Search results for: 3D textured model
15353 Optimising the Reservoir Operation Using Water Resources Yield and Planning Model at Inanda Dam, uMngeni Basin
Authors: O. Nkwonta, B. Dzwairo, F. Otieno, J. Adeyemo
Abstract:
The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.Keywords: complex, water resources, planning, cost effective, management
Procedia PDF Downloads 45115352 Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation
Authors: Sung-Min Kim, Joon-Hong Park, Hyuk Choi
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the anti-splash device located under the P/V valve and new concept design models using the CFD. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-splash device is fitted to improve and prevent this problem in the shipbuilding industry, but the oil outflow accidents are still reported by ship owners. Thus, 4 types of new design model are presented by this study, and then comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the anti-splash device. Therefore, the flow and velocity are grasped by transient analysis, and then it decided optimum model and design parameters to develop model. Later, it is needed to develop an anti-splash device by flow test to get certification and verification using experiment equipments.Keywords: anti-splash device, P/V valve, sloshing, CFD
Procedia PDF Downloads 63515351 An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature
Authors: Khaleel Sami Hamdan, Dong-Eok Kim, Sang-Ki Moon
Abstract:
An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.Keywords: break-up, droplet, impact, inclined hot plate, Leidenfrost temperature, LOCA
Procedia PDF Downloads 39915350 A Bayesian Model with Improved Prior in Extreme Value Problems
Authors: Eva L. Sanjuán, Jacinto Martín, M. Isabel Parra, Mario M. Pizarro
Abstract:
In Extreme Value Theory, inference estimation for the parameters of the distribution is made employing a small part of the observation values. When block maxima values are taken, many data are discarded. We developed a new Bayesian inference model to seize all the information provided by the data, introducing informative priors and using the relations between baseline and limit parameters. Firstly, we studied the accuracy of the new model for three baseline distributions that lead to a Gumbel extreme distribution: Exponential, Normal and Gumbel. Secondly, we considered mixtures of Normal variables, to simulate practical situations when data do not adjust to pure distributions, because of perturbations (noise).Keywords: bayesian inference, extreme value theory, Gumbel distribution, highly informative prior
Procedia PDF Downloads 19915349 Strategic Management Model for High Performance Sports Centers
Authors: Jose Ramon Sanabria Navarro, Yahilina Silveira Perez, Valentin Molina Moreno, Digna Dionisia Perez Bravo
Abstract:
The general objective of this research is to conceive a model of strategic direction for Latin American high-performance sports centers for the improvement of their results. The sample is 62 managers, 187 trainers, 2930 athletes and 62 expert researchers from centers in Cuba, Venezuela, Ecuador, Colombia and Argentina, for 3241. The measurement instrument includes 12 key variables in the process of management strategies which are consolidated with the factorial analysis and the ANOVA of a factor through the SPSS 24.0. The reliability of the scale obtained an alpha higher than 0.7 in each sample. In this sense, a model is obtained that taxes the deficiencies detected in the diagnosis, based on the needs of the members of these organizations, considering criteria and theories of the strategic direction in the improvement of the organizational results. The validation of the model for high performance sports centers of the countries analyzed aims to develop joint strategies to generate synergies in their operational mode, which leads to enhance the sports organization.Keywords: sports organization, information management, decision making, control
Procedia PDF Downloads 13215348 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design
Authors: Mohammad Bagher Anvari, Arman Shojaei
Abstract:
Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.Keywords: incremental launching, bridge construction, finite element model, optimization
Procedia PDF Downloads 10415347 Three-Dimensional Numerical Investigation for Reinforced Concrete Slabs with Opening
Authors: Abdelrahman Elsehsah, Hany Madkour, Khalid Farah
Abstract:
This article presents a 3-D modified non-linear elastic model in the strain space. The Helmholtz free energy function is introduced with the existence of a dissipation potential surface in the space of thermodynamic conjugate forces. The constitutive equation and the damage evolution were derived as well. The modified damage has been examined to model the nonlinear behavior of reinforced concrete (RC) slabs with an opening. A parametric study with RC was carried out to investigate the impact of different factors on the behavior of RC slabs. These factors are the opening area, the opening shape, the place of opening, and the thickness of the slabs. And the numerical results have been compared with the experimental data from literature. Finally, the model showed its ability to be applied to the structural analysis of RC slabs.Keywords: damage mechanics, 3-D numerical analysis, RC, slab with opening
Procedia PDF Downloads 17615346 A Strength Weaknesses Opportunities and Threats Analysis of Socialisation Externalisation Combination and Internalisation Modes in Knowledge Management Practice: A Systematic Review of Literature
Authors: Aderonke Olaitan Adesina
Abstract:
Background: The paradigm shift to knowledge, as the key to organizational innovation and competitive advantage, has made the management of knowledge resources in organizations a mandate. A key component of the knowledge management (KM) cycle is knowledge creation, which is researched to be the result of the interaction between explicit and tacit knowledge. An effective knowledge creation process requires the use of the right model. The SECI (Socialisation, Externalisation, Combination, and Internalisation) model, proposed in 1995, is attested to be a preferred model of choice for knowledge creation activities. The model has, however, been criticized by researchers, who raise their concern, especially about its sequential nature. Therefore, this paper reviews extant literature on the practical application of each mode of the SECI model, from 1995 to date, with a view to ascertaining the relevance in modern-day KM practice. The study will establish the trends of use, with regards to the location and industry of use, and the interconnectedness of the modes. The main research question is, for organizational knowledge creation activities, is the SECI model indeed linear and sequential? In other words, does the model need to be reviewed in today’s KM practice? The review will generate a compendium of the usage of the SECI modes and propose a framework of use, based on the strength weaknesses opportunities and threats (SWOT) findings of the study. Method: This study will employ the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to investigate the usage and SWOT of the modes, in order to ascertain the success, or otherwise, of the sequential application of the modes in practice from 1995 to 2019. To achieve the purpose, four databases will be explored to search for open access, peer-reviewed articles from 1995 to 2019. The year 1995 is chosen as the baseline because it was the year the first paper on the SECI model was published. The study will appraise relevant peer-reviewed articles under the search terms: SECI (or its synonym, knowledge creation theory), socialization, externalization, combination, and internalization in the title, abstract, or keywords list. This review will include only empirical studies of knowledge management initiatives in which the SECI model and its modes were used. Findings: It is expected that the study will highlight the practical relevance of each mode of the SECI model, the linearity or not of the model, the SWOT in each mode. Concluding Statement: Organisations can, from the analysis, determine the modes of emphasis for their knowledge creation activities. It is expected that the study will support decision making in the choice of the SECI model as a strategy for the management of organizational knowledge resources, and in appropriating the SECI model, or its remodeled version, as a theoretical framework in future KM research.Keywords: combination, externalisation, internalisation, knowledge management, SECI model, socialisation
Procedia PDF Downloads 35815345 Agent/Group/Role Organizational Model to Simulate an Industrial Control System
Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua
Abstract:
The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.Keywords: complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT
Procedia PDF Downloads 24015344 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 17215343 A Process Model for Online Trip Reservation System
Authors: Sh. Wafa, M. Alanoud, S. Liyakathunisa
Abstract:
Online booking for a trip or hotel has become an indispensable traveling tool today, people tend to be more interested in selecting air flight travel as their first choice when going for a long trip. People's shopping behavior has greatly changed by the advent of social network. Traditional ticket booking methods are considered as outdated with the advancement in tools and technology. Web based booking framework is an 'absolute necessity to have' for any visit or movement business that is investing heaps of energy noting telephone calls, sending messages or considering employing more staff. In this paper, we propose a process model for online trip reservation for our designed web application. Our proposed system will be highly beneficial and helps in reduction in time and cost for customers.Keywords: trip, hotel, reservation, process model, time, cost, web app
Procedia PDF Downloads 21715342 Effect of White Roofing on Refrigerated Buildings
Authors: Samuel Matylewicz, K. W. Goossen
Abstract:
The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes
Procedia PDF Downloads 13015341 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency
Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo
Abstract:
The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.Keywords: energy-efficient, fog computing, IoT, telehealth
Procedia PDF Downloads 7915340 Mathematical Modeling of District Cooling Systems
Authors: Dana Alghool, Tarek ElMekkawy, Mohamed Haouari, Adel Elomari
Abstract:
District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed.Keywords: Annual Cooling Demand, Compression Chiller, Mathematical Modeling, District Cooling Systems, Optimization
Procedia PDF Downloads 20215339 Optimised Path Recommendation for a Real Time Process
Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa
Abstract:
Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model
Procedia PDF Downloads 33515338 Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock
Authors: Tumisang Seodigeng, Hilary Rutto
Abstract:
In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor.Keywords: Biogas, kinetics, DynoChem Scale-up, Michaelis-Menten
Procedia PDF Downloads 49715337 Implementation of a Non-Poissonian Model in a Low-Seismicity Area
Authors: Ludivine Saint-Mard, Masato Nakajima, Gloria Senfaute
Abstract:
In areas with low to moderate seismicity, the probabilistic seismic hazard analysis frequently uses a Poisson approach, which assumes independence in time and space of events to determine the annual probability of earthquake occurrence. Nevertheless, in countries with high seismic rate, such as Japan, it is frequently use non-poissonian model which assumes that next earthquake occurrence depends on the date of previous one. The objective of this paper is to apply a non-poissonian models in a region of low to moderate seismicity to get a feedback on the following questions: can we overcome the lack of data to determine some key parameters?, and can we deal with uncertainties to apply largely this methodology on an industrial context?. The Brownian-Passage-Time model was applied to a fault located in France and conclude that even if the lack of data can be overcome with some calculations, the amount of uncertainties and number of scenarios leads to a numerous branches in PSHA, making this method difficult to apply on a large scale of low to moderate seismicity areas and in an industrial context.Keywords: probabilistic seismic hazard, non-poissonian model, earthquake occurrence, low seismicity
Procedia PDF Downloads 6515336 Model-Based Approach as Support for Product Industrialization: Application to an Optical Sensor
Authors: Frederic Schenker, Jonathan J. Hendriks, Gianluca Nicchiotti
Abstract:
In a product industrialization perspective, the end-product shall always be at the peak of technological advancement and developed in the shortest time possible. Thus, the constant growth of complexity and a shorter time-to-market calls for important changes on both the technical and business level. Undeniably, the common understanding of the system is beclouded by its complexity which leads to the communication gap between the engineers and the sale department. This communication link is therefore important to maintain and increase the information exchange between departments to ensure a punctual and flawless delivery to the end customer. This evolution brings engineers to reason with more hindsight and plan ahead. In this sense, they use new viewpoints to represent the data and to express the model deliverables in an understandable way that the different stakeholder may identify their needs and ideas. This article focuses on the usage of Model-Based System Engineering (MBSE) in a perspective of system industrialization and reconnect the engineering with the sales team. The modeling method used and presented in this paper concentrates on displaying as closely as possible the needs of the customer. Firstly, by providing a technical solution to the sales team to help them elaborate commercial offers without omitting technicalities. Secondly, the model simulates between a vast number of possibilities across a wide range of components. It becomes a dynamic tool for powerful analysis and optimizations. Thus, the model is no longer a technical tool for the engineers, but a way to maintain and solidify the communication between departments using different views of the model. The MBSE contribution to cost optimization during New Product Introduction (NPI) activities is made explicit through the illustration of a case study describing the support provided by system models to architectural choices during the industrialization of a novel optical sensor.Keywords: analytical model, architecture comparison, MBSE, product industrialization, SysML, system thinking
Procedia PDF Downloads 16115335 A Domain Specific Modeling Language Semantic Model for Artefact Orientation
Authors: Bunakiye R. Japheth, Ogude U. Cyril
Abstract:
Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.Keywords: control process, metrics of engineering, structured abstraction, semantic model
Procedia PDF Downloads 14315334 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment
Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali
Abstract:
This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets
Procedia PDF Downloads 21515333 A Quasi-Experimental Study of the Impact of 5Es Instructional Model on Students' Mathematics Achievement in Northern Province, Rwanda
Authors: Emmanuel Iyamuremye, Jean François Maniriho, Irenee Ndayambaje
Abstract:
Mathematics is the foundational enabling discipline that underpins science, technology, and engineering disciplines. Science, technology, engineering, and mathematics (STEM) subjects are foreseen as the engine for socio-economic transformation. Rwanda has done reforms in education aiming at empowering and preparing students for the real world job by providing career pathways in science, technology, engineering, and mathematics related fields. While that considered so, the performance in mathematics has remained deplorable in both formative and national examinations. Therefore, this paper aims at exploring the extent to which the engage, explore, explain, elaborate and evaluate (5Es) instructional model contributing towards students’ achievement in mathematics. The present study adopted the pre-test, post-test non-equivalent control group quasi-experimental design. The 5Es instructional model was applied to the experimental group while the control group received instruction with the conventional teaching method for eight weeks. One research-made instrument, mathematics achievement test (MAT), was used for data collection. A pre-test was given to students before the intervention to make sure that both groups have equivalent characteristics. At the end of the experimental period, the two groups have undergone a post-test to ascertain the contribution of the 5Es instructional model. Descriptive statistics and analysis of covariance (ANCOVA) were used for the analysis of the study. For determining the improvement in mathematics, Hakes methods of calculating gain were used to analyze the pre-test and post-test scores. Results showed that students exposed to 5Es instructional model achieved significantly better performance in mathematics than students instructed using the conventional teaching method. It was also found that 5Es instructional model made lessons more interesting, easy and created friendship among students. Thus, 5Es instructional model was recommended to be adopted as a close substitute to the conventional teaching method in teaching mathematics in lower secondary schools in Rwanda.Keywords: 5Es instructional model, achievement, conventional teaching method, mathematics
Procedia PDF Downloads 10415332 The Optimal Order Policy for the Newsvendor Model under Worker Learning
Authors: Sunantha Teyarachakul
Abstract:
We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.Keywords: inventory management, Newsvendor model, order policy, worker learning
Procedia PDF Downloads 41715331 A Bayesian Hierarchical Poisson Model with an Underlying Cluster Structure for the Analysis of Measles in Colombia
Authors: Ana Corberan-Vallet, Karen C. Florez, Ingrid C. Marino, Jose D. Bermudez
Abstract:
In 2016, the Region of the Americas was declared free of measles, a viral disease that can cause severe health problems. However, since 2017, measles has reemerged in Venezuela and has subsequently reached neighboring countries. In 2018, twelve American countries reported confirmed cases of measles. Governmental and health authorities in Colombia, a country that shares the longest land boundary with Venezuela, are aware of the need for a strong response to restrict the expanse of the epidemic. In this work, we apply a Bayesian hierarchical Poisson model with an underlying cluster structure to describe disease incidence in Colombia. Concretely, the proposed methodology provides relative risk estimates at the department level and identifies clusters of disease, which facilitates the implementation of targeted public health interventions. Socio-demographic factors, such as the percentage of migrants, gross domestic product, and entry routes, are included in the model to better describe the incidence of disease. Since the model does not impose any spatial correlation at any level of the model hierarchy, it avoids the spatial confounding problem and provides a suitable framework to estimate the fixed-effect coefficients associated with spatially-structured covariates.Keywords: Bayesian analysis, cluster identification, disease mapping, risk estimation
Procedia PDF Downloads 15315330 Effects of Active Muscle Contraction in a Car Occupant in Whiplash Injury
Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert
Abstract:
Whiplash Injuries are usually associated with car accidents. The sudden forward or backward jerk to head causes neck strain, which is the result of damage to the muscle or tendons. Neck pain and headaches are the two most common symptoms of whiplash. Symptoms of whiplash are commonly reported in studies but the Injury mechanism is poorly understood. Neck muscles are the most important factor to study the neck Injury. This study focuses on the development of finite element (FE) model of human neck muscle to study the whiplash injury mechanism and effect of active muscle contraction on occupant kinematics. A detailed study of Injury mechanism will promote development and evaluation of new safety systems in cars, hence reducing the occurrence of severe injuries to the occupant. In present study, an active human finite element (FE) model with 3D neck muscle model is developed. Neck muscle was modeled with a combination of solid tetrahedral elements and 1D beam elements. Muscle active properties were represented by beam elements whereas, passive properties by solid tetrahedral elements. To generate muscular force according to inputted activation levels, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Material properties were assigned from published experimental tests. Some important muscles were then inserted into THUMS (Total Human Model for Safety) 50th percentile male pedestrian model. To reduce the simulation time required, THUMS lower body parts were not included. Posterior to muscle insertion, THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.Keywords: finite element model, muscle activation, neck muscle, whiplash injury prevention
Procedia PDF Downloads 35715329 Influence of a Company’s Dynamic Capabilities on Its Innovation Capabilities
Authors: Lovorka Galetic, Zeljko Vukelic
Abstract:
The advanced concepts of strategic and innovation management in the sphere of company dynamic and innovation capabilities, and achieving their mutual alignment and a synergy effect, are important elements in business today. This paper analyses the theory and empirically investigates the influence of a company’s dynamic capabilities on its innovation capabilities. A new multidimensional model of dynamic capabilities is presented, consisting of five factors appropriate to real time requirements, while innovation capabilities are considered pursuant to the official OECD and Eurostat standards. After examination of dynamic and innovation capabilities indicated their theoretical links, the empirical study testing the model and examining the influence of a company’s dynamic capabilities on its innovation capabilities showed significant results. In the study, a research model was posed to relate company dynamic and innovation capabilities. One side of the model features the variables that are the determinants of dynamic capabilities defined through their factors, while the other side features the determinants of innovation capabilities pursuant to the official standards. With regard to the research model, five hypotheses were set. The study was performed in late 2014 on a representative sample of large and very large Croatian enterprises with a minimum of 250 employees. The research instrument was a questionnaire administered to company top management. For both variables, the position of the company was tested in comparison to industry competitors, on a fivepoint scale. In order to test the hypotheses, correlation tests were performed to determine whether there is a correlation between each individual factor of company dynamic capabilities with the existence of its innovation capabilities, in line with the research model. The results indicate a strong correlation between a company’s possession of dynamic capabilities in terms of their factors, due to the new multi-dimensional model presented in this paper, with its possession of innovation capabilities. Based on the results, all five hypotheses were accepted. Ultimately, it was concluded that there is a strong association between the dynamic and innovation capabilities of a company.Keywords: dynamic capabilities, innovation capabilities, competitive advantage, business results
Procedia PDF Downloads 30615328 Machine Learning Methods for Flood Hazard Mapping
Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto
Abstract:
This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia PDF Downloads 18115327 Using SNAP and RADTRAD to Establish the Analysis Model for Maanshan PWR Plant
Authors: J. R. Wang, H. C. Chen, C. Shih, S. W. Chen, J. H. Yang, Y. Chiang
Abstract:
In this study, we focus on the establishment of the analysis model for Maanshan PWR nuclear power plant (NPP) by using RADTRAD and SNAP codes with the FSAR, manuals, and other data. In order to evaluate the cumulative dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) outer boundary, Maanshan NPP RADTRAD/SNAP model was used to perform the analysis of the DBA LOCA case. The analysis results of RADTRAD were similar to FSAR data. These analysis results were lower than the failure criteria of 10 CFR 100.11 (a total radiation dose to the whole body, 250 mSv; a total radiation dose to the thyroid from iodine exposure, 3000 mSv).Keywords: RADionuclide, transport, removal, and dose estimation (RADTRAD), symbolic nuclear analysis package (SNAP), dose, PWR
Procedia PDF Downloads 46515326 Mathematical Modeling of Drip Emitter Discharge of Trapezoidal Labyrinth Channel
Authors: N. Philipova
Abstract:
The influence of the geometric parameters of trapezoidal labyrinth channel on the emitter discharge is investigated in this work. The impact of the dentate angle, the dentate spacing, and the dentate height are studied among the geometric parameters of the labyrinth channel. Numerical simulations of the water flow movement are performed according to central cubic composite design using Commercial codes GAMBIT and FLUENT. Inlet pressure of the dripper is set up to be 1 bar. The objective of this paper is to derive a mathematical model of the emitter discharge depending on the dentate angle, the dentate spacing, the dentate height of the labyrinth channel. As a result, the obtained mathematical model is a second-order polynomial reporting 2-way interactions among the geometric parameters. The dentate spacing has the most important and positive influence on the emitter discharge, followed by the simultaneous impact of the dentate spacing and the dentate height. The dentate angle in the observed interval has no significant effect on the emitter discharge. The obtained model can be used as a basis for a future emitter design.Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model.
Procedia PDF Downloads 18515325 Multiscale Cohesive Zone Modeling of Composite Microstructure
Authors: Vincent Iacobellis, Kamran Behdinan
Abstract:
A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling
Procedia PDF Downloads 48815324 Positive Obligations of the State Concerning the Protection of Human Rights
Authors: Monika Florczak-Wator
Abstract:
The model of positive obligations of the state concerning the protection of the rights of an individual was created within the jurisdiction of the German Federal Constitutional Court in the 1970s. That model assumes that the state should protect an individual against infringement of their fundamental rights by another individual. It is based on the idea concerning the modification of the function and duties of the state towards an individual and society. Initially the state was perceived as the main infringer of the fundamental rights of an individual formulating the individual’s obligations of negative nature (obligation of noninterference), however, at present the state is perceived as a guarantor and protector of the fundamental rights of an individual of positive nature (obligation of protection). Examination of the chosen judicial decisions of that court will enable us to determine what the obligation of protection is specifically about, when it is updated and whether it is accompanied by claims of an individual requesting the state to take actions protecting their fundamental rights against infringement by the private entities. The comparative perspective for the German model of positive obligations of the state will be an analogous model present in the jurisdiction of the European Court of Human Rights. It is justified to include it in the research as the Convention, similarly to the constitution, focuses on the protection of an individual against the infringement of their rights by the state and both models have been developed within the jurisdiction for several dozens of years. Analysis of the provisions of the Constitution of the Republic of Poland as well as judgements of the Polish Constitutional Tribunal will allow for the presentation of the application the model of the protective duties of the state in Poland.Keywords: human rights, horizontal relationships, constitution, state protection
Procedia PDF Downloads 484