Search results for: semisolid metals processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4839

Search results for: semisolid metals processing

3339 The Relation between Cognitive Fluency and Utterance Fluency in Second Language Spoken Fluency: Studying Fluency through a Psycholinguistic Lens

Authors: Tannistha Dasgupta

Abstract:

This study explores the aspects of second language (L2) spoken fluency that are related to L2 linguistic knowledge and processing skill. It draws on Levelt’s ‘blueprint’ of the L2 speaker which discusses the cognitive issues underlying the act of speaking. However, L2 speaking assessments have largely neglected the underlying mechanism involved in language production; emphasis is given on the relationship between subjective ratings of L2 speech sample and objectively measured aspects of fluency. Hence, in this study, the relation between L2 linguistic knowledge and processing skill i.e. Cognitive Fluency (CF), and objectively measurable aspects of L2 spoken fluency i.e. Utterance Fluency (UF) is examined. The participants of the study are L2 learners of English, studying at high school level in Hyderabad, India. 50 participants with intermediate level of proficiency in English performed several lexical retrieval tasks and attention-shifting tasks to measure CF, and 8 oral tasks to measure UF. Each aspect of UF (speed, pause, and repair) were measured against the scores of CF to find out those aspects of UF which are reliable indicators of CF. Quantitative analysis of the data shows that among the three aspects of UF; speed is the best predictor of CF, and pause is weakly related to CF. The study suggests that including the speed aspect of UF could make L2 fluency assessment more reliable, valid, and objective. Thus, incorporating the assessment of psycholinguistic mechanisms into L2 spoken fluency testing, could result in fairer evaluation.

Keywords: attention-shifting, cognitive fluency, lexical retrieval, utterance fluency

Procedia PDF Downloads 710
3338 Digitalisation of the Railway Industry: Recent Advances in the Field of Dialogue Systems: Systematic Review

Authors: Andrei Nosov

Abstract:

This paper discusses the development directions of dialogue systems within the digitalisation of the railway industry, where technologies based on conversational AI are already potentially applied or will be applied. Conversational AI is one of the popular natural language processing (NLP) tasks, as it has great prospects for real-world applications today. At the same time, it is a challenging task as it involves many areas of NLP based on complex computations and deep insights from linguistics and psychology. In this review, we focus on dialogue systems and their implementation in the railway domain. We comprehensively review the state-of-the-art research results on dialogue systems and analyse them from three perspectives: type of problem to be solved, type of model, and type of system. In particular, from the perspective of the type of tasks to be solved, we discuss characteristics and applications. This will help to understand how to prioritise tasks. In terms of the type of models, we give an overview that will allow researchers to become familiar with how to apply them in dialogue systems. By analysing the types of dialogue systems, we propose an unconventional approach in contrast to colleagues who traditionally contrast goal-oriented dialogue systems with open-domain systems. Our view focuses on considering retrieval and generative approaches. Furthermore, the work comprehensively presents evaluation methods and datasets for dialogue systems in the railway domain to pave the way for future research. Finally, some possible directions for future research are identified based on recent research results.

Keywords: digitalisation, railway, dialogue systems, conversational AI, natural language processing, natural language understanding, natural language generation

Procedia PDF Downloads 61
3337 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 42
3336 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 91
3335 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding

Authors: Ziad. Sh. Al Sarraf

Abstract:

Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

Keywords: ultrasonic welding, vibration amplitude, welding force, weld strength

Procedia PDF Downloads 364
3334 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 105
3333 Potential of Two Pelargonium Species for EDTA-Assisted Phytoextraction of Cadmium

Authors: Iram Gul, Maria Manzoor, Muhammad Arshad

Abstract:

The enhanced phytoextraction techniques have been proposed for the remediation of heavy metals contaminated soil. Chelating agents enhance the availability of Cd, which is the main factor in the phytoremediation. This study was conducted to assessed the potential of two Pelargonium species (Pelargonium zonale, Pelargonium hortorum) in EDTA enhanced phytoextraction of Cd using pot experiment. Different doses of EDTA (0, 1, 2, 3, 4, 5 mmol kg-1) was used, and results showed that there was significant increase (approximately 2.1 folds) in the mobility of Cd at EDTA 5 mg kg-1 as compared to control. Both plants have TF and BCF more than 1 and have potential for the phytoextraction of Cd. However, the Pelargonium hortorum showed higher biomass and Cd uptake as compared to Pleragonium zonale. The maximum Cd accumulation in shoot and root of Pelargonium zonale was 484.4 and 264.41 mg kg-1 respectively at 2 mmol kg-1. However, the Pelargonium hortorum accumulate 996.9 and 350 mg kg-1 of Cd in shoot and root respectively at 4 mmol kg-1. Pelargonium hortorum uptake approximately 10.7 folds higher Cd concentration as compared to the Pelargonium zonale. Results revealed that P. hortorum performed better than P. zonal even at higher Cd and EDTA doses however toxicity and leaching potential of increased Cd and EDTA concentrations needs to be explored before field application.

Keywords: Cadmium, EDTA, Pelargonium, phytoextraction

Procedia PDF Downloads 299
3332 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 418
3331 High Temperature Oxidation of Cr-Steel Interconnects in Solid Oxide Fuel Cells

Authors: Saeed Ghali, Azza Ahmed, Taha Mattar

Abstract:

Solid Oxide Fuel Cell (SOFC) is a promising solution for the energy resources leakage. Ferritic stainless steel becomes a suitable candidate for the SOFCs interconnects due to the recent advancements. Different steel alloys were designed to satisfy the needed characteristics in SOFCs interconnect as conductivity, thermal expansion and corrosion resistance. Refractory elements were used as alloying elements to satisfy the needed properties. The oxidation behaviour of the developed alloys was studied where the samples were heated for long time period at the maximum operating temperature to simulate the real working conditions. The formed scale and oxidized surface were investigated by SEM. Microstructure examination was carried out for some selected steel grades. The effect of alloying elements on the behaviour of the proposed interconnects material and the performance during the working conditions of the cells are explored and discussed. Refractory metals alloying of chromium steel seems to satisfy the needed characteristics in metallic interconnects.

Keywords: SOFCs, Cr-steel, interconnects, oxidation

Procedia PDF Downloads 329
3330 Environmental Impact Assessment of Municipal Solid Waste Disposal Site in Shahrood City

Authors: Mehri Bagherkazemi, Naser Hafezi Moghaddas

Abstract:

This study investigates the environmental impact of the disposal site located in Shahrood city, focusing on the geological characteristics of the region. Shahrood's disposal site primarily consists of limestone bedrock, overlaid by substantial alluvial deposits. The area's highly permeable soil is anticipated to have a significant influence on groundwater pollution. Spanning 52 hectares, the Shahrood disposal site is situated in the eastern sector of the city. Historically, waste disposal took place on the surface, but recent practices involve on-site trenching. This research involved the collection of soil and water samples near the disposal site, with subsequent analysis of 11 soil samples and 3 water samples. The soil's particle size distribution was determined, and comprehensive analyses were conducted for 35 elements in the soil and 42 elements in water. The study combines the results of these tests with field investigations to evaluate the landfill's impact on the surrounding soil and groundwater contamination.

Keywords: environmental geology, environmental impact assessment, disposal site, heavy metals contamination

Procedia PDF Downloads 76
3329 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 152
3328 MXene-Based Self-Sensing of Damage in Fiber Composites

Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi

Abstract:

Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.

Keywords: damage sensing, fiber composites, MXene, self-sensing

Procedia PDF Downloads 119
3327 Construction of Large Scale UAVs Using Homebuilt Composite Techniques

Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp

Abstract:

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV

Procedia PDF Downloads 134
3326 Mobile Augmented Reality for Collaboration in Operation

Authors: Chong-Yang Qiao

Abstract:

Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.

Keywords: mobile augmented reality, remote collaboration, user experience, cognition model

Procedia PDF Downloads 196
3325 Automatic Segmentation of 3D Tomographic Images Contours at Radiotherapy Planning in Low Cost Solution

Authors: D. F. Carvalho, A. O. Uscamayta, J. C. Guerrero, H. F. Oliveira, P. M. Azevedo-Marques

Abstract:

The creation of vector contours slices (ROIs) on body silhouettes in oncologic patients is an important step during the radiotherapy planning in clinic and hospitals to ensure the accuracy of oncologic treatment. The radiotherapy planning of patients is performed by complex softwares focused on analysis of tumor regions, protection of organs at risk (OARs) and calculation of radiation doses for anomalies (tumors). These softwares are supplied for a few manufacturers and run over sophisticated workstations with vector processing presenting a cost of approximately twenty thousand dollars. The Brazilian project SIPRAD (Radiotherapy Planning System) presents a proposal adapted to the emerging countries reality that generally does not have the monetary conditions to acquire some radiotherapy planning workstations, resulting in waiting queues for new patients treatment. The SIPRAD project is composed by a set of integrated and interoperabilities softwares that are able to execute all stages of radiotherapy planning on simple personal computers (PCs) in replace to the workstations. The goal of this work is to present an image processing technique, computationally feasible, that is able to perform an automatic contour delineation in patient body silhouettes (SIPRAD-Body). The SIPRAD-Body technique is performed in tomography slices under grayscale images, extending their use with a greedy algorithm in three dimensions. SIPRAD-Body creates an irregular polyhedron with the Canny Edge adapted algorithm without the use of preprocessing filters, as contrast and brightness. In addition, comparing the technique SIPRAD-Body with existing current solutions is reached a contours similarity at least 78%. For this comparison is used four criteria: contour area, contour length, difference between the mass centers and Jaccard index technique. SIPRAD-Body was tested in a set of oncologic exams provided by the Clinical Hospital of the University of Sao Paulo (HCRP-USP). The exams were applied in patients with different conditions of ethnology, ages, tumor severities and body regions. Even in case of services that have already workstations, it is possible to have SIPRAD working together PCs because of the interoperability of communication between both systems through the DICOM protocol that provides an increase of workflow. Therefore, the conclusion is that SIPRAD-Body technique is feasible because of its degree of similarity in both new radiotherapy planning services and existing services.

Keywords: radiotherapy, image processing, DICOM RT, Treatment Planning System (TPS)

Procedia PDF Downloads 295
3324 A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing

Authors: Jimmy Jiun-Ming Su, Yuan-Min Lin

Abstract:

Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future.

Keywords: bioprinting, cell encapsulation, digital light processing, GelMA hydrogel

Procedia PDF Downloads 180
3323 Dairy Products on the Algerian Market: Proportion of Imitation and Degree of Processing

Authors: Bentayeb-Ait Lounis Saïda, Cheref Zahia, Cherifi Thizi, Ri Kahina Bahmed, Kahina Hallali Yasmine Abdellaoui, Kenza Adli

Abstract:

Algeria is the leading consumer of dairy products in North Africa. This is a fact. However, the nutritional quality of the latter remains unknown. The aim of this study is to characterise the dairy products available on the Algerian market in order to assess whether they constitute a healthy and safe choice. To do this, it collected data on the labelling of 390 dairy products, including cheese, yoghurt, UHT milk and milk drinks, infant formula and dairy creams. We assessed their degree of processing according to the NOVA classification, as well as the proportion of imitation products. The study was carried out between March 2020 and August 2023. The results show that 88% are ultra-processed; 84% for 'cheese', 92% for dairy creams, 92% for 'yoghurt', 100% for infant formula, 92% for margarines and 36% for UHT milk/dairy drinks. As for imitation/analogue dairy products, the study revealed the following proportions: 100% for infant formula, 78% for butter/margarine, 18% for UHT milk/milk-based drinks, 54% for cheese, 2% for camembert and 75% for dairy cream. The harmful effects of consuming ultra-processed products on long-term health are increasingly documented in dozens of publications. The findings of this study sound the alarm about the health risks to which Algerian consumers are exposed. Various scientific, economic and industrial bodies need to be involved in order to safeguard consumer health in both the short and long term. Food awareness and education campaigns should be organised.

Keywords: dairy, UPF, NOVA, yoghurt, cheese

Procedia PDF Downloads 34
3322 Agile Smartphone Porting and App Integration of Signal Processing Algorithms Obtained through Rapid Development

Authors: Marvin Chibuzo Offiah, Susanne Rosenthal, Markus Borschbach

Abstract:

Certain research projects in Computer Science often involve research on existing signal processing algorithms and developing improvements on them. Research budgets are usually limited, hence there is limited time for implementing the algorithms from scratch. It is therefore common practice, to use implementations provided by other researchers as a template. These are most commonly provided in a rapid development, i.e. 4th generation, programming language, usually Matlab. Rapid development is a common method in Computer Science research for quickly implementing and testing new developed algorithms, which is also a common task within agile project organization. The growing relevance of mobile devices in the computer market also gives rise to the need to demonstrate the successful executability and performance measurement of these algorithms on a mobile device operating system and processor, particularly on a smartphone. Open mobile systems such as Android, are most suitable for this task, which is to be performed most efficiently. Furthermore, efficiently implementing an interaction between the algorithm and a graphical user interface (GUI) that runs exclusively on the mobile device is necessary in cases where the project’s goal statement also includes such a task. This paper examines different proposed solutions for porting computer algorithms obtained through rapid development into a GUI-based smartphone Android app and evaluates their feasibilities. Accordingly, the feasible methods are tested and a short success report is given for each tested method.

Keywords: SMARTNAVI, Smartphone, App, Programming languages, Rapid Development, MATLAB, Octave, C/C++, Java, Android, NDK, SDK, Linux, Ubuntu, Emulation, GUI

Procedia PDF Downloads 477
3321 Soil Rehabilitation Using Modified Diatomite: Assessing Chemical Properties, Enzymatic Reactions and Heavy Metal Immobilization

Authors: Maryam Samani. Ahmad Golchin. Hosseinali Alikkani. Ahmad Baybordi

Abstract:

Natural diatomite was modified by grinding and acid treatment to increase surface area and to decrease the impurities. Surface area and pore volume of the modified diatomite were 67.45 m² g-1 and 0.105 cm³ g-¹ respectively, and used to immobilize Pb, Zn and Cu in an urban soil. The modified diatomite was added to soil samples at the rates of 2.5, 5, 7.5 and 10% and the samples incubated for 60 days. The addition of modified diatomite increased SSA of the soil. The SSAs of soils with 2.5, 5.0, 7.5 and 10% modified diatomite were 20.82, 22.02, 23.21 and 24.41 m² g-¹ respectively. Increasing the SSAs of the soils by the application of modified diatomite reduced the DTPA extractable concentrations of heavy metals compared with un-amendment control. The concentration of Pb, Zn and Cu were reduced by 91.1%, 82% and 91.1% respectively. Modified diatomite reduced the concentration of Exchangeable and Carbonate bounded species of Pb, Zn and Cu, compared with the control. Also significantly increased the concentration of Fe Mn- OX (Fe-Mn Oxides) and OM (Organic Matter) bound and Res (Residual) fraction. Modified diatomite increased the urease, dehydrogenase and alkaline phosphatase activity by 52%, 57% and 56.6% respectively.

Keywords: modified diatomite, chemical specifications, specific surface area, enzyme activity, immobilization, heavy metal, soil remediation

Procedia PDF Downloads 59
3320 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing

Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.

Abstract:

Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.

Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target

Procedia PDF Downloads 328
3319 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, faryab, surface runoff

Procedia PDF Downloads 178
3318 Removal of Heavy Metal Using Continous Mode

Authors: M. Abd elfattah, M. Ossman, Nahla A. Taha

Abstract:

The present work explored the use of Egyptian rice straw, an agricultural waste that leads to global warming problem through brown cloud, as a potential feedstock for the preparation of activated carbon by physical and chemical activation. The results of this study showed that it is feasible to prepare activated carbons with relatively high surface areas and pore volumes from the Egyptian rice straw by direct chemical and physical activation. The produced activated carbon from the two methods (AC1 and AC2) could be used as potential adsorbent for the removal of Fe(III) from aqueous solution contains heavy metals and polluted water. The adsorption of Fe(III) was depended on the pH of the solution. The optimal Fe(III) removal efficiency occurs at pH 5. Based on the results, the optimum contact time is 60 minutes and adsorbent dosage is 3 g/L. The adsorption breakthrough curves obtained at different bed depths indicated increase of breakthrough time with increase in bed depths. A rise in inlet Fe(III) concentration reduces the throughput volume before the packed bed gets saturated. AC1 showed higher affinity for Fe(III) as compared to Raw rice husk.

Keywords: rice straw, activated carbon, Fe(III), fixed bed column, pyrolysis

Procedia PDF Downloads 247
3317 Sustainable Radiation Curable Palm Oil-Based Products for Advanced Materials Applications

Authors: R. Tajau, R. Rohani, M. S. Alias, N. H. Mudri, K. A. Abdul Halim, M. H. Harun, N. Mat Isa, R. Che Ismail, S. Muhammad Faisal, M. Talib, M. R. Mohamed Zin

Abstract:

Bio-based polymeric materials are increasingly used for a variety of applications, including surface coating, drug delivery systems, and tissue engineering. These polymeric materials are ideal for the aforementioned applications because they are derived from natural resources, non-toxic, low-cost, biocompatible, and biodegradable, and have promising thermal and mechanical properties. The nature of hydrocarbon chains, carbon double bonds, and ester bonds allows various sources of oil (edible), such as soy, sunflower, olive, and oil palm, to fine-tune their particular structures in the development of innovative materials. Palm oil can be the most eminent raw material used for manufacturing new and advanced natural polymeric materials involving radiation techniques, such as coating resins, nanoparticles, scaffold, nanotubes, nanocomposites, and lithography for different branches of the industry in countries where oil palm is abundant. The radiation technique is among the most versatile, cost-effective, simple, and effective methods. Crosslinking, reversible addition-fragmentation chain transfer (RAFT), polymerisation, grafting, and degradation are among the radiation mechanisms. Exposure to gamma, EB, UV, or laser irradiation, which are commonly used in the development of polymeric materials, is used in these mechanisms. Therefore, this review focuses on current radiation processing technologies for the development of various radiation-curable bio-based polymeric materials with a promising future in biomedical and industrial applications. The key focus of this review is on radiation curable palm oil-based products, which have been published frequently in recent studies.

Keywords: palm oil, radiation processing, surface coatings, VOC

Procedia PDF Downloads 182
3316 Optimization of Extraction Conditions and Characteristics of Scale collagen From Sardine: Sardina pilchardus

Authors: F. Bellali, M. Kharroubi, M. Loutfi, N.Bourhim

Abstract:

In Morocco, fish processing industry is an important source income for a large amount of byproducts including skins, bones, heads, guts and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Scales from Sardina plichardus resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic and bio medical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. Moreover, the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The basic principle of RSM is to determinate model equations that describe interrelations between the independent variables and the dependent variables.

Keywords: Sardina pilchardus, scales, valorization, collagen extraction, response surface methodology

Procedia PDF Downloads 411
3315 Microbial Dynamics and Sensory Traits of Spanish- and Greek-Style Table Olives (Olea europaea L. cv. Ascolana tenera) Fermented with Sea Fennel (Crithmum maritimum L.)

Authors: Antonietta Maoloni, Federica Cardinali, Vesna Milanović, Andrea Osimani, Ilario Ferrocino, Maria Rita Corvaglia, Luca Cocolin, Lucia Aquilanti

Abstract:

Table olives (Olea europaea L.) are among the most important fermented vegetables all over the world, while sea fennel (Crithmum maritimum L.) is an emerging food crop with interesting nutritional and sensory traits. Both of them are characterized by the presence of several bioactive compounds with potential beneficial health effects, thus representing two valuable substrates for the manufacture of innovative vegetable-based preserves. Given these premises, the present study was aimed at exploring the co-fermentation of table olives and sea fennel to produce new high-value preserves. Spanish style or Greek style processing method and the use of a multiple strain starter were explored. The preserves were evaluated for their microbial dynamics and key sensory traits. During the fermentation, a progressive pH reduction was observed. Mesophilic lactobacilli, mesophilic lactococci, and yeasts were the main microbial groups at the end of the fermentation, whereas Enterobacteriaceae decreased during fermentation. An evolution of the microbiota was revealed by metataxonomic analysis, with Lactiplantibacillus plantarum dominating in the late stage of fermentation, irrespective of processing method and use of the starter. Greek style preserves resulted in more crunchy and less fibrous than Spanish style one and were preferred by trained panelists.

Keywords: lactic acid bacteria, Lactiplantibacillus plantarum, metataxonomy, panel test, rock samphire

Procedia PDF Downloads 127
3314 Coupled Effect of Pulsed Current and Stress State on Fracture Behavior of Ultrathin Superalloy Sheet

Authors: Shuangxin Wu

Abstract:

Superalloy ultra-thin-walled components occupy a considerable proportion of aero engines and play an increasingly important role in structural weight reduction and performance improvement. To solve problems such as high deformation resistance and poor formability at room temperature, the introduction of pulse current in the processing process can improve the plasticity of metal materials, but the influence mechanism of pulse current on the forming limit of superalloy ultra-thin sheet is not clear, which is of great significance for determining the material processing window and improving the micro-forming process. The effect of pulse current on the microstructure evolution of superalloy thin plates was observed by optical microscopy (OM) and X-ray diffraction topography (XRT) by applying pulse current to GH3039 with a thickness of 0.2mm under plane strain and uniaxial tensile states. Compared with the specimen without pulse current applied at the same temperature, the internal void volume fraction is significantly reduced, reflecting the non-thermal effect of pulse current on the growth of micro-pores. ED (electrically deforming) specimens have larger and deeper dimples, but the elongation is not significantly improved because the pulse current promotes the void coalescence process, resulting in material fracture. The electro-plastic phenomenon is more obvious in the plane strain state, which is closely related to the effect of stress triaxial degree on the void evolution under pulsed current.

Keywords: pulse current, superalloy, ductile fracture, void damage

Procedia PDF Downloads 68
3313 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit

Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana

Abstract:

Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.

Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification

Procedia PDF Downloads 153
3312 Structure and Activity Research of Hydrocarbons Refining Catalysts Based on Wastes of Ferroalloy Production

Authors: Zhanat Shomanova, Ruslan Safarov, Yuri Nosenko, Zheneta Tashmuchambetova, Alima Zharmagambetova

Abstract:

An effective way of utilization of ferroalloy production wastes is preparing hydrocarbon refining catalysts from them. It is possible due to accordable transition metals containing in the wastes. In the work, we are presenting the results on elemental analysis of sludge samples from Aksu ferroalloy plant (Aksu, Kazakhstan), method of catalysts preparing, results of physical-chemical analysis of obtained catalysts (X-ray analysis, electron microscopy, the BET method etc.), results of using the catalysts in some hydrocarbons refining processes such as hydrocracking of rubber waste, cracking of gasoil, oxidation of cyclohexane. The main results of catalytic activity research are: a) In hydrocracking of rubber waste 64.9% of liquid products were fuel fractions; b) In cracking of gasoil conversion was 51% and selectivity by liquid products was 99%; c) In oxidation of cyclohexane the maximal product yield 87.9% and selectivity by cyclohexanol 93.0% were achieved.

Keywords: catalyst, cyclohexane oxidation, ferroalloy production waste, gasoil cracking

Procedia PDF Downloads 269
3311 Effect of Fermentation Time on Some Functional Properties of Moringa (Moringa oleifera) Seed Flour

Authors: Ocheme B. Ocheme, Omobolanle O. Oloyede, S. James, Eleojo V. Akpa

Abstract:

The effect of fermentation time on some functional properties of Moringa (Moringa oleifera) seed flour was examined. Fermentation, an effective processing method used to improve nutritional quality of plant foods, tends to affect the characteristics of food components and their behaviour in food systems just like other processing methods. Hence the need for this study. Moringa seeds were fermented naturally by soaking in potable water and allowing it to stand for 12, 24, 48 and 72 hours. At the end of fermentation, the seeds were oven dried at 600C for 12 hours and then milled into flour. Flour obtained from unfermented seeds served as control: hence a total of five flour samples. The functional properties were analyzed using standard methods. Fermentation significantly (p<0.05) increased the water holding capacity of Moringa seed flour from 0.86g/g - 2.31g/g. The highest value was observed after 48 hours of fermentation The same trend was observed for oil absorption capacity with values between 0.87 and 1.91g/g. Flour from unfermented Moringa seeds had a bulk density of 0.60g/cm3 which was significantly (p<0.05) higher than the bulk densities of flours from seeds fermented for 12, 24 and 48. Fermentation significantly (p<0.05) decreased the dispersibility of Moringa seed flours from 36% to 21, 24, 29 and 20% after 12, 24, 48 and 72 hours of fermentation respectively. The flours’ emulsifying capacities increased significantly (p<0.05) with increasing fermentation time with values between 50 – 68%. The flour obtained from seeds fermented for 12 hours had a significantly (p<0.05) higher foaming capacity of 16% while the flour obtained from seeds fermented for 0, 24 and 72 hours had the least foaming capacities of 9%. Flours from seeds fermented for 12 and 48 hours had better functional properties than flours from seeds fermented for 24 and 72 hours.

Keywords: fermentation, flour, functional properties, Moringa

Procedia PDF Downloads 686
3310 Distributed Cost-Based Scheduling in Cloud Computing Environment

Authors: Rupali, Anil Kumar Jaiswal

Abstract:

Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc.  Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively.  Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.

Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model

Procedia PDF Downloads 167