Search results for: slice thickness accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5256

Search results for: slice thickness accuracy

3756 Ultraviolet Lasing from Vertically-Aligned ZnO Nanowall Array

Authors: Masahiro Takahashi, Kosuke Harada, Shihomi Nakao, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada

Abstract:

Zinc oxide (ZnO) is one of the light emitting materials in ultraviolet (UV) region. In addition, ZnO nanostructures are also attracting increasing research interest as building blocks for UV optoelectronic applications. We have succeeded in synthesizing vertically-aligned ZnO nanostructures by laser interference patterning, which is catalyst-free and non-contact technique. In this study, vertically-aligned ZnO nanowall arrays were synthesized using two-beam interference. The maximum height and average thickness of the ZnO nanowalls were about 4.5 µm and 200 nm, respectively. UV lasing from a piece of the ZnO nanowall was obtained under the third harmonic of a Q-switched Nd:YAG laser excitation, and the estimated threshold power density for lasing was about 150 kW/cm2. Furthermore, UV lasing from the vertically-aligned ZnO nanowall was also achieved. The results indicate that ZnO nanowalls can be applied to random laser.

Keywords: zinc oxide, nanowall, interference laser, UV lasing

Procedia PDF Downloads 507
3755 YOLO-IR: Infrared Small Object Detection in High Noise Images

Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long

Abstract:

Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.

Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion

Procedia PDF Downloads 85
3754 A Double Epilayer PSGT Trench Power MOSFETs for Low to Medium Voltage Power Applications

Authors: Alok Kumar Kamal, Vinod Kumar

Abstract:

The trench gate MOSFET has shown itself as the most appropriate power device for low to medium voltage power applications due to its lowest possible ON resistance among all power semiconductor devices. In this research work a double-epilayer PSGT structure using a thin layer of N+ polysilicon as gate material. The total ON-state resistance (RON) of UMOSFET can be reduced by optimizing the epilayer thickness. The optimized structure of Double-Epilayer exhibits a 25.8% reduction in the ON-state resistance at Vgs=5V and improving the switching characteristics by reducing the Reverse transfer capacitance (Cgd) by 7.4%.

Keywords: Miller-capacitance, double-Epilayer;switching characteristics, power trench MOSFET (U-MOSFET), on-state resistance, blocking voltage

Procedia PDF Downloads 75
3753 MRCP as a Pre-Operative Tool for Predicting Variant Biliary Anatomy in Living Related Liver Donors

Authors: Awais Ahmed, Atif Rana, Haseeb Zia, Maham Jahangir, Rashed Nazir, Faisal Dar

Abstract:

Purpose: Biliary complications represent the most common cause of morbidity in living related liver donor transplantation and detailed preoperative evaluation of biliary anatomic variants is crucial for safe patient selection and improved surgical outcomes. Purpose of this study is to determine the accuracy of preoperative MRCP in predicting biliary variations when compared to intraoperative cholangiography in living related liver donors. Materials and Methods: From 44 potential donors, 40 consecutive living related liver donors (13 females and 28 males) underwent donor hepatectomy at our centre from April 2012 to August 2013. MRCP and IOC of all patients were retrospectively reviewed separately by two radiologists and a transplant surgeon.MRCP was performed on 1.5 Tesla MR magnets using breath-hold heavily T2 weighted radial slab technique. One patient was excluded due to suboptimal MRCP. The accuracy of MRCP for variant biliary anatomy was calculated. Results: MRCP accurately predicted the biliary anatomy in 38 of 39 cases (97 %). Standard biliary anatomy was predicted by MRCP in 25 (64 %) donors (100% sensitivity). Variant biliary anatomy was noted in 14 (36 %) IOCs of which MRCP predicted precise anatomy of 13 variants (93 % sensitivity). The two most common variations were drainage of the RPSD into the LHD (50%) and the triple confluence of the RASD, RPSD and LHD (21%). Conclusion: MRCP is a sensitive imaging tool for precise pre-operative mapping of biliary variations which is critical to surgical decision making in living related liver transplantation.

Keywords: intraoperative cholangiogram, liver transplantation, living related donors, magnetic resonance cholangio-pancreaticogram (MRCP)

Procedia PDF Downloads 400
3752 Effect of Fermented Orange Juice Intake on Urinary 6‑Sulfatoxymelatonin in Healthy Volunteers

Authors: I. Cerrillo, A. Carrillo-Vico, M. A. Ortega, B. Escudero-López, N. Álvarez-Sánchez, F. Martín, M. S. Fernández-Pachón

Abstract:

Melatonin is a bioactive compound involved in multiple biological activities such as glucose tolerance, circadian rhythm regulation, antioxidant defense or immune system action. In elderly subjects the intake of foods and drinks rich in melatonin is very important due to its endogenous level decreases with age. Alcoholic fermentation is a process carried out in fruits, vegetables and legumes to obtain new products with improved bioactive compounds profile in relation to original substrates. Alcoholic fermentation process carried out by Saccharomycetaceae var. Pichia kluyveri induces an important synthesis of melatonin in orange juice. A novel beverage derived of fermented orange juice could be a promising source of this bioactive compound. The aim of the present study was to determine whether the acute intake of fermented orange juice increase the levels of urinary 6-sulfatoxymelatonin in healthy humans. Nine healthy volunteers (7 women and 2 men), aged between 20 and 25 years old and BMI of 21.1  2.4 kg/m2, were recruited. On the study day, participants ingested 500 mL of fermented orange juice. The first urine collection was made before fermented orange juice consumption (basal). The rest of urine collections were made in the following time intervals after fermented orange juice consumption: 0-2, 2-5, 5-10, 10- 15 and 15-24 hours. During the experimental period only the consumption of water was allowed. At lunch time a meal was provided (60 g of white bread, two slices of ham, a slice of cheese, 125 g of sweetened natural yoghurt and water). The subjects repeated the protocol with orange juice following a 2-wk washout period between both types of beverages. The levels of 6-sulfatoxymelatonin (6-SMT) were measured in urine recollected at different time points using the Melatonin-Sulfate Urine ELISA (IBL International GMBH, Hamburg, Germany). Levels of 6-SMT were corrected to those of creatinine for each sample. A significant (p < 0.05) increase in urinary 6-SMT levels was observed between 2-5 hours after fermented orange juice ingestion with respect to basal values (increase of 67,8 %). The consumption of orange juice did not induce any significant change in urinary 6-SMT levels. In addition, urinary 6-SMT levels obtained between 2-5 hours after fermented orange juice ingestion (115,6 ng/mg) were significantly different (p < 0.05) from those of orange juice (42,4 ng/mg). The enhancement of urinary 6-SMT after the ingestion of 500 mL of fermented orange juice in healthy humans compared to orange juice could be an important advantage of this novel product as an excellent source of melatonin. Fermented orange juice could be a new functional food, and its consumption could exert a potentially positive effect on health in both the maintenance of health status and the prevention of chronic diseases.

Keywords: fermented orange juice, functional beverage, healthy human, melatonin

Procedia PDF Downloads 411
3751 Dissimilar Cu/Al Friction Stir Welding: Sensitivity of the Tool Offset

Authors: Tran Hung Tra, Hao Dinh Duong, Masakazu Okazaki

Abstract:

Copper 1100 and aluminum 1050 plates with a thickness of 5.0 mm are butt-joint using friction stir welding. The tool offset is linearly varied along the welding path. Two welding regimes, using the same linear tool offset but in opposite directions, are applied for fabricating two Cu/Al plates. The material flow is dominated by both tool offset and offset history. The intermetallic compounds layer and interface morphology in each welded plate are formed in a different manner. As a result, the bonding strength and fracture behavior between two welded plates are significantly distinct. The role of interface morphology on fracture behavior is analyzed by the finite element method.

Keywords: Cu/Al dissimilar welding, offset history, interface morphology, intermetallic compounds, strength and fracture

Procedia PDF Downloads 78
3750 Computer-Aided Depression Screening: A Literature Review on Optimal Methodologies for Mental Health Screening

Authors: Michelle Nighswander

Abstract:

Suicide can be a tragic response to mental illness. It is difficult for people to disclose or discuss suicidal impulses. The stigma surrounding mental health can create a reluctance to seek help for mental illness. Patients may feel pressure to exhibit a socially desirable demeanor rather than reveal these issues, especially if they sense their healthcare provider is pressed for time or does not have an extensive history with their provider. Overcoming these barriers can be challenging. Although there are several validated depression and suicide risk instruments, varying processes used to administer these tools may impact the truthfulness of the responses. A literature review was conducted to find evidence of the impact of the environment on the accuracy of depression screening. Many investigations do not describe the environment and fewer studies use a comparison design. However, three studies demonstrated that computerized self-reporting might be more likely to elicit truthful and accurate responses due to increased privacy when responding compared to a face-to-face interview. These studies showed patients reported positive reactions to computerized screening for other stigmatizing health conditions such as alcohol use during pregnancy. Computerized self-screening for depression offers the possibility of more privacy and patient reflection, which could then send a targeted message of risk to the healthcare provider. This could potentially increase the accuracy while also increasing time efficiency for the clinic. Considering the persistent effects of mental health stigma, how these screening questions are posed can impact patients’ responses. This literature review analyzes trends in depression screening methodologies, the impact of setting on the results and how this may assist in overcoming one barrier caused by stigma.

Keywords: computerized self-report, depression, mental health stigma, suicide risk

Procedia PDF Downloads 133
3749 Design, Prototyping, Integration, Flight Testing of a 20 cm Span Fully Autonomous Fixed Wing Micro Air Vehicle

Authors: Vivek Paul, Abel Nelly, Shoeb A Adeel, R. Tilak, S. Maheshwaran, S. Pulikeshi, Roshan Antony, C. S. Suraj

Abstract:

This paper presents the complete design and development cycle of a 20 cm span fixed wing micro air vehicle that was developed at CSIR-NAL, under the micro air vehicle development program. The design is a cropped delta flying wing MAV with a modified N22 airfoil of 12.3% thickness. The design was fabricated using the fused deposition method- RPT technique. COTS components were procured and integrated into this RPT prototype. A commercial autopilot that was proven in the earlier MAV designs was used for this MAV. The MAV was flown fully autonomous for 14mins at an open field. The flight data showed good performance as expected from the MAV design. The paper also describes about the process involved in the design of MAVs.

Keywords: autopilot, autonomous mode, flight testing, MAV, RPT

Procedia PDF Downloads 524
3748 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

Authors: J. R. Wang, W. Y. Li, H. T. Lin, J. H. Yang, C. Shih, S. W. Chen

Abstract:

Fuel rod analysis program transient (FRAPTRAN) code was used to study the fuel rod performance during a postulated large break loss of coolant accident (LBLOCA) in Maanshan nuclear power plant (NPP). Previous transient results from thermal hydraulic code, TRACE, with the same LBLOCA scenario, were used as input boundary conditions for FRAPTRAN. The simulation results showed that the peak cladding temperatures and the fuel center line temperatures were all below the 10CFR50.46 LOCA criteria. In addition, the maximum hoop stress was 18 MPa and the oxide thickness was 0.003 mm for the present simulation cases, which are all within the safety operation ranges. The present study confirms that this analysis method, the FRAPTRAN code combined with TRACE, is an appropriate approach to predict the fuel integrity under LBLOCA with operational ECCS.

Keywords: FRAPTRAN, TRACE, LOCA, PWR

Procedia PDF Downloads 515
3747 In Situ Production of Nano-Cu on a Cotton Fabric Surface by Ink-Jet Printing

Authors: N. Zoghi, Laleh Maleknia , M. E. Olya

Abstract:

The nano-Cu particles were produced on cotton fabric substrate by ink-jet printing technology with water-soluble ink, which was based on copper. The surface tension and viscosity of the prepared inks were evaluated. The ink-jet printing process was repeated 1, 3, and 5 times in order to evaluate variations in the optical properties by changing thickness of printed film. Following initial drying of the printed film, the samples were annealed at different temperatures (150 °C, 200 °C and 250 °C) to determine the optimum temperature for the parameters set out in this experiment. The prepared nano-Cu particles were characterized by XRD and UV spectroscopy. The appearance of printed image and the nano-Cu particles morphology were observed by SEM. The results demonstrated that the ink-jet printing technology can be used to produce nano-particles on the cotton fabrics surface.

Keywords: ink-jet printing, nano-cu, fabric ink, in situ production, cotton fabric, water-soluble ink, morphology

Procedia PDF Downloads 433
3746 The Impact on the Network Deflectometry

Authors: Djamel–Eddine Yassine Boutiba

Abstract:

In this present memory, we present the various impacts deflectometer leading to the sizing by strengthening of existing roadways. It reminds that the road network in Algeria plays a major role with regard to drainage in major strategic areas and especially in the fringe northern Algeria. Heavy traffic passing through the northern fringe (between 25% and 30% heavy vehicles) causes substantial degradations at both the surface layer and base layer. The work on site by means within the laboratory CTTP such as deflectographe Lacroix, allowed us to record a large number of deflection localized bending on RN19A (Carrefour CW73-Ain- Merane), whose analysis of the results led us to opt for a building throughout the band's project . By the recorder against HWD (Heavy Weight déflectometer) allowed us to learn about the behavior of the pavement on the banks. In addition, the Software Alize III has been essential in the verification of the increase in the thickness dimensioned.

Keywords: capacity, deflection, deflectograph lacroix, degradation, hwd

Procedia PDF Downloads 287
3745 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: Bahareh Golchin, Nooshin Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia PDF Downloads 141
3744 Structural and Optical Characterization of Silica@PbS Core–Shell Nanoparticles

Authors: A. Pourahmad, Sh. Gharipour

Abstract:

The present work describes the preparation and characterization of nanosized SiO2@PbS core-shell particles by using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted lead sulphide shell layer formation. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and transmission electron microscopy (TEM) experiments. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 18 nm. The electron microscopic images also indicate the irregular morphology of lead sulphide shell layer. The structural studies indicate the face-centered cubic system of PbS shell with no other trace for impurities in the crystal structure.

Keywords: core-shell, nanostructure, semiconductor, optical property, XRD

Procedia PDF Downloads 304
3743 Nanomechanical Characterization of Healthy and Tumor Lung Tissues at Cell and Extracellular Matrix Level

Authors: Valeria Panzetta, Ida Musella, Sabato Fusco, Paolo Antonio Netti

Abstract:

The study of the biophysics of living cells drew attention to the pivotal role of the cytoskeleton in many cell functions, such as mechanics, adhesion, proliferation, migration, differentiation and neoplastic transformation. In particular, during the complex process of malignant transformation and invasion cell cytoskeleton devolves from a rigid and organized structure to a more compliant state, which confers to the cancer cells a great ability to migrate and adapt to the extracellular environment. In order to better understand the malignant transformation process from a mechanical point of view, it is necessary to evaluate the direct crosstalk between the cells and their surrounding extracellular matrix (ECM) in a context which is close to in vivo conditions. In this study, human biopsy tissues of lung adenocarcinoma were analyzed in order to define their mechanical phenotype at cell and ECM level, by using particle tracking microrheology (PTM) technique. Polystyrene beads (500 nm) were introduced into the sample slice. The motion of beads was obtained by tracking their displacements across cell cytoskeleton and ECM structures and mean squared displacements (MSDs) were calculated from bead trajectories. It has been already demonstrated that the amplitude of MSD is inversely related to the mechanical properties of intracellular and extracellular microenvironment. For this reason, MSDs of particles introduced in cytoplasm and ECM of healthy and tumor tissues were compared. PTM analyses showed that cancerous transformation compromises mechanical integrity of cells and extracellular matrix. In particular, the MSD amplitudes in cells of adenocarcinoma were greater as compared to cells of normal tissues. The increased motion is probably associated to a less structured cytoskeleton and consequently to an increase of deformability of cells. Further, cancer transformation is also accompanied by extracellular matrix stiffening, as confirmed by the decrease of MSDs of matrix in tumor tissue, a process that promotes tumor proliferation and invasiveness, by activating typical oncogenic signaling pathways. In addition, a clear correlation between MSDs of cells and tumor grade was found. MSDs increase when tumor grade passes from 2 to 3, indicating that cells undergo to a trans-differentiation process during tumor progression. ECM stiffening is not dependent on tumor grade, but the tumor stage resulted to be strictly correlated with both cells and ECM mechanical properties. In fact, a greater stage is assigned to tumor spread to regional lymph nodes and characterized by an up-regulation of different ECM proteins, such as collagen I fibers. These results indicate that PTM can be used to get nanomechanical characterization at different scale levels in an interpretative and diagnostic context.

Keywords: cytoskeleton, extracellular matrix, mechanical properties, particle tracking microrheology, tumor

Procedia PDF Downloads 283
3742 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 370
3741 Valorization of the Algerian Plaster and Dune Sand in the Building Sector

Authors: S. Dorbani, F. Kharchi, F. Salem, K. Arroudj, N. Chioukh

Abstract:

The need for thermal comfort of buildings, with the aim of saving energy, has always generated a big interest during the development of methods, to improve the mode of construction. In the present paper, which is concerned by the valorization of locally abundant materials, mixtures of plaster and dune sand have been studied. To point out the thermal performances of these mixtures, a comparative study has been established between this product and the two materials most commonly used in construction, the concrete and hollow brick. The results showed that optimal mixture is made with 1/3 plaster and 2/3 dune sand. This mortar achieved significant increases in the mechanical strengths, which allow it to be used as a carrier element for buildings, of up to two levels. The element obtained offers an acceptable thermal insulation, with a decrease the outer-wall construction thickness.

Keywords: local materials, mortar, plaster, dune sand, compaction, mechanical performance, thermal performance

Procedia PDF Downloads 485
3740 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis

Authors: R. Periyasamy, Deepak Joshi, Sneh Anand

Abstract:

Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.

Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis

Procedia PDF Downloads 501
3739 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 96
3738 Influence of the Eccentricity of a Concentrated Load on the Behavior of Multilayers Slabs

Authors: F. Bouzeboudja, K. Ait-Tahar

Abstract:

The method of strengthening of concrete works by composite materials is a practice which knows currently an important development. From this perspective, we propose to make a contribution to the analysis of the behavior of concrete slabs reinforced with composite fabrics, arranged in parallel folds according to the thickness of the slab. The analysis of experimentally obtained modes of failure confirms, generally, that the ruin of the structure occurs essentially by punching. Accordingly, our work is directed to the analysis of the behavior of reinforced slabs towards the punching. An experimental investigation is realized. For that purpose, a set of trial specimens was made. The reinforced specimens are subjected to an essay of punching, by making vary the direction of the eccentricity. The first experimental results show that the ultimate loads, as well as the transition from the flexion failure mode to the punching failure mode, are governed essentially by the eccentricity.

Keywords: composites, concrete slabs, failure, laminate, punching

Procedia PDF Downloads 241
3737 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.

Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods

Procedia PDF Downloads 50
3736 Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance

Authors: Alberto Sanchidrián, José A. Parra, Jesús Alonso, Julián Pecharromán, Antonia Pacios, Consuelo Huerta

Abstract:

Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary.

Keywords: glass plates, human impact test, modal test, plate boundary conditions

Procedia PDF Downloads 311
3735 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 80
3734 Weight Estimation Using the K-Means Method in Steelmaking’s Overhead Cranes in Order to Reduce Swing Error

Authors: Seyedamir Makinejadsanij

Abstract:

One of the most important factors in the production of quality steel is to know the exact weight of steel in the steelmaking area. In this study, a calculation method is presented to estimate the exact weight of the melt as well as the objects transported by the overhead crane. Iran Alloy Steel Company's steelmaking area has three 90-ton cranes, which are responsible for transferring the ladles and ladle caps between 34 areas in the melt shop. Each crane is equipped with a Disomat Tersus weighing system that calculates and displays real-time weight. The moving object has a variable weight due to swinging, and the weighing system has an error of about +-5%. This means that when the object is moving by a crane, which weighs about 80 tons, the device (Disomat Tersus system) calculates about 4 tons more or 4 tons less, and this is the biggest problem in calculating a real weight. The k-means algorithm is an unsupervised clustering method that was used here. The best result was obtained by considering 3 centers. Compared to the normal average(one) or two, four, five, and six centers, the best answer is with 3 centers, which is logically due to the elimination of noise above and below the real weight. Every day, the standard weight is moved with working cranes to test and calibrate cranes. The results are shown that the accuracy is about 40 kilos per 60 tons (standard weight). As a result, with this method, the accuracy of moving weight is calculated as 99.95%. K-means is used to calculate the exact mean of objects. The stopping criterion of the algorithm is also the number of 1000 repetitions or not moving the points between the clusters. As a result of the implementation of this system, the crane operator does not stop while moving objects and continues his activity regardless of weight calculations. Also, production speed increased, and human error decreased.

Keywords: k-means, overhead crane, melt weight, weight estimation, swing problem

Procedia PDF Downloads 92
3733 A New Center of Motion in Cabling Robots

Authors: Alireza Abbasi Moshaii, Farshid Najafi

Abstract:

In this paper a new model for centre of motion creating is proposed. This new method uses cables. So, it is very useful in robots because it is light and has easy assembling process. In the robots which need to be in touch with some things this method is very good. It will be described in the following. The accuracy of the idea is proved by an experiment. This system could be used in the robots which need a fixed point in the contact with some things and make a circular motion. Such as dancer, physician or repair robots.

Keywords: centre of motion, robotic cables, permanent touching, mechatronics engineering

Procedia PDF Downloads 449
3732 Model Tests on Geogrid-Reinforced Sand-Filled Embankments with a Cover Layer under Cyclic Loading

Authors: Ma Yuan, Zhang Mengxi, Akbar Javadi, Chen Longqing

Abstract:

The structure of sand-filled embankment with cover layer is treated with tipping clay modified with lime on the outside of the packing, and the geotextile is placed between the stuffing and the clay. The packing is usually river sand, and the improved clay protects the sand core against rainwater erosion. The sand-filled embankment with cover layer has practical problems such as high filling embankment, construction restriction, and steep slope. The reinforcement can be applied to the sand-filled embankment with cover layer to solve the complicated problems such as irregular settlement caused by poor stability of the embankment. At present, the research on the sand-filled embankment with cover layer mainly focuses on the sand properties, construction technology, and slope stability, and there are few studies in the experimental field, the deformation characteristics and stability of reinforced sand-filled embankment need further study. In addition, experimental research is relatively rare when the cyclic load is considered in tests. A subgrade structure of geogrid-reinforced sand-filled embankment with cover layer was proposed. The mechanical characteristics, the deformation properties, reinforced behavior and the ultimate bearing capacity of the embankment structure under cyclic loading were studied. For this structure, the geogrids in the sand and the tipping soil are through the geotextile which is arranged in sections continuously so that the geogrids can cross horizontally. Then, the Unsaturated/saturated Soil Triaxial Test System of Geotechnical Consulting and Testing Systems (GCTS), USA was modified to form the loading device of this test, and strain collector was used to measuring deformation and earth pressure of the embankment. A series of cyclic loading model tests were conducted on the geogrid-reinforced sand-filled embankment with a cover layer under a different number of reinforcement layers, the length of reinforcement and thickness of the cover layer. The settlement of the embankment, the normal cumulative deformation of the slope and the earth pressure were studied under different conditions. Besides cyclic loading model tests, model experiments of embankment subjected cyclic-static loading was carried out to analyze ultimate bearing capacity with different loading. The experiment results showed that the vertical cumulative settlement under long-term cyclic loading increases with the decrease of the number of reinforcement layers, length of the reinforcement arrangement and thickness of the tipping soil. Meanwhile, these three factors also have an influence on the decrease of the normal deformation of the embankment slope. The earth pressure around the loading point is significantly affected by putting geogrid in a model embankment. After cyclic loading, the decline of ultimate bearing capacity of the reinforced embankment can be effectively reduced, which is contrary to the unreinforced embankment.

Keywords: cyclic load; geogrid; reinforcement behavior; cumulative deformation; earth pressure

Procedia PDF Downloads 123
3731 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy

Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos

Abstract:

Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.

Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree

Procedia PDF Downloads 157
3730 Facile Synthesis of CuO Nanosheets on Cu Foil for H2O2 Detection

Authors: Yu-Kuei Hsu, Yan-Gu Lin

Abstract:

A facile and simple fabrication of copper(II) oxide (CuO) nanosheet on copper foil as nanoelectrode for H2O2 sensing application was proposed in this study. The spontaneous formation of CuO nanosheets by immersing the copper foil into 0.1 M NaOH aqueous solution for 48 hrs was carried out at room temperature. The sheet-like morphology with several ten nanometers in thickness and ~500 nm in width was observed by SEM. Those nanosheets were confirmed the monoclinic-phase CuO by the structural analysis of XRD and Raman spectra. The directly grown CuO nanosheets film is mechanically stable and offers an excellent electrochemical sensing platform. The CuO nanosheets electrode shows excellent electrocatalytic response to H2O2 with significantly lower overpotentials for its oxidation and reduction and also exhibits a fast response and high sensitivity for the amperometric detection of H2O2. The novel spontaneously grown CuO nanosheets electrode is readily applicable to other analytes and has great potential applications in the electrochemical detection.

Keywords: CuO, nanosheets, H2O2 detection, Cu foil

Procedia PDF Downloads 291
3729 A 3D Cell-Based Biosensor for Real-Time and Non-Invasive Monitoring of 3D Cell Viability and Drug Screening

Authors: Yuxiang Pan, Yong Qiu, Chenlei Gu, Ping Wang

Abstract:

In the past decade, three-dimensional (3D) tumor cell models have attracted increasing interest in the field of drug screening due to their great advantages in simulating more accurately the heterogeneous tumor behavior in vivo. Drug sensitivity testing based on 3D tumor cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve the real-time and label-free monitoring of the viability of 3D tumor cell models. In this study, micro-groove impedance sensor (MGIS) was specially developed for dynamic and non-invasive monitoring of 3D cell viability. 3D tumor cells were trapped in the micro-grooves with opposite gold electrodes for the in-situ impedance measurement. The change of live cell number would cause inversely proportional change to the impedance magnitude of the entire cell/matrigel to construct and reflect the proliferation and apoptosis of 3D cells. It was confirmed that 3D cell viability detected by the MGIS platform is highly consistent with the standard live/dead staining. Furthermore, the accuracy of MGIS platform was demonstrated quantitatively using 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of micro-groove impedance chip processing and measurement experiments were optimized in details. The results demonstrated that the MGIS and 3D cell-based biosensor and would be a promising platform to improve the efficiency and accuracy of cell-based anti-cancer drug screening in vitro.

Keywords: micro-groove impedance sensor, 3D cell-based biosensors, 3D cell viability, micro-electromechanical systems

Procedia PDF Downloads 131
3728 Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance

Authors: Farzad Yavari, Hamid Chegini, Saeed Lotfi

Abstract:

This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.

Keywords: VPI, resin rich, insulation, stator bar, dissipation factor, voltage endurance

Procedia PDF Downloads 203
3727 Improvement of Mechanical Properties and Corrosion Resistance of AA7056 Aluminum Alloys by the Non-isothermal Aging Process

Authors: Tse-An Pan, Sheng-Long Lee

Abstract:

The effect of non-isothermal aging on the mechanical properties and corrosion resistance of Al-9Zn-2.3Mg-1.9Cu (AA7056) alloys was investigated. The results revealed that thick materials were limited to retrogression and re-aging treatment (RRA). It could not reach the retrogression temperature in the RRA treatment. Compared with the RRA treatment, the non-isothermal aging (NIA) treatment produced discontinuous precipitates at grain boundaries, while the intragranular precipitates were fine and dense. The strength was similar to that of the RRA treatment; the corrosion resistance of the alloy was significantly improved by NIA aging. NIA treatment was less affected by the thickness of the alloy. The difference between the actual temperature and the setting temperature of the alloy is minimal during the aging process. The combination of properties could overcome the fact that RRA treatment cannot handle thick materials.

Keywords: Al-Zn-Mg-Cu alloy, corrosion, retrogression, re-aging, non-isothermal aging

Procedia PDF Downloads 184