Search results for: artificial neural networks; crop water stress index; canopy temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24729

Search results for: artificial neural networks; crop water stress index; canopy temperature

23199 Spatio-temporal Distribution of the Groundwater Quality in the El Milia Plain, Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni

Abstract:

In this research, we analyzed the groundwater quality index in the El Milia plain, Kebir Rhumel Basin, Algeria. Thirty-three groundwater samples were collected from wells in the El Milia plain during April 2015. In this study, pH and electrical conductivity (EC) were conducted at each sampling well. Eight hydrochemical parameters such as calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), chlorid (Cl), sulfate (SO4), bicarbonate (HCO3), and Nnitrate (NO3) were analysed. The entropy water quality index (EWQI) method was employed to evaluate the groundwater quality in the study area. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. Therefore, the results obtained in this research provide very useful information to decision-makers.

Keywords: entropy water quality index (EWQI), moran’s i, ordinary kriging interpolation, el milia plain

Procedia PDF Downloads 61
23198 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing

Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule

Abstract:

Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.

Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing

Procedia PDF Downloads 139
23197 Spatio-temporal Distribution of Surface Water Quality in the Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas

Abstract:

This research aims to present a surface water quality assessment of hydrochemical parameters in the Kebir Rhumel Basin, Algeria. The water quality index (WQI), Mann–Kendall (MK) test, and hierarchical cluster analysis (HCA) were used in oder to understand the spatio-temporal distribution of the surface water quality in the study area. Eleven hydrochemical parameters were measured monthly at eight stations from January 2016 to December 2020. The dominant cation in the surface water was found to be calcium, followed by sodium, and the dominant anion was sulfate, followed by chloride. In terms of WQI, a significant percentage of surface water samples at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khlifa (SK) exhibited poor water quality, with approximately 89.5%, 90.6%, 78.2%, and 62.7%, respectively, falling into this category. Mann–Kendall trend analysis revealed a significantly increasing trend in WQI values at stations Oued Boumerzoug (ON) and SK, indicating that the temporal variation of WQI in these stations is significant. Hierarchical clustering analysis classified the data into three clusters. The first cluster contained approximately 22% of the total number of months, the second cluster included about 30%, and the third cluster had the highest representation, approximately 48% of the total number of months. Within these clusters, certain stations exhibited higher WQI values. In the first cluster, stations GR and ON had the highest WQI values. In the second cluster, stations Oued Boumerzoug (OB) and SK showed the highest WQI values, while in the last cluster, stations AS, BH, El Milia (EM), and Hammam Grouz (HG) had the highest mean WQI values. Also, approximately 38%, 41%, and 38% of the total water samples in the first, second, and third clusters, respectively, were classified as having poor water quality. The findings of this study can serve as a scientific basis for decision-makers to formulate strategies for surface water quality restoration and management in the region.

Keywords: surface water, water quality index (WQI), Mann Kendall (MK) test, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin

Procedia PDF Downloads 25
23196 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
23195 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 143
23194 Household Water Source Substitution and Demand for Water Connections

Authors: Elizabeth Spink

Abstract:

The United Nations' Sustainable Development Goal 6 sets a target for safe and affordable drinking water for all. Developing country governments aiming to achieve this goal often face significant challenges when trying to service last mile customers, particularly those in peri-urban and rural areas. Expansion of water networks often requires high connection fees from households, and demand for connections may be low if there are cheaper substitute sources of water available. This research studies the effect of the availability of substitute sources of water on demand for individual water connections in Livingstone, Zambia, using an event study analysis of metering campaigns. Metering campaigns reduce the share of a household's neighbors that can provide free water to the household if their water connection becomes disconnected due to nonpayment. The results show that household payments in newly metered regions increase by 10 percentage points in the months following metering events, with a decrease in disconnections of 6 percentage points for low-income households. To isolate the effect of changes in a household's substitution possibilities, a similar analysis is conducted among households that neighbor the metered region. These results show mixed evidence of the impact of substitutes on payment behavior and disconnections. The results suggest that metering may be effective in increasing household demand for individual water connections primarily through a lower monthly cost burden for newly metered households.

Keywords: piped-water access, water demand, water utilities, water sharing

Procedia PDF Downloads 197
23193 Sustainability Analysis and Quality Assessment of Rainwater Harvested from Green Roofs: A Review

Authors: Mst. Nilufa Sultana, Shatirah Akib, Muhammad Aqeel Ashraf, Mohamed Roseli Zainal Abidin

Abstract:

Most people today are aware that global Climate change, is not just a scientific theory but also a fact with worldwide consequences. Global climate change is due to rapid urbanization, industrialization, high population growth and current vulnerability of the climatic condition. Water is becoming scarce as a result of global climate change. To mitigate the problem arising due to global climate change and its drought effect, harvesting rainwater from green roofs, an environmentally-friendly and versatile technology, is becoming one of the best assessment criteria and gaining attention in Malaysia. This paper addresses the sustainability of green roofs and examines the quality of water harvested from green roofs in comparison to rainwater. The factors that affect the quality of such water, taking into account, for example, roofing materials, climatic conditions, the frequency of rainfall frequency and the first flush. A green roof was installed on the Humid Tropic Centre (HTC) is a place of the study on monitoring program for urban Stormwater Management Manual for Malaysia (MSMA), Eco-Hydrological Project in Kualalumpur, and the rainwater was harvested and evaluated on the basis of four parameters i.e., conductivity, dissolved oxygen (DO), pH and temperature. These parameters were found to fall between Class I and Class III of the Interim National Water Quality Standards (INWQS) and the Water Quality Index (WQI). Some preliminary treatment such as disinfection and filtration could likely to improve the value of these parameters to class I. This review paper clearly indicates that there is a need for more research to address other microbiological and chemical quality parameters to ensure that the harvested water is suitable for use potable water for domestic purposes. The change in all physical, chemical and microbiological parameters with respect to storage time will be a major focus of future studies in this field.

Keywords: Green roofs, INWQS, MSMA-SME, rainwater harvesting, water treatment, water quality parameter, WQI

Procedia PDF Downloads 533
23192 Simplified Linearized Layering Method for Stress Intensity Factor Determination

Authors: Jeries J. Abou-Hanna, Bradley Storm

Abstract:

This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors.

Keywords: fracture mechanics, finite element method, stress intensity factor, stress linearization

Procedia PDF Downloads 143
23191 Physiological Response of Naturally Regenerated Pinus taeda L. Saplings to Four Levels of Stem Inoculation with Leptographium terebrantis

Authors: John K. Mensah, Mary A. Sword Sayer, Ryan L. Nadel, George Matusick, Zhaofei Fan, Lori G. Eckhardt

Abstract:

Leptographium terebrantis is an opportunistic root pathogen commonly associated with loblolly pine (Pinus taeda L.) stands that are undergoing a loss of vigor in the southeastern US. In order to understand the relationship between L. terebrantis inoculum density and host physiology, an artificial inoculation study was conducted in a five-year-old naturally regenerated loblolly pine stand over a 24 week period in a completely randomized design. L. terebrantis caused sapwood occlusions that increased in severity as inoculum density increased. The occlusions significantly reduced water transport through the stem but did not interfere with fascicle-level stomatal conductance or induce moisture stress in the saplings. The resilience of stomatal conductance among pathogen-infested saplings is attributed to the growth and hydraulic function of new sapwood that developed after artificial inoculation. Results demonstrate that faster-growing families of loblolly pine may be capable of tolerating the vascular root disease when the formation of new sapwood is supported by sustained crown health.

Keywords: hydraulic conductance, inoculum density, Leptographium terebrantis, Pinus taeda, sapwood occlusion

Procedia PDF Downloads 323
23190 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.

Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction

Procedia PDF Downloads 96
23189 Applied Free Living Nematode as Bioindicator to Assess Environmental Impact of Dam Construction in Ba Lai Estuary, Vietnam

Authors: Ngo Xuan Quang, Tran Thanh Thai, Ann Vanreusel

Abstract:

The Ba Lai dam construction was created in 2000 in the Ba Lai estuarine river, Ben Tre province, Vietnam to prevent marine water infiltration, drainage and de-acidification, and to build a reservoir of freshwater for land reclamation in the Ba Lai tributary. However, this dam is considered as an environmental failure for the originally connected estuarine and river ecosystem, especially to bad effect to benthic fauna distribution. This research aims to study applying free living nematode communities’ distribution in disturbance of dam construction as bioindicator to detect environmental impact. Nematode samples were collected together measuring physical–chemical environmental parameters such as chlorophyll, CPE, coliform, nutrient, grain size, salinity, dissolved oxygen, turbidity, conductivity, temperature in three stations within three replicates. Results showed that free living nematode communities at the dam construction was significantly low densities, low diversity (Hurlbert’s index, Hill diversity indices) and very low maturity index in comparison with two remaining stations. Strong correlation of nematode feeding types and communities’ structure was found in relation with sediment grain size and nutrient enrichment such nitrite, nitrate, phosphate and pigment concentration. Moreover, greatly negative link between nematode maturity index with nutrient parameters can serve as warning organic pollution of the Ba Lai river due to dam construction.

Keywords: Ba Lai, dam impact, nematode, environment

Procedia PDF Downloads 353
23188 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI

Authors: Ananya Ananya, Karthik Rao

Abstract:

Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.

Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net

Procedia PDF Downloads 261
23187 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar

Authors: H. Aljabiry, L. Bailey, S. Young

Abstract:

Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.

Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands

Procedia PDF Downloads 135
23186 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: deep learning, skin cancer, image processing, melanoma

Procedia PDF Downloads 148
23185 On the Performance Analysis of Coexistence between IEEE 802.11g and IEEE 802.15.4 Networks

Authors: Chompunut Jantarasorn, Chutima Prommak

Abstract:

This paper presents an intensive measurement studying of the network performance analysis when IEEE 802.11g Wireless Local Area Networks (WLAN) coexisting with IEEE 802.15.4 Wireless Personal Area Network (WPAN). The measurement results show that the coexistence between both networks could increase the Frame Error Rate (FER) of the IEEE 802.15.4 networks up to 60% and it could decrease the throughputs of the IEEE 802.11g networks up to 55%.

Keywords: wireless performance analysis, coexistence analysis, IEEE 802.11g, IEEE 802.15.4

Procedia PDF Downloads 552
23184 Effect of Recycled Grey Water on Bacterial Concrete

Authors: T. Deepa, S. R. Inchara, S. V. Venkatesh, Seema Tharannum

Abstract:

Concrete is the most widely used structural material. It is made using locally available materials. However, Concrete has low tensile strength and may crack in the early days with exothermic hydration. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for Biomineralization or MICP (Microbially Induced Calcite Precipitation) Technique and to address the increased Construction water demand, Recycled Grey Water which is obtained from STP of PES University, opted in place of Potable water. In this work, M30 grade conventional concrete is designed using OPC 53 grade cement, Manufactured Sand, Natural coarse aggregates, and Potable water. Conventional Concrete (CC), Bacterial Concrete with Potable water (BS), and Recycled Grey Water concrete (RGW) are the three different concrete specimens casted. Experimental studies such as the strength test and the surface hardness test are conducted on Conventional and Bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for Self-healing - as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD).Noticeable Calcium salt deposition is observed on the surface of BS and RGW cracked specimen. Surface hardness and EDAX test gave promising result on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gain in Compression and Flexure. Results also indicate that Recycled Grey Water can be a substitute for Normal water in concrete.

Keywords: bacillus subtilis, bacterial concrete, recycled grey water, self-healing, surface hardness of concrete

Procedia PDF Downloads 135
23183 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 225
23182 Alternatives to the Disposal of Sludge from Water and Wastewater Treatment Plants

Authors: Lima Priscila, Gianotto Raiza, Arruda Leonan, Magalhães Filho Fernando

Abstract:

Industrialization and especially the accentuated population growth in developing countries and the lack of drainage, public cleaning, water and sanitation services has caused concern about the need for expansion of water treatment units and sewage. However, these units have been generating by-products, such as the sludge. This paper aims to investigate aspects of operation and maintenance of sludge from a wastewater treatment plant (WWTP - 90 L.s-1) and two water treatment plants (WTPs; 1.4 m3.s-1 and 0.5 m3.s-1) for the purpose of proper disposal and reuse, evaluating their qualitative and quantitative characteristics, the Brazilian legislation and standards. It was concluded that the sludge from the water treatment plants is directly related to the quality of raw water collected, and it becomes feasible for use in construction materials, and to dispose it in the sewage system, improving the efficiency of the WWTP regarding precipitation of phosphorus (35% of removal). The WTP Lageado had 55,726 kg/month of sludge production, more than WTP Guariroba (29,336 kg/month), even though the flow of WTP Guariroba is 1,400 L.s-1 and the WTP Lagedo 500 L.s-1, being explained by the quality that influences more than the flow. The WWTP sludge have higher concentrations of organic materials due to their origin and could be used to improve the fertility of the soil, crop production and recovery of degraded areas. The volume of sludge generated at the WWTP was 1,760 ton/month, with 5.6% of solid content in the raw sludge and in the dewatered sludge it increased its content to 23%.

Keywords: disposal, sludge, water treatment, wastewater treatment

Procedia PDF Downloads 320
23181 The Development of a Precision Irrigation System for Durian

Authors: Chatrabhuti Pipop, Visessri Supattra, Charinpanitkul Tawatchai

Abstract:

Durian is one of the top agricultural products exported by Thailand. There is the massive market potential for the durian industry. While the global demand for Thai durians, especially the demand from China, is very high, Thailand's durian supply is far from satisfying strong demand. Poor agricultural practices result in low yields and poor quality of fruit. Most irrigation systems currently used by the farmers are fixed schedule or fixed rates that ignore actual weather conditions and crop water requirements. In addition, the technologies emerging are too difficult and complex and prices are too high for the farmers to adopt and afford. Many farmers leave the durian trees to grow naturally. With improper irrigation and nutrient management system, durians are vulnerable to a variety of issues, including stunted growth, not flowering, diseases, and death. Technical development or research for durian is much needed to support the wellbeing of the farmers and the economic development of the country. However, there are a limited number of studies or development projects for durian because durian is a perennial crop requiring a long time to obtain the results to report. This study, therefore, aims to address the problem of durian production by developing an autonomous and precision irrigation system. The system is designed and equipped with an industrial programmable controller, a weather station, and a digital flow meter. Daily water requirements are computed based on weather data such as rainfall and evapotranspiration for daily irrigation with variable flow rates. A prediction model is also designed as a part of the system to enhance the irrigation schedule. Before the system was installed in the field, a simulation model was built and tested in a laboratory setting to ensure its accuracy. Water consumption was measured daily before and after the experiment for further analysis. With this system, the crop water requirement is precisely estimated and optimized based on the data from the weather station. Durian will be irrigated at the right amount and at the right time, offering the opportunity for higher yield and higher income to the farmers.

Keywords: Durian, precision irrigation, precision agriculture, smart farm

Procedia PDF Downloads 118
23180 Sub-Pixel Level Classification Using Remote Sensing For Arecanut Crop

Authors: S. Athiralakshmi, B.E. Bhojaraja, U. Pruthviraj

Abstract:

In agriculture, remote sensing is applied for monitoring of plant development, evaluating of physiological processes and growth conditions. Especially valuable are the spatio-temporal aspects of the remotely sensed data in detecting crop state differences and stress situations. In this study, hyperion imagery is used for classifying arecanut crops based on their age so that these maps can be used in yield estimation of crops, irrigation purposes, applying fertilizers etc. Traditional hard classifiers assigns the mixed pixels to the dominant classes. The proposed method uses a sub pixel level classifier called linear spectral unmixing available in ENVI software. It provides the relative abundance of surface materials and the context within a pixel that may be a potential solution to effectively identifying the land-cover distribution. Validation is done referring to field spectra collected using spectroradiometer and the ground control points obtained from GPS.

Keywords: FLAASH, Hyperspectral remote sensing, Linear Spectral Unmixing, Spectral Angle Mapper Classifier.

Procedia PDF Downloads 519
23179 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 298
23178 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64
23177 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib

Abstract:

Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.

Keywords: climate change, pulses productivity, agriculture, Pakistan

Procedia PDF Downloads 44
23176 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

Authors: M. Javanmard

Abstract:

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Keywords: shelled walnut, MAP, quality, storage temperature

Procedia PDF Downloads 388
23175 Post-Traumatic Stress Disorder Exhibited by Secondary School Students Exposed to Conflict in Kano Metropolis: Efficacy of a Brief Intervention

Authors: Valentine Ayo Mebu

Abstract:

The study examined the efficacy of a brief intervention programme in the treatment of post-traumatic stress disorder (PTSD) symptoms exhibited by secondary school students exposed to conflict in Kano metropolis. The study tested three hypotheses that there is no significant difference between post-test re-experiencing, hyper-arousal, and avoidance mean scores of students exposed to the intervention and those who were not exposed to the intervention. The design of the study was an experimental design, specifically the pre-test and post-test control group design. The purposive sampling technique was used to select 60 research participants (male=30, female=30, Mean Age=15.50) for the study. These participants met the Diagnostic Statistical Manual of Mental Disorders (DSM-5) criteria of PTSD symptoms and were randomly assigned to experimental and control groups, respectively. Instrument for data collection was the University of California Post-Traumatic Stress Disorder Reaction Index (UCLA PTSD Index). Findings from the study indicated that there was a significant effect of the intervention on post re-experiencing symptoms scores [ F (1, 57) = 85.97, p=.00, partial eta squared η²=.60], hyper-arousal symptoms scores[ F (1, 57) = 27.81, p=.00, partial eta squared η² =.33], and avoidance symptoms scores [ F (1, 57) = 59.56, p=.00, partial eta squared η² =.51]. The efficacy of this brief psycho-educational intervention as an effective treatment in reducing PTSD symptoms among secondary school students exposed to conflict is supported by the results of this study and this will also add to the existing literature on the effectiveness of psycho-educational intervention in treating PTSD symptoms among students exposed to conflict.

Keywords: avoidance symptoms, hyper-arousal symptoms, re-experiencing symptoms, post-traumatic stress disorder, psycho-education

Procedia PDF Downloads 142
23174 The Study of Climate Change Effects on the Performance of Thermal Power Plants in Iran

Authors: Masoud Soltani Hosseini, Fereshteh Rahmani, Mohammad Tajik Mansouri, Ali Zolghadr

Abstract:

Climate change is accompanied with ambient temperature increase and water accessibility limitation. The main objective of this paper is to investigate the effects of climate change on thermal power plants including gas turbines, steam and combined cycle power plants in Iran. For this purpose, the ambient temperature increase and water accessibility will be analyzed and their effects on power output and efficiency of thermal power plants will be determined. According to the results, the ambient temperature has high effect on steam power plants with indirect cooling system (Heller). The efficiency of this type of power plants decreases by 0.55 percent per 1oC ambient temperature increase. This amount is 0.52 and 0.2 percent for once-through and wet cooling systems, respectively. The decrease in power output covers a range of 0.2% to 0.65% for steam power plant with wet cooling system and gas turbines per 1oC air temperature increase. Based on the thermal power plants distribution in Iran and different scenarios of climate change, the total amount of power output decrease falls between 413 and 1661 MW due to ambient temperature increase. Another limitation incurred by climate change is water accessibility. In optimistic scenario, the power output of steam plants decreases by 1450 MW in dry and hot climate areas throughout next decades. The remaining scenarios indicate that the amount of decrease in power output would be by 4152 MW in highlands and cold climate. Therefore, it is necessary to consider appropriate solutions to overcome these limitations. Considering all the climate change effects together, the actual power output falls in range of 2465 and 7294 MW and efficiency loss covers the range of 0.12 to .56 % in different scenarios.

Keywords: climate, change, thermal, power plants

Procedia PDF Downloads 82
23173 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 382
23172 Effect of Supplementation of Rough Lemon Juice, Amla Juice and Aloe Vera Gel on Physio-biochemical and Hematological Parameters of Broiler Chicken During Summer Season

Authors: Suraj Amrutkar, R. Gowri, Asma Khan, Nazam Khan, Vikas Mahajan, Manpreet Kour And Bharti Deshmukh

Abstract:

Herbal additives are rich in vitamin C, A and other biological active compounds and may act as surrogate source to subdue heat stress in chicken. Among various herbal additives such as rough lemon (Citrus Jambhiri Lush) juice, amla (Emblica officinalis) juice and aloe vera (Aloe barbadensis miller) gel are easily available during summer (stress period) and also cost less as comparison to synthetic feed additives in market. In order to analyze the performance by supplementation of rough lemon juice, amla juice and aloe vera gel in broiler under heat stress conditions. Study was carried out with a random distribution of day old straight run chicks (240 No.) in to four treatment group (n=60) was done. All the groups were given basal diet (Maize-Soya based; T0) was same for all the groups with supplementation of rough lemon juice (T1), amla juice (T2) and aloe vera (T3) @ 2% in drinking water. Experiment trial lasted for 42 days during heat stress period (June-July) with minimum THI (78.2) and Maximum THI (88.02). Feed and water were offered ad-libitum throughout the trial. Results revealed significantly higher (P<0.05) body weight in T3 and T2, followed by T1 and least in T0 at 42 days of age. The overall mean of Feed conversion ratio of various treatment T0, T1, T2 andT3 were 2.16, 1.98, 1.89 and 1.82, respectively. The mortality percentage in various treatment, T0, T1, T2 and T3, were 6.67, 3.33, 0.0 and 1.67, respectively. pH value, PCV (%), Sodium (mmol/L) and Potassium (mmol/L) was higher in T3 than rest of the groups. HL ratio is significantly lower (P<0.05) in T3, T2 followed by T1 than T0 at 42 days of age. It may be inferred that amongst these phyto-additives, aloe vera leads in alleviating heat stress in broiler in an economical way, followed by amla and rough lemon.

Keywords: rough lemon, amla, aloe vera, heat stress, broiler

Procedia PDF Downloads 93
23171 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems

Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah

Abstract:

Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.

Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing

Procedia PDF Downloads 337
23170 Estimation of Stress Intensity Factors from near Crack Tip Field

Authors: Zhuang He, Andrei Kotousov

Abstract:

All current experimental methods for determination of stress intensity factors are based on the assumption that the state of stress near the crack tip is plane stress. Therefore, these methods rely on strain and displacement measurements made outside the near crack tip region affected by the three-dimensional effects or by process zone. In this paper, we develop and validate an experimental procedure for the evaluation of stress intensity factors from the measurements of the out-of-plane displacements in the surface area controlled by 3D effects. The evaluation of stress intensity factors is possible when the process zone is sufficiently small, and the displacement field generated by the 3D effects is fully encapsulated by K-dominance region.

Keywords: digital image correlation, stress intensity factors, three-dimensional effects, transverse displacement

Procedia PDF Downloads 615