVID-19) causes persistent concern for poor outcomes in vulnerable populations. Patients with hematologic malignancies (HM) have been found to have higher COVID-19 case fatality rates compared to those without malignancy. While cytopenias are common in patients with HM, especially in those undergoing chemotherapy treatment, hemoglobin (Hgb) and platelet count have not yet been studied, to our best knowledge, as potential prognostic indicators for patients with HM and COVID-19. The goal of this study is to identify factors that may increase the risk of mortality in patients with HM and COVID-19. In this single-center, retrospective, observational study, 65 patients with HM and laboratory confirmed COVID-19 were identified between March 2020 and January 2021. Information on demographics, laboratory data the day of COVID-19 diagnosis, and prognosis was extracted from the electronic medical record (EMR), chart reviewed, and analyzed using the statistical software SAS version 9.4. Chi-square testing was used for categorical variable analyses. Risk factors associated with mortality were established by logistic regression models. Non-Hodgkin lymphoma (37%), chronic lymphocytic leukemia (20%), and plasma cell dyscrasia (15%) were the most common HM. Higher Hgb level upon COVID-19 diagnosis was related to decreased mortality, odd ratio=0.704 (95% confidence interval [CI]: 0.511-0.969; P = .0263). Platelet count the day of COVID-19 diagnosis was lower in patients who ultimately died (mean 127 ± 72K/uL, n=10) compared to patients who survived (mean 197 ±92K/uL, n=55) (P=.0258). Female sex was related to decreased mortality, odd ratio=0.143 (95% confidence interval [CI]: 0.026-0.785; P = .0353). There was no mortality difference between the patients who were on treatment for HM the day of COVID-19 diagnosis compared to those who were not (P=1.000). Lower Hgb and male sex are independent risk factors associated with increased mortality of HM patients with COVID-19. Clinicians should be especially attentive to patients with HM and COVID-19 who present with cytopenias. Larger multi-center studies are urgently needed to further investigate the impact of anemia, thrombocytopenia, and demographics on outcomes of patients with hematologic malignancies diagnosed with COVID-19.Keywords: anemia, COVID-19, hematologic malignancy, prognosis
Procedia PDF Downloads 14915348 Research on the Influencing Factors of Residents' Energy Consumption and Carbon Emission in Different Types of Communities - Taking Caijia New Town of Chongqing as an Example
Authors: Shuo Lei
Abstract:
In order to explore the influencing factors of residents' energy consumption and carbon emissions in different types of communities, this paper conducted research on residents' household energy consumption and carbon emissions in different types of communities in Caijia New Town, Chongqing. By calculating the carbon emissions of residents' household energy consumption, we analyze the structure and characteristics of the energy consumption of households in each type of community. At the same time, the key influencing factors affecting the carbon emissions of residents' energy consumption in Caijia New Town are analyzed from both social and spatial perspectives. The results of the study show that: (1) different types of neighborhoods have a clustering and locking effect on different types of resident groups, which makes the distribution of household energy consumption and carbon emissions closely related to the characteristics of the residents; (2) social and spatial factors have an impact on the residents' energy consumption and carbon emissions, and there is a significant difference in the carbon emission levels of different types of neighborhoods. Accordingly, an identification method is proposed to recognize the carbon emissions of Caijia New Town and even Chongqing City, which provides technical reference for the sustainable planning of low-carbon communities.Keywords: community type, residential energy consumption and carbon emissions, residential differentiation, influencing factors, low-carbon community
Procedia PDF Downloads 2015347 An Evaluation of the Efficacy of School-Based Suicide Prevention Programs
Authors: S. Wietrzychowski
Abstract:
The following review has identified specific programs, as well as the elements of these programs, that have been shown to be most effective in preventing suicide in schools. Suicide is an issue that affects many students each year. Although this is a prominent issue, there are few prevention programs used within schools. The primary objective of most prevention programs is to reduce risk factors such as depression and hopelessness, and increase protective factors like support systems and help-seeking behaviors. Most programs include a gatekeeper training model, education component, peer support group, and/or counseling/treatment. Research shows that some of these programs, like the Signs of Suicide and Youth Aware of Mental Health Programme, are effective in reducing suicide behaviors and increasing protective factors. These programs have been implemented in many countries across the world and have shown promising results. Since schools can provide easy access to adolescents, implement education programs, and train staff members and students how to identify and to report suicide behaviors, school-based programs seem to be the best way to prevent suicide among adolescents. Early intervention may be an effective way to prevent suicide. Although, since early intervention is not always an option, school-based programs in high schools have also been shown to decrease suicide attempts by up to 50%. As a result of this presentation, participants will be able to 1.) list at least 2 evidence-based suicide prevention programs, 2.) identify at least 3 factors which protect against suicide, and 3.) describe at least 3 risk factors for suicide.Keywords: school, suicide, prevention, programs
Procedia PDF Downloads 34415346 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence
Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang
Abstract:
Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sublfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of filters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-filter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying filter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The significance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II filters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the filter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic filter, aspect ratios (AR) ranging from 1 to 16 in LES filters are evaluated. The findings highlight the DDM's proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as filter anisotropy intensify, the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all filter-anisotropy scenarios. The findings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence
Procedia PDF Downloads 7515345 Effect of Goat Milk Kefir and Soy Milk Kefir on IL-6 in Diabetes Mellitus Wistar Mice Models Induced by Streptozotocin and Nicotinamide
Authors: Agatha Swasti Ayuning Tyas
Abstract:
Hyperglycemia in Diabetes Mellitus (DM) is an important factor in cellular and vascular damage, which is caused by activation of C Protein Kinase, polyol and hexosamine track, and production of Advanced Glycation End-Products (AGE). Those mentioned before causes the accumulation of Reactive Oxygen Species (ROS). Oxidative stress increases the expression of proinflammatory factors IL-6 as one of many signs of endothelial disfunction. Genistein in soy milk has a high immunomodulator potential. Goat milk contains amino acids which have antioxidative potential. Fermented kefir has an anti-inflammatory activity which believed will also contribute in potentiating goat milk and soy milk. This study is a quasi-experimental posttest-only research to 30 Wistar mice. This study compared the levels of IL-6 between healthy Wistar mice group (G1) and 4 DM Wistar mice with intervention and grouped as follows: mice without treatment (G2), mice treated with 100% goat milk kefir (G3), mice treated with combination of 50% goat milk kefir and 50% soy milk kefir (G4), and mice treated with 100% soy milk kefir (G5). DM animal models were induced with Streptozotocin & Nicotinamide to achieve hyperglycemic condition. Goat milk kefir and soy milk kefir are given at a dose of 2 mL/kg body weight/day for four weeks to intervention groups. Blood glucose was analyzed by the GOD-POD principle. IL-6 was analyzed by enzyme-linked sandwich ELISA. The level of IL-6 in DM untreated control group (G2) showed a significant difference from the group treated with the combination of 50% goat milk kefir and 50% soy milk kefir (G3) (p=0,006) and the group treated with 100% soy milk kefir (G5) (p=0,009). Whereas the difference of IL-6 in group treated with 100% goat milk kefir (G3) was not significant (p=0,131). There is also synergism between glucose level and IL-6 in intervention groups treated with combination of 50% goat milk kefir and 50% soy milk kefir (G3) and the group treated with 100% soy milk kefir (G5). Combination of 50 % goat milk kefir and 50% soy milk kefir and administration of 100% soy milk kefir alone can control the level of IL-6 remained low in DM Wistar mice induced with streptozocin and nicotinamide.Keywords: diabetes mellitus, goat milk kefir, soy milk kefir, interleukin 6
Procedia PDF Downloads 28515344 Investigating Factors Impacting Student Motivation in Classroom Use of Digital Games
Authors: Max Neu
Abstract:
A large variety of studies on the utilization of games in classroom settings promote positive effects on students motivation for learning. Still, most of those studies rarely can give any specifics about the factors that might lead to changes in students motivation. The undertaken study has been conducted in tandem with the development of a highly classroom-optimized serious game, with the intent of providing a subjectively positive initial contact with the subject of political participation and to enable the development of personal motivation towards further engagement with the topic. The goal of this explorative study was to Identify the factors that influence students motivation towards the subject when serious games are being used in classroom education. Therefor, students that have been exposed to a set of classes in which a classroom optimized serious game has been used. Afterwards, a selection of those have been questioned in guided interviews that have been evaluated through Qualitative Content Analysis. The study indicates that at least 23 factors in the categories, mechanics, content and context potentially influence students motivation to engage with the classes subject. The conclusions are of great value for the further production of classroom games as well as curricula involving digital games in general.Keywords: formal education, games in classroom, motivation, political education
Procedia PDF Downloads 10915343 The Sustainable Cultural Tourism of Nakhon Si Thammarat Province in Thailand
Authors: Narong Anurak
Abstract:
The objectives of the study were to determine the factors influencing tourists’ destination decision making for cultural tourism in the southern provinces, to examine the potential for developing cultural tourism and to guideline for marketing strategy for cultural tourism in Nakhon Si Thammarat. Both quantitative and qualitative data were applied in this study. The samples of 400 cases for quantitative analysis were tourists who were interested in cultural tourism in the southern provinces, and traveled to cultural sites in Nakhon Si Thammarat, Surat Thani, and Phuket, and 14 representatives from provincial tourism committee of Nakhon Si Thammarat. The study found that Thai and foreign tourists are influenced by different important marketing mix factors (7Ps) when making decisions for cultural tourism in southern provinces. The important factors for Thai respondents were physical evidence, price, people, and place at high importance level, whereas, product, process, and promotion were moderate importance level as well.Keywords: marketing mix factors, Nakhon Si Thammarat province, sustainable cultural tourism, tourists decision making
Procedia PDF Downloads 27415342 Characteristics of the Severe Rollover Crashes in the UAE Using In-Depth Crash Investigation Data
Authors: Yaser E. Hawas, Md. Didarul Alam
Abstract:
Rollover crashes are complex events entailing interactions of driver, road, vehicle, and environmental factors. The primary objective of this paper is to present an empirical approach that can be used to characterise the rollover crashes and to identify some of the important factors that may lead to rollovers. Among the studied factors are the vehicle types and the rollover occurrence rate after hitting various barrier types. The carried analysis indicated that 71% of the rollover crashes occurred after impact and the type of rollover initiation is “trip/turn over” (nearly 50%). It was also found that light trucks (LTVs) vehicles are more likely to rollover than the sedan vehicles. Barrier impacts are associated with increased incidence of rollover.Keywords: empirical, hitting barrier, in-depth crash investigation, rollover, severe crash
Procedia PDF Downloads 37215341 Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia Coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Northern Ethiopia
Authors: Haftay Abraha Tadesse, Dawit Gebreegziabiher Hagos, Atsebaha Gebrekidan Kahsay, Mahumd Abdulkader
Abstract:
Background: Salmonella species and Escherichia coli (E. coli) are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Method: A cross-sectional study was conducted from January to December 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli. Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI:(4.69 27.10) were associated with overall bacterial contamination. About 100% of the tested isolates were sensitive to ciprofloxacin, gentamicin, Co trimoxazole , sulphamethoxazole, ceftriaxone, and trimethoprim and ciprofloxacin, gentamicin, and norfloxacine of E. coli and Salmonella species, respectively, while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor handwashing practice and not using glove during meat handling showed a significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species, and E. coli were 19 (51.4%) and 14 (31.8%), respectively.Keywords: antimicrobial susceptibility test, butchery houses, E. coli, raw meat, salmonella species
Procedia PDF Downloads 17315340 Multilevel of Factors Affected Optimal Adherence to Antiretroviral Therapy and Viral Suppression amongst HIV-Infected Prisoners in South Ethiopia: A Prospective Cohort Study
Authors: Terefe Fuge, George Tsourtos , Emma Miller
Abstract:
Objectives: Maintaining optimal adherence and viral suppression in people living with HIV (PLWHA) is essential to ensure both preventative and therapeutic benefits of antiretroviral therapy (ART). Prisoners bear a particularly high burden of HIV infection and are highly likely to transmit to others during and after incarceration. However, the level of adherence and viral suppression, as well as its associated factors in incarcerated populations in low-income countries is unknown. This study aimed to determine the prevalence of non-adherence and viral failure, and contributing factors to this amongst prisoners in South Ethiopia. Methods: A prospective cohort study was conducted between June 1, 2019 and July 31, 2020 to compare the level of adherence and viral suppression between incarcerated and non-incarcerated PLWHA. The study involved 74 inmates living with HIV (ILWHA) and 296 non-incarcerated PLWHA. Background information including sociodemographic, socioeconomic, psychosocial, behavioural, and incarceration-related characteristics was collected using a structured questionnaire. Adherence was determined based on participants’ self-report and pharmacy refill records, and plasma viral load measurements which were undertaken within the study period were prospectively extracted to determine viral suppression. Various univariate and multivariate regression models were used to analyse data. Results: Self-reported dose adherence was approximately similar between ILWHA and non-incarcerated PLWHA (81% and 83% respectively), but ILWHA had a significantly higher medication possession ratio (MPR) (89% vs 75%). The prevalence of viral failure (VF) was slightly higher (6%) in ILWHA compared to non-incarcerated PLWHA (4.4%). The overall dose non-adherence (NA) was significantly associated with missing ART appointments, level of satisfaction with ART services, patient’s ability to comply with a specified medication schedule and types of methods used to monitor the schedule. In ILWHA specifically, accessing ART services from a hospital compared to a health centre, an inability to always attend clinic appointments, experience of depression and a lack of social support predicted NA. VF was significantly higher in males, people of age 31-35 years and in those who experienced social stigma, regardless of their incarceration status. Conclusions: This study revealed that HIV-infected prisoners in South Ethiopia were more likely to be non-adherent to doses and so to develop viral failure compared to their non-incarcerated counterparts. A multitude of factors was found to be responsible for this requiring multilevel intervention strategies focusing on the specific needs of prisoners.Keywords: Adherence , Antiretroviral therapy, Incarceration, South Ethiopia, Viral suppression
Procedia PDF Downloads 13515339 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model
Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi
Abstract:
The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.Keywords: Besag2, CAR models, disease mapping, INLA, spatial models
Procedia PDF Downloads 27915338 Marketing Mixed Factors Affecting on Commercial Transactions Expectations through Social Networks
Authors: Ladaporn Pithuk
Abstract:
This study aims to investigate the marketing mixed factors that affecting on expectations about commercial transactions through social networks. The research method will using quantitative research, data was collected by questionnaires to person have experience access to trading over the internet for 400 sample by purposive sampling method. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and using quality function deployment for hypothesis testing. Finding the most significant interrelationship between marketing mixed factors and commercial transactions expectations through social networks are product and place the relationship of five ties product and place (location) is involved in almost all will make the site a model that meets the needs of the user visit. In terms of price, the promotion, privacy, personalization and providing a process technical. This will make operations more efficient, reduce confusion, duplication, delays in data transmission, including the creation of different elements in products and services.Keywords: commercial transactions expectations, marketing mixed factors, social networks, consumer behavior
Procedia PDF Downloads 23715337 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss
Authors: Azin Zargham, Gholamreza Rouhi, Allahyar Geramy
Abstract:
One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL.Keywords: bone remodeling, finite element method, horizontal bone loss, orthodontic tooth movement.
Procedia PDF Downloads 34215336 Testing for Endogeneity of Foreign Direct Investment: Implications for Economic Policy
Authors: Liwiusz Wojciechowski
Abstract:
Research background: The current knowledge does not give a clear answer to the question of the impact of FDI on productivity. Results of the empirical studies are still inconclusive, no matter how extensive and diverse in terms of research approaches or groups of countries analyzed they are. It should also take into account the possibility that FDI and productivity are linked and that there is a bidirectional relationship between them. This issue is particularly important because on one hand FDI can contribute to changes in productivity in the host country, but on the other hand its level and dynamics may imply that FDI should be undertaken in a given country. As already mentioned, a two-way relationship between the presence of foreign capital and productivity in the host country should be assumed, taking into consideration the endogenous nature of FDI. Purpose of the article: The overall objective of this study is to determine the causality between foreign direct investment and total factor productivity in host county in terms of different relative absorptive capacity across countries. In the classic sense causality among variables is not always obvious and requires for testing, which would facilitate proper specification of FDI models. The aim of this article is to study endogeneity of selected macroeconomic variables commonly being used in FDI models in case of Visegrad countries: main recipients of FDI in CEE. The findings may be helpful in determining the structure of the actual relationship between variables, in appropriate models estimation and in forecasting as well as economic policymaking. Methodology/methods: Panel and time-series data techniques including GMM estimator, VEC models and causality tests were utilized in this study. Findings & Value added: The obtained results allow to confirm the hypothesis states the bi-directional causality between FDI and total factor productivity. Although results differ from among countries and data level of aggregation implications may be useful for policymakers in case of providing foreign capital attracting policy.Keywords: endogeneity, foreign direct investment, multi-equation models, total factor productivity
Procedia PDF Downloads 19715335 Environmental Factors Affecting Knowledge Transfer between the Context of the Training Institution and the Context of the Work Environment: The Case of Agricultural Vocational Training
Authors: Oussedik Lydia, Zaouani-Denoux Souâd
Abstract:
Given the evolution of professions, training is becoming a solution to meet the current requirements of the labor market. Notably, the amount of money invested in training activities is considerable and continuously increasing globally. The justification of this investment becomes an obligation for those responsible for training. Therefore, the impact of training can be measured by the degree to which the knowledge, skills, and attitudes acquired through training are transferred to the workplace. Further, knowledge transfer is fundamental because the objective of any training is to be close to a professional environment in order to improve the productivity of participants. Hence, the need to better understand the knowledge transfer process in order to determine the factors that may influence it. The objective of this research is to understand the process of knowledge transfer that can occur between two contexts: professional training and the workplace, which will provide further insight to identify the environmental factors that can hinder or promote it. By examining participants' perceptions of the training and work contexts, this qualitative approach seeks to understand the knowledge transfer process that occurs between the two contexts. It also aims to identify the factors that influence it. The results will help managers identify environmental factors in the training and work context that may impact knowledge transfer. These results can be used to promote the knowledge transfer process and the performance of the trainees.Keywords: knowledge transfer, professional training, professional training in agriculture, training context, professional context
Procedia PDF Downloads 16815334 The Confounding Role of Graft-versus-Host Disease in Animal Models of Cancer Immunotherapy: A Systematic Review
Authors: Hami Ashraf, Mohammad Heydarnejad
Abstract:
Introduction: The landscape of cancer treatment has been revolutionized by immunotherapy, offering novel therapeutic avenues for diverse cancer types. Animal models play a pivotal role in the development and elucidation of these therapeutic modalities. Nevertheless, the manifestation of Graft-versus-Host Disease (GVHD) in such models poses significant challenges, muddling the interpretation of experimental data within the ambit of cancer immunotherapy. This study is dedicated to scrutinizing the role of GVHD as a confounding factor in animal models used for cancer immunotherapy, alongside proposing viable strategies to mitigate this complication. Method: Employing a systematic review framework, this study undertakes a comprehensive literature survey including academic journals in PubMed, Embase, and Web of Science databases and conference proceedings to collate pertinent research that delves into the impact of GVHD on animal models in cancer immunotherapy. The acquired studies undergo rigorous analysis and synthesis, aiming to assess the influence of GVHD on experimental results while identifying strategies to alleviate its confounding effects. Results: Findings indicate that GVHD incidence significantly skews the reliability and applicability of experimental outcomes, occasionally leading to erroneous interpretations. The literature surveyed also sheds light on various methodologies under exploration to counteract the GVHD dilemma, thereby bolstering the experimental integrity in this domain. Conclusion: GVHD's presence critically affects both the interpretation and validity of experimental findings, underscoring the imperative for strategies to curtail its confounding impacts. Current research endeavors are oriented towards devising solutions to this issue, aiming to augment the dependability and pertinence of experimental results. It is incumbent upon researchers to diligently consider and adjust for GVHD's effects, thereby enhancing the translational potential of animal model findings to clinical applications and propelling progress in the arena of cancer immunotherapy.Keywords: graft-versus-host disease, cancer immunotherapy, animal models, preclinical model
Procedia PDF Downloads 51