Search results for: system accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20328

Search results for: system accuracy

18828 The Direct Deconvolutional Model in the Large-Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

The utilization of Large Eddy Simulation (LES) has been extensive in turbulence research. LES concentrates on resolving the significant grid-scale motions while representing smaller scales through subfilter-scale (SFS) models. The deconvolution model, among the available SFS models, has proven successful in LES of engineering and geophysical flows. Nevertheless, the thorough investigation of how sub-filter scale dynamics and filter anisotropy affect SFS modeling accuracy remains lacking. The outcomes of LES are significantly influenced by filter selection and grid anisotropy, factors that have not been adequately addressed in earlier studies. This study examines two crucial aspects of LES: Firstly, the accuracy of direct deconvolution models (DDM) is evaluated concerning sub-filter scale (SFS) dynamics across varying filter-to-grid ratios (FGR) in isotropic turbulence. Various invertible filters are employed, including Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The importance of FGR becomes evident as it plays a critical role in controlling errors for precise SFS stress prediction. When FGR is set to 1, the DDM models struggle to faithfully reconstruct SFS stress due to inadequate resolution of SFS dynamics. Notably, prediction accuracy improves when FGR is set to 2, leading to accurate reconstruction of SFS stress, except for cases involving Helmholtz I and II filters. Remarkably high precision, nearly 100%, is achieved at an FGR of 4 for all DDM models. Furthermore, the study extends to filter anisotropy and its impact on SFS dynamics and LES accuracy. By utilizing the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with anisotropic filters, aspect ratios (AR) ranging from 1 to 16 are examined in LES filters. The results emphasize the DDM’s proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. Notably high correlation coefficients exceeding 90% are observed in the a priori study for the DDM’s reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as filter anisotropy increases. In the a posteriori analysis, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, including velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strainrate tensors, and SFS stress. It is evident that as filter anisotropy intensifies, the results of DSM and DMM deteriorate, while the DDM consistently delivers satisfactory outcomes across all filter-anisotropy scenarios. These findings underscore the potential of the DDM framework as a valuable tool for advancing the development of sophisticated SFS models for LES in turbulence research.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 77
18827 Development of a Web Exploration Support System Focusing on Accumulation of Search Contexts

Authors: T. Yamazaki, R. Onuma, H. Kaminaga, Y. Miyadera, S. Nakamura

Abstract:

Web exploration has increasingly diversified in accordance with the development of browsing environments on the Internet. Moreover, advanced exploration often conducted in intellectual activities such as surveys in research activities. This kind of exploration is conducted for a long period with trials and errors. In such a case, it is extremely important for a user to accumulate the search contexts and understand them. However, existing support systems were not effective enough since most systems could not handle the various factors involved in the exploration. This research aims to develop a novel system to support web exploration focusing on the accumulation of the search contexts. This paper mainly describes the outline of the system. An experiment using the system is also described. Finally, features of the system are discussed based on the results.

Keywords: web exploration context, refinement of search intention, accumulation of context, exploration support, information visualization

Procedia PDF Downloads 309
18826 Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique

Authors: Manoj Gupta, Nirmendra Singh Bhadauria

Abstract:

Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR.

Keywords: image fusion, DWT, DT-CWT, PSNR, average image fusion, hybrid image fusion

Procedia PDF Downloads 607
18825 Unified Theory of Acceptance and Use of Technology in Evaluating Voters' Intention Towards the Adoption of Electronic Forensic Election Audit System

Authors: Sijuade A. A., Oguntoye J. P., Awodoye O. O., Adedapo O. A., Wahab W. B., Okediran O. O., Omidiora E. O., Olabiyisi S. O.

Abstract:

Electronic voting systems have been introduced to improve the efficiency, accuracy, and transparency of the election process in many countries around the world, including Nigeria. However, concerns have been raised about the security and integrity of these systems. One way to address these concerns is through the implementation of electronic forensic election audit systems. This study aims to evaluate voters' intention to the adoption of electronic forensic election audit systems using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. In the study, the UTAUT model which is a widely used model in the field of information systems to explain the factors that influence individuals' intention to use a technology by integrating performance expectancy, effort expectancy, social influence, facilitating conditions, cost factor and privacy factor to voters’ behavioural intention was proposed. A total of 294 sample data were collected from a selected population of electorates who had at one time or the other participated in at least an electioneering process in Nigeria. The data was then analyzed statistically using Partial Least Square Structural Equation Modeling (PLS-SEM). The results obtained show that all variables have a significant effect on the electorates’ behavioral intention to adopt the development and implementation of an electronic forensic election audit system in Nigeria.

Keywords: election Audi, voters, UTAUT, performance expectancy, effort expectancy, social influence, facilitating condition social influence, facilitating conditions, cost factor, privacy factor, behavioural intention

Procedia PDF Downloads 74
18824 Optimizing Availability of Marine Knowledge Repository with Cloud-Based Framework

Authors: Ahmad S. Mohd Noor, Emma A. Sirajudin, Nur F. Mat Zain

Abstract:

Reliability is an important property for knowledge repository system. National Marine Bioinformatics System or NABTICS is a marine knowledge repository portal aimed to provide a baseline for marine biodiversity and a tool for researchers and developers. It is intended to be a large and growing online database and also a metadata system for inputs of research analysis. The trends of present large distributed systems such as Cloud computing are the delivery of computing as a service rather than a product. The goal of this research is to make NABTICS a system of greater availability by integrating it with Cloud based Neighbor Replication and Failure Recovery (NRFR). This can be achieved by implementation of NABTICS into distributed environment. As a result, the user can experience minimum downtime while using the system should the server is having a failure. Consequently the online database application is said to be highly available.

Keywords: cloud, availability, distributed system, marine repository, database replication

Procedia PDF Downloads 472
18823 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: reliability, optimization, meta-heuristic, genetic algorithm, redundancy

Procedia PDF Downloads 338
18822 Semantic Based Analysis in Complaint Management System with Analytics

Authors: Francis Alterado, Jennifer Enriquez

Abstract:

Semantic Based Analysis in Complaint Management System with Analytics is an enhanced tool of providing complaints by the clients as well as a mechanism for Palawan Polytechnic College to gather, process, and monitor status of these complaints. The study has a mobile application that serves as a remote facility of communication between the students and the school management on the issues encountered by the student and the solution of every complaint received. In processing the complaints, text mining and clustering algorithms were utilized. Every module of the systems was tested and based on the results; these are 100% free from error before integration was done. A system testing was also done by checking the expected functionality of the system which was 100% functional. The system was tested by 10 students by forwarding complaints to 10 departments. Based on results, the students were able to submit complaints, the system was able to process accordingly by identifying to which department the complaints are intended, and the concerned department was able to give feedback on the complaint received to the student. With this, the system gained 4.7 rating which means Excellent.

Keywords: technology adoption, emerging technology, issues challenges, algorithm, text mining, mobile technology

Procedia PDF Downloads 200
18821 Construction of a Low Carbon Eco-City Index System Based on CAS Theory: A Case of Hexi Newtown in Nanjing, China

Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun

Abstract:

The practice of urban planning and construction based on the concept of the “low carbon eco-city” has been universally accepted by the academic community in response to urban issues such as population, resources, environment, and social development. Based on this, the current article first analyzes the concepts of low carbon eco-city, then builds a complex adaptive system (CAS) theory based on Chinese traditional philosophical thinking, and analyzes the adaptive relationship between material and non-material elements. A three-dimensional evaluation model of natural ecology, economic low carbon, and social harmony was constructed. Finally, the construction of a low carbon eco-city index system in Hexi Newtown of Nanjing was used as an example to verify the effectiveness of the research results; this paradigm provides a new way to achieve a low carbon eco-city system.

Keywords: complex adaptive system, low carbon ecology, index system, model

Procedia PDF Downloads 155
18820 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: national development, granite, profitability assessment, ANN models

Procedia PDF Downloads 102
18819 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 97
18818 Green Logistics Management and Performance for Thailand’s Logistic Enterprises

Authors: Kittipong Tissayakorn, Fumio Akagi, Yu Song

Abstract:

Logistics is the integrated management of all of the activities required to move products through the supply chain. For a typical product, this supply chain extends from a raw material source through the production and distribution system to the point of consumption and the associated reverse logistics. The logistical activities are comprised of freight transport, storage, inventory management, materials handling and all related information processing. This paper analyzes the green management system of logistics enterprise for Thailand and advances the concept of Green Logistics, which should be held by the public. In addition, it proposes that the government should strengthen its supervision and support for green logistics, and companies should construct self-disciplined green logistics management systems and corresponding processes, a reverse logistics management system and a modern green logistics information collection and management system.

Keywords: logistics, green logistics, management system, ecological economics

Procedia PDF Downloads 408
18817 Control of Photovoltaic System Interfacing Grid

Authors: Zerzouri Nora

Abstract:

In this paper, author presented the generalities of a photovoltaic system study and simulation. Author inserted the DC-DC converter to raise the voltage level and improve the operation of the PV panel by continuing the operating point at maximum power by using the Perturb and Observe technique (P&O). The connection to the network is made by inserting a three-phase voltage inverter allowing synchronization with the network the inverter is controlled by a PWM control. The simulation results allow the author to visualize the operation of the different components of the system, as well as the behavior of the system during the variation of meteorological values.

Keywords: photovoltaic generator PV, boost converter, P&O MPPT, PWM inverter, three phase grid

Procedia PDF Downloads 122
18816 An Integrated Architecture of E-Learning System to Digitize the Learning Method

Authors: M. Touhidul Islam Sarker, Mohammod Abul Kashem

Abstract:

The purpose of this paper is to improve the e-learning system and digitize the learning method in the educational sector. The learner will login into e-learning platform and easily access the digital content, the content can be downloaded and take an assessment for evaluation. Learner can get access to these digital resources by using tablet, computer, and smart phone also. E-learning system can be defined as teaching and learning with the help of multimedia technologies and the internet by access to digital content. E-learning replacing the traditional education system through information and communication technology-based learning. This paper has designed and implemented integrated e-learning system architecture with University Management System. Moodle (Modular Object-Oriented Dynamic Learning Environment) is the best e-learning system, but the problem of Moodle has no school or university management system. In this research, we have not considered the school’s student because they are out of internet facilities. That’s why we considered the university students because they have the internet access and used technologies. The University Management System has different types of activities such as student registration, account management, teacher information, semester registration, staff information, etc. If we integrated these types of activity or module with Moodle, then we can overcome the problem of Moodle, and it will enhance the e-learning system architecture which makes effective use of technology. This architecture will give the learner to easily access the resources of e-learning platform anytime or anywhere which digitizes the learning method.

Keywords: database, e-learning, LMS, Moodle

Procedia PDF Downloads 189
18815 A New Approach to the Digital Implementation of Analog Controllers for a Power System Control

Authors: G. Shabib, Esam H. Abd-Elhameed, G. Magdy

Abstract:

In this paper, a comparison of discrete time PID, PSS controllers is presented through small signal stability of power system comprising of one machine connected to infinite bus system. This comparison achieved by using a new approach of discretization which converts the S-domain model of analog controllers to a Z-domain model to enhance the damping of a single machine power system. The new method utilizes the Plant Input Mapping (PIM) algorithm. The proposed algorithm is stable for any sampling rate, as well as it takes the closed loop characteristic into consideration. On the other hand, the traditional discretization methods such as Tustin’s method is produce satisfactory results only; when the sampling period is sufficiently low.

Keywords: PSS, power system stabilizer PID, proportional-integral-derivative PIM, plant input mapping

Procedia PDF Downloads 508
18814 Policy and System Research for Health of Ageing Population

Authors: Sehrish Ather

Abstract:

Introduction: To improve organizational achievements through the production of new knowledge, health policy and system research is the basic requirement. An aging population is always the source of the increased burden of chronic diseases, disabilities, mental illnesses, and other co-morbidities; therefore the provision of quality health care services to every group of the population should be achieved by making strong policy and system research for the betterment of health care system. Unfortunately, the whole world is lacking policies and system research for providing health care to their elderly population. Materials and Methods: A literature review of published studies on aging diseases was done, ranging from the year 2011-2018. Geriatric, population, health policy, system, and research were the key terms used for the search. Databases searched were Google Scholar, PubMed, Science Direct, Ovid, and Research Gate. Grey literature was searched from various websites, including IHME, Library of the University of Lahore, World Health Organization (Ageing and Life Course), and Personal communication with Neuro-physicians. After careful reviewing published and un-published information, it was decided to carry on with commentary. Results and discussion: Most of the published studies have highlighted the need to advocate the funders of health policy and stakeholders of healthcare system research, and it was detected as a major issue, research on policy and healthcare system to provide health care to 'geriatric population' was found as highly neglected area. Conclusion: It is concluded that physicians are more involved with the policy and system research regarding any type of diseases, but scientists and researchers of basic and social science are less likely to be involved in methods used for health policy and system research due to lack of funding and resources. Therefore ageing diseases should be considered as a priority, and comprehensive policy and system research should be initiated for diseases of the geriatric population.

Keywords: geriatric population, health care system, health policy, system research

Procedia PDF Downloads 110
18813 Sliding Mode Control of a Bus Suspension System

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.

Keywords: active suspension system, air suspension, bus model, sliding mode control

Procedia PDF Downloads 389
18812 RoboWeedSupport-Semi-Automated Unmanned Aerial System for Cost Efficient High Resolution in Sub-Millimeter Scale Acquisition of Weed Images

Authors: Simon L. Madsen, Mads Dyrmann, Morten S. Laursen, Rasmus N. Jørgensen

Abstract:

Recent advances in the Unmanned Aerial System (UAS) safety and perception systems enable safe low altitude autonomous terrain following flights recently demonstrated by the consumer DJI Mavic PRO and Phamtom 4 Pro drones. This paper presents the first prototype system utilizing this functionality in form of semi-automated UAS based collection of crop/weed images where the embedded perception system ensures a significantly safer and faster gathering of weed images with sub-millimeter resolution. The system is to be used when the weeds are at cotyledon stage and prior to the harvest recognizing the grass weed species, which cannot be discriminated at the cotyledon stage.

Keywords: weed mapping, UAV, DJI SDK, automation, cotyledon plants

Procedia PDF Downloads 310
18811 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 212
18810 Cognition of Driving Context for Driving Assistance

Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif

Abstract:

In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.

Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning

Procedia PDF Downloads 370
18809 Decision Support System for Tourism in Northern Part of Thailand

Authors: Katejarinporn Chaiya, Thawit Janbanklong

Abstract:

The purposes of this study were to design and find users’ satisfaction after using the decision support system for tourism in the Northern part of Thailand, which can provide tourists with touristic information and plan their personal voyage. Such information can be retrieved systematically based on personal budget and provinces. The samples of this study were five experts and users: 30 "white collars" in Bangkok. This decision support system was designed via ASP.NET. Its database was developed by using MySQL, for administrators to effectively manage the database. The application outcome revealed that the innovation works properly as sought in objectives. Specialists and white collars in Bangkok have evaluated the decision support system; the result was satisfactorily positive.

Keywords: decision Support System, ASP.NET, MySQL, white collars

Procedia PDF Downloads 360
18808 An Approach to Manage and Evaluate Asset Performance

Authors: Mohammed Saif Al-Saidi, John P. T. Mo

Abstract:

Modern engineering assets are complex and very high in value. They are expected to function for years to come, with ability to handle the change in technology and ageing modification. The aging of an engineering asset and continues increase of vendors and contractors numbers forces the asset operation management (or Owner) to design an asset system which can capture these changes. Furthermore, an accurate performance measurement and risk evaluation processes are highly needed. Therefore, this paper explores the nature of the asset management system performance evaluation for an engineering asset based on the System Support Engineering (SSE) principles. The research work explores the asset support system from a range of perspectives, interviewing managers from across a refinery organisation. The factors contributing to complexity of an asset management system are described in context which clusters them into several key areas. It is proposed that SSE framework may then be used as a tool for analysis and management of asset. The paper will conclude with discussion of potential application of the framework and opportunities for future research.

Keywords: asset management, performance, evaluation, modern engineering, System Support Engineering (SSE)

Procedia PDF Downloads 681
18807 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT

Procedia PDF Downloads 278
18806 Copper Coil Heat Exchanger Performance for Greenhouse Heating: An Experimental and Theoretical Study

Authors: Maha Bakkari, R.Tadili

Abstract:

The present work is a study of the performance of a solar copper coil heating system in a greenhouse microclimate. Our system is based on the circulation of a Heat transfer fluid, which is water in our case, in a closed loop under the greenhouse's roof in order to store heat all day, and then this heat will supply the greenhouse during the night. In order to evaluate our greenhouse, we made an experimental study in two identical greenhouses, where the first one is equipped with a heating system and the second (without heating) is used for control. The heating system allows the establishment of the thermal balance and determines the mass of water necessary for the process in order to ensure its functioning during the night. The results obtained showed that this solar heating system and the climatic parameters inside the experimental greenhouse were improved, and it presents a significant gain compared to a controlled greenhouse without a heating system. This research is one of the solutions that help to reduce the greenhouse effect of the planet Earth, a problem that worries the world.

Keywords: solar energy, energy storage, greenhouse, environment

Procedia PDF Downloads 82
18805 Transmission Design That Eliminates Gradual System Problems in Gearboxes

Authors: Ömer Ateş, Atilla Savaş

Abstract:

Reducers and transmission systems are power and speed transfer tools that have been used for many years in the technology world and in all engineering fields. Since today's transmissions have a threaded tap system, torque interruption occurs during tap change. besides, breakdown and manufacturing costs are high. Another problem is the limited torque and rpm setting in stepped gearbox systems. In this study, a new type of transmission system is designed to solve these problems. This new type of transmission system has been called the Continuously Variable Pulley. The most important feature of the transmission system in the study is that it can be adjusted Revolutions Per Minute-wise and torque-wise at the millimeter (precision) adjustment level. In order to make adjustments at this level, an adjustable pulley with the help of hydraulic piston is designed. The efficiency of the designed transmission system is 97 percent, the efficiency of today's transmissions is in the range of 85-95 percent. examined at the analysis and calculations, it is seen that the designed system gives realistic results and can be compared with today's transmissions and reducers. Therefore, this new type of transmission has been proven to be usable in production areas and the world of technology.

Keywords: gearbox, reducer, transmission, torque

Procedia PDF Downloads 122
18804 Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area

Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom

Abstract:

Nowadays the promotion of the public transportation system in the Bangkok Metropolitan Area is increased such as the “Free Bus for Thai Citizen” Campaign and the prospect of the several MRT routes to increase the convenient and comfortable to the Bangkok Metropolitan area citizens. But citizens do not make full use of them it because the citizens are lack of the data and information and also the confident to the public transportation system of Thailand especially in the time and safety aspects. This research is the Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area by focusing on buses, BTS and MRT schedules/routes to give the most information to passengers. They can choose the way and the routes easily by using Dijkstra STAR Algorithm of Graph Theory which also shows the fare of the trip. This Application was evaluated by 30 normal users to find the mean and standard deviation of the developed system. Results of the evaluation showed that system is at a good level of satisfaction (4.20 and 0.40). From these results we can conclude that the system can be used properly and effectively according to the objective.

Keywords: Dijkstra algorithm, graph theory, public transport, Bangkok metropolitan area

Procedia PDF Downloads 249
18803 Detecting and Thwarting Interest Flooding Attack in Information Centric Network

Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S

Abstract:

Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.

Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy

Procedia PDF Downloads 209
18802 Kinetic Aspect Investigation of Chitosan / Nanohydroxyapatite / Na ₂CO₃ Gel System

Authors: P. S. D. Perera, S. U. Adikary

Abstract:

The gelation behavior of Chitosan/nanohydroxyapatite sol in the presence of a crosslinking agent Na ₂CO₃ was investigated experimentally. In this case, the gelation time(tgel) was determined by the rheological measurements of the final mixture. The tgel has been determined from dynamic viscosity slope experiments. We found that chitosan/nHA sol with 1% nano-hydroxyapatite and 1.6% Na2CO3 required coagulant performance. Hence Na ₂CO₃ and nanohydroxyapatite concentrations remain constant over the experiment. The order of reaction was first order with respect to chitosan and rate constant of the gel system was 9.0 x 10-4 s-1, respectively, depending on the temperature of the system. The gelation temperature was carried out at 37 ⁰C.

Keywords: kinetics, gelation, sol-gel system, chitosan/ nHA/ Na ₂CO₃ composite

Procedia PDF Downloads 168
18801 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 270
18800 Integrating Technology in Teaching and Learning Mathematics

Authors: Larry Wang

Abstract:

The aim of this paper is to demonstrate how an online homework system is integrated in teaching and learning mathematics and how it improves the student success rates in some gateway mathematics courses. WeBWork provided by the Mathematical Association of America is adopted as the online homework system. During the period of 2010-2015, the system was implemented in classes of precalculus, calculus, probability and statistics, discrete mathematics, linear algebra, and differential equations. As a result, the passing rates of the sections with WeBWork are well above other sections without WeBWork (about 7-10% higher). The paper also shows how the WeBWork system was used.

Keywords: gateway mathematics, online grading, pass rate, WeBWorK

Procedia PDF Downloads 299
18799 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics

Authors: Eugene Y. C. Wong

Abstract:

The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.

Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics

Procedia PDF Downloads 376