Search results for: reliability modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5738

Search results for: reliability modeling

4238 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities

Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat

Abstract:

The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.

Keywords: maintenance, complexity, simulation, multi-agent systems, AnyLogic platform

Procedia PDF Downloads 305
4237 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling

Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva

Abstract:

Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.

Keywords: energy saving, inverse problem, heat transfer, multilayer walling

Procedia PDF Downloads 397
4236 Cytology Is a Promising Tool for the Diagnosis of High-Grade Serous Ovarian Carcinoma from Ascites

Authors: Miceska Simona, Škof Erik, Frković Grazio Snježana, Jeričević Anja, Smrkolj Špela, Cvjetićanin Branko, Novaković Srdjan, Grčar Kuzmanov Biljana, Kloboves-Prevodnik Veronika

Abstract:

Objectives: High-grade serous ovarian cancer (HGSOC) is characterized by the dissemination of the tumor cells (TC) in the peritoneal cavity forming malignant ascites at the time of diagnosis or recurrence. Still, cytology itself has been underutilized as a modality for the diagnosis of HGSOC from ascites, and histological examination from the tumor tissue is yet the only validated method used. The objective of this study was to evaluate the reliability of cytology in the diagnosis of HGSOC in relation to the histopathological examination. Methods: The study included 42 patients with histologically confirmed HGSOC, accompanied by malignant ascites. To confirm the malignancy of the TC in the ascites and to define their immunophenotype, immunohistochemical reaction (IHC) of the following antigens: Calretinin, MOC, WT1, PAX8, p53, p16 & Ki-67 was evaluated on ascites cytospins and tissue blocks. For complete cytological determination of HGSOC, BRCA 1/2 gene mutation was determined from ascites, tissue block, and blood. BRCA1/2 mutation from blood was performed to define the type of mutation, somatic vs germline. Results: Among 42 patients, the immunophenotype of HGSOC from ascites was confirmed in 36 cases (86%). For more profound analysis, the patients were divided in 3 groups regarding the number of TC present in the ascites: patients with less than 10% TC, 10% TC, and more than 10% TC. From all included patients, in the group with less than 10% TC, there were 10 cases, and only 5 of them(50%) showed HGSOC phenotype; 12 cases had equally 10% of TC, and 11 cases (92%) showed HGSOC phenotype; 20 cases had more than 10% TC and all of them (100%) confirmed the HGSOC immunophenotype from ascites. Only 33 patients were eligible for further BRCA1/2 analysis. Eleven BRCA1/2 mutations were detected from thetissue block: 6 germline and 5 somatic. In 2 cases with less than 10% TC, BRCA1/2 mutation was not detected; 4 cases had 10% TC, and 2 of them (50%) confirmed the mutation; 4 cases had more than 10% TC, and all showed 100% reliability with the tumor tissue. Conclusions: Cytology is a highly reliable method for determining the immunophenotype of HGSOC and BRCA1/2 mutation if more than 10% of tumor cells are present in the ascites. This may present an additional non-invasive clinical approach for fast and effective diagnose in the future, especially in inoperable conditions or relapses.

Keywords: cytology, ascites, high-grade serous ovarian cancer, immunophenotype, BRCA1/2

Procedia PDF Downloads 188
4235 Gender Difference in Social Interaction Skills of Autism Using Token Economy and Video Modelling Strategies

Authors: Olusola Akintunde Adediran

Abstract:

This study examined differential effect of Gender difference in social interaction skill of pupils with autism using token economy and video modeling as intervention strategies. A pretest, posttest, control group, quasi-experimental research design was adopted in the study. 17 participants (11 males and 6 females) were selected purposively from 5 centres in Ibadan and randomized into three groups (token economy, video modeling and control groups). Two instruments were used in the study; Autism Spectrum Rating Scale (ASRS) for 299.00 Autistic Disorder (r = 0.82) and Children’s Self-report Social Skill Scale (CS4) (r= 0.93). A descriptive statistics was used to analyse the participants social interaction data based on intervention and gender, while inferential statistics of analysis of covariance (ANCOVA) and scheffe post-hoc measure was used to anlayse three null hypotheses tested at 0.05 level of significance. The results obtained indicated that there was a significant main effect of treatment on social interaction of participants, but there was no significant of main effect of gender on the social interaction of participants, hence, (F(2,14) = .741; p > .05, eta = .050). Lastly, there was no significant interaction effect of treatment and gender of the participants, hence (F(2,10) = 2.177; p > .05, eta 2 = 202). The study has contributed to the frontiers of knowledge by establishing that social interaction of autism is attainable when token economy and video modelling are used as treatment intervention, hence, they should be adopted by the teachers, curriculum planners and other stakeholders.

Keywords: social interaction, token economy, video modelling, autism, gender

Procedia PDF Downloads 138
4234 The Consumer's Behavior of Bakery Products in Bangkok

Authors: Jiraporn Weenuttranon

Abstract:

The objectives of the consumer behavior of bakery products in Bangkok are to study consumer behavior of the bakery product, to study the essential factors that could possibly affect the consumer behavior and to study recommendations for the development of the bakery products. This research is a survey research. Populations are buyer’s bakery products in Bangkok. The probability sample size is 400. The research uses a questionnaire for self-learning by using information technology. The researcher created a reliability value at 0.71 levels of significance. The data analysis will be done by using the percentage, mean, and standard deviation and testing the hypotheses by using chi-square.

Keywords: consumer, behavior, bakery, standard deviation

Procedia PDF Downloads 482
4233 Investigating Effects of Vehicle Speed and Road PSDs on Response of a 35-Ton Heavy Commercial Vehicle (HCV) Using Mathematical Modelling

Authors: Amal G. Kurian

Abstract:

The use of mathematical modeling has seen a considerable boost in recent times with the development of many advanced algorithms and mathematical modeling capabilities. The advantages this method has over other methods are that they are much closer to standard physics theories and thus represent a better theoretical model. They take lesser solving time and have the ability to change various parameters for optimization, which is a big advantage, especially in automotive industry. This thesis work focuses on a thorough investigation of the effects of vehicle speed and road roughness on a heavy commercial vehicle ride and structural dynamic responses. Since commercial vehicles are kept in operation continuously for longer periods of time, it is important to study effects of various physical conditions on the vehicle and its user. For this purpose, various experimental as well as simulation methodologies, are adopted ranging from experimental transfer path analysis to various road scenario simulations. To effectively investigate and eliminate several causes of unwanted responses, an efficient and robust technique is needed. Carrying forward this motivation, the present work focuses on the development of a mathematical model of a 4-axle configuration heavy commercial vehicle (HCV) capable of calculating responses of the vehicle on different road PSD inputs and vehicle speeds. Outputs from the model will include response transfer functions and PSDs and wheel forces experienced. A MATLAB code will be developed to implement the objectives in a robust and flexible manner which can be exploited further in a study of responses due to various suspension parameters, loading conditions as well as vehicle dimensions. The thesis work resulted in quantifying the effect of various physical conditions on ride comfort of the vehicle. An increase in discomfort is seen with velocity increase; also the effect of road profiles has a considerable effect on comfort of the driver. Details of dominant modes at each frequency are analysed and mentioned in work. The reduction in ride height or deflection of tire and suspension with loading along with load on each axle is analysed and it is seen that the front axle supports a greater portion of vehicle weight while more of payload weight comes on fourth and third axles. The deflection of the vehicle is seen to be well inside acceptable limits.

Keywords: mathematical modeling, HCV, suspension, ride analysis

Procedia PDF Downloads 258
4232 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 112
4231 Home Environment and Self-Efficacy Beliefs among Native American, African American and Latino Adolescents

Authors: Robert H. Bradley

Abstract:

Many minority adolescents in the United States live in adverse circumstances that pose long-term threats to their well-being. A strong sense of personal control and self-efficacy can help youth mitigate some of those risks and may help protect youth from influences connected with deviant peer groups. Accordingly, it is important to identify conditions that help foster feelings of efficacy in areas that seem critical for the accomplishment of developmental tasks during adolescence. The purpose of this study is to examine two aspects of the home environment (modeling and encouragement of maturity, family companionship and investment) and their relation to three components of self efficacy (self efficacy in enlisting social resources, self efficacy for engaging in independent learning, and self-efficacy for self-regulatory behavior) in three groups of minority adolescents (Native American, African American, Latino). The sample for this study included 54 Native American, 131 African American, and 159 Latino families, each with a child between 16 and 20 years old. The families were recruited from four states: Arizona, Arkansas, California, and Oklahoma. Each family was administered the Late Adolescence version of the Home Observation for Measurement of the Environment (HOME) Inventory and each adolescent completed a 30-item measure of perceived self-efficacy. Three areas of self-efficacy beliefs were examined for this study: enlisting social resources, independent learning, and self-regulation. Each of the three areas of self-efficacy was regressed on the two aspects of the home environment plus overall household risk. For Native Americans, modeling and encouragement were significant for self-efficacy pertaining to enlisting social resources and independent learning. For African Americans, companionship and investment was significant in all three models. For Latinos, modeling and encouragement was significant for self-efficacy pertaining to enlisting social resources and companionship and investment were significant for the other two areas of self-efficacy. The findings show that even as minority adolescents are becoming more individuated from their parents, the quality of experiences at home continues to be associated with their feelings of self-efficacy in areas important for adaptive functioning in adult life. Specifically, individuals can develop a sense that they are efficacious in performing key tasks relevant to work, social relationships, and management of their own behavior if they are guided in how to deal with key challenges and they have been exposed and supported by others who are competent in dealing with such challenges. The findings presented in this study would seem useful given that there is so little current research on home environmental factors connected to self-efficacy beliefs among adolescents in the three groups examined. It would seem worthwhile that personnel from health, human service and juvenile justice agencies give attention to supporting parents in communicating with adolescents, offering expectations to adolescents in mutually supportive ways, and in engaging with adolescents in productive activities. In comparison to programs for parents of young children, there are few specifically designed for parents of children in middle childhood and adolescence.

Keywords: family companionship, home environment, household income, modeling, self-efficacy

Procedia PDF Downloads 238
4230 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube

Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan

Abstract:

Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.

Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity

Procedia PDF Downloads 147
4229 The Environmental Impacts of Textiles Reuse and Recycling: A Review on Life-Cycle-Assessment Publications

Authors: Samuele Abagnato, Lucia Rigamonti

Abstract:

Life-Cycle-Assessment (LCA) is an effective tool to quantify the environmental impacts of reuse models and recycling technologies for textiles. In this work, publications in the last ten years about LCA on textile waste are classified according to location, goal and scope, functional unit, waste composition, impact assessment method, impact categories, and sensitivity analysis. Twenty papers have been selected: 50% are focused only on recycling, 30% only on reuse, the 15% on both, while only one paper considers only the final disposal of the waste. It is found that reuse is generally the best way to decrease the environmental impacts of textiles waste management because of the avoided impacts of manufacturing a new item. In the comparison between a product made with recycled yarns and a product from virgin materials, in general, the first option is less impact, especially for the categories of climate change, water depletion, and land occupation, while for other categories, such as eutrophication or ecotoxicity, under certain conditions the impacts of the recycled fibres can be higher. Cultivation seems to have quite high impacts when natural fibres are involved, especially in the land use and water depletion categories, while manufacturing requires a remarkable amount of electricity, with its associated impact on climate change. In the analysis of the reuse processes, relevant importance is covered by the laundry phase, with water consumption and impacts related to the use of detergents. About the sensitivity analysis, it can be stated that one of the main variables that influence the LCA results and that needs to be further investigated in the modeling of the LCA system about this topic is the substitution rate between recycled and virgin fibres, that is the amount of recycled material that can be used in place of virgin one. Related to this, also the yield of the recycling processes has a strong influence on the results of the impact. The substitution rate is also important in the modeling of the reuse processes because it represents the number of avoided new items bought in place of the reused ones. Another aspect that appears to have a large influence on the impacts is consumer behaviour during the use phase (for example, the number of uses between two laundry cycles). In conclusion, to have a deeper knowledge of the impacts of a life-cycle approach of textile waste, further data and research are needed in the modeling of the substitution rate and of the use phase habits of the consumers.

Keywords: environmental impacts, life-cycle-assessment, textiles recycling, textiles reuse, textiles waste management

Procedia PDF Downloads 88
4228 The Moderating Role of Test Anxiety in the Relationships Between Self-Efficacy, Engagement, and Academic Achievement in College Math Courses

Authors: Yuqing Zou, Chunrui Zou, Yichong Cao

Abstract:

Previous research has revealed relationships between self-efficacy (SE), engagement, and academic achievement among students in Western countries, but these relationships remain unknown in college math courses among college students in China. In addition, previous research has shown that test anxiety has a direct effect on engagement and academic achievement. However, how test anxiety affects the relationships between SE, engagement, and academic achievement is still unknown. In this study, the authors aimed to explore the mediating roles of behavioral engagement (BE), emotional engagement (EE), and cognitive engagement (CE) in the association between SE and academic achievement and the moderating role of test anxiety in college math courses. Our hypotheses are that the association between SE and academic achievement was mediated by engagement and that test anxiety played a moderating role in the association. To explore the research questions, the authors collected data through self-reported surveys among 147 students at a northwestern university in China. Self-reported surveys were used to collect data. The motivated strategies for learning questionnaire (MSLQ) (Pintrich, 1991), the metacognitive strategies questionnaire (Wolters, 2004), and the engagement versus disaffection with learning scale (Skinner et al., 2008) were used to assess SE, CE, and BE and EE, respectively. R software was used to analyze the data. The main analyses used were reliability and validity analysis of scales, descriptive statistics analysis of measured variables, correlation analysis, regression analysis, and structural equation modeling (SEM) analysis and moderated mediation analysis to look at the structural relationships between variables at the same time. The SEM analysis indicated that student SE was positively related to BE, EE, and CE and academic achievement. BE, EE, and CE were all positively associated with academic achievement. That is, as the authors expected, higher levels of SE led to higher levels of BE, EE, and CE, and greater academic achievement. Higher levels of BE, EE, and CE led to greater academic achievement. In addition, the moderated mediation analysis found that the path of SE to academic achievement in the model was as significant as expected, as was the moderating effect of test anxiety in the SE-Achievement association. Specifically, test anxiety was found to moderate the association between SE and BE, the association between SE and CE, and the association between EE and Achievement. The authors investigated possible mediating effects of BE, EE, and CE in the associations between SE and academic achievement, and all indirect effects were found to be significant. As for the magnitude of mediations, behavioral engagement was the most important mediator in the SE-Achievement association. This study has implications for college teachers, educators, and students in China regarding ways to promote academic achievement in college math courses, including increasing self-efficacy and engagement and lessening test anxiety toward math.

Keywords: academic engagement, self-efficacy, test anxiety, academic achievement, college math courses, behavioral engagement, cognitive engagement, emotional engagement

Procedia PDF Downloads 93
4227 Statistical and Analytical Comparison of GIS Overlay Modelings: An Appraisal on Groundwater Prospecting in Precambrian Metamorphics

Authors: Tapas Acharya, Monalisa Mitra

Abstract:

Overlay modeling is the most widely used conventional analysis for spatial decision support system. Overlay modeling requires a set of themes with different weightage computed in varied manners, which gives a resultant input for further integrated analysis. In spite of the popularity and most widely used technique; it gives inconsistent and erroneous results for similar inputs while processed in various GIS overlay techniques. This study is an attempt to compare and analyse the differences in the outputs of different overlay methods using GIS platform with same set of themes of the Precambrian metamorphic to obtain groundwater prospecting in Precambrian metamorphic rocks. The objective of the study is to emphasize the most suitable overlay method for groundwater prospecting in older Precambrian metamorphics. Seven input thematic layers like slope, Digital Elevation Model (DEM), soil thickness, lineament intersection density, average groundwater table fluctuation, stream density and lithology have been used in the spatial overlay models of fuzzy overlay, weighted overlay and weighted sum overlay methods to yield the suitable groundwater prospective zones. Spatial concurrence analysis with high yielding wells of the study area and the statistical comparative studies among the outputs of various overlay models using RStudio reveal that the Weighted Overlay model is the most efficient GIS overlay model to delineate the groundwater prospecting zones in the Precambrian metamorphic rocks.

Keywords: fuzzy overlay, GIS overlay model, groundwater prospecting, Precambrian metamorphics, weighted overlay, weighted sum overlay

Procedia PDF Downloads 128
4226 Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines

Authors: V. Radulescu, S. Dumitru

Abstract:

Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number).

Keywords: experimental measurements, numerical correlations, thermal pollution through pipelines, turbulent thermal flow

Procedia PDF Downloads 164
4225 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 26
4224 Computer Network Applications, Practical Implementations and Structural Control System Representations

Authors: El Miloudi Djelloul

Abstract:

The computer network play an important position for practical implementations of the differently system. To implement a system into network above all is needed to know all the configurations, which is responsible to be a part of the system, and to give adequate information and solution in realtime. So if want to implement this system for example in the school or relevant institutions, the first step is to analyze the types of model which is needed to be configured and another important step is to organize the works in the context of devices, as a part of the general system. Often before configuration, as important point is descriptions and documentations from all the works into the respective process, and then to organize in the aspect of problem-solving. The computer network as critic infrastructure is very specific so the paper present the effectiveness solutions in the structured aspect viewed from one side, and another side is, than the paper reflect the positive aspect in the context of modeling and block schema presentations as an better alternative to solve the specific problem because of continually distortions of the system from the line of devices, programs and signals or packed collisions, which are in movement from one computer node to another nodes.

Keywords: local area networks, LANs, block schema presentations, computer network system, computer node, critical infrastructure packed collisions, structural control system representations, computer network, implementations, modeling structural representations, companies, computers, context, control systems, internet, software

Procedia PDF Downloads 365
4223 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 67
4222 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić

Abstract:

The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.

Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR

Procedia PDF Downloads 304
4221 Geoplanology Modeling and Applications Engineering of Earth in Spatial Planning Related with Geological Hazard in Cilegon, Banten, Indonesia

Authors: Muhammad L. A. Dwiyoga

Abstract:

The condition of a spatial land in the industrial park needs special attention to be studied more deeply. Geoplanology modeling can help arrange area according to his ability. This research method is to perform the analysis of remote sensing, Geographic Information System, and more comprehensive analysis to determine geological characteristics and the ability to land on the area of research and its relation to the geological disaster. Cilegon is part of Banten province located in western Java, and the direction of the north is the Strait of Borneo. While the southern part is bordering the Indian Ocean. Morphology study area is located in the highlands to low. In the highlands of identified potential landslide prone, whereas in low-lying areas of potential flooding. Moreover, in the study area has the potential prone to earthquakes, this is due to the proximity of enough research to Mount Krakatau and Subdcution Zone. From the results of this study show that the study area has a susceptibility to landslides located around the District Waringinkurung. While the region as a potential flood areas in the District of Cilegon and surrounding areas. Based on the seismic data, this area includes zones with a range of magnitude 1.5 to 5.5 magnitude at a depth of 1 to 60 Km. As for the ability of its territory, based on the analyzes and studies carried out the need for renewal of the map Spatial Plan that has been made, considering the development of a fairly rapid Cilegon area.

Keywords: geoplanology, spatial plan, geological hazard, cilegon, Indonesia

Procedia PDF Downloads 504
4220 Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field

Authors: Neda Azimi, Masoud Rahimi, Faezeh Mohammadi

Abstract:

Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices.

Keywords: CFD modeling, hydrodynamic, micromixer, ferrofluid, mixing

Procedia PDF Downloads 196
4219 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
4218 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
4217 Decoding Gender Disparities in AI: An Experimental Exploration Within the Realm of AI and Trust Building

Authors: Alexander Scott English, Yilin Ma, Xiaoying Liu

Abstract:

The widespread use of artificial intelligence in everyday life has triggered a fervent discussion covering a wide range of areas. However, to date, research on the influence of gender in various segments and factors from a social science perspective is still limited. This study aims to explore whether there are gender differences in human trust in AI for its application in basic everyday life and correlates with human perceived similarity, perceived emotions (including competence and warmth), and attractiveness. We conducted a study involving 321 participants using a two-subject experimental design with a two-factor (masculinized vs. feminized voice of the AI) multiplied by a two-factor (pitch level of the AI's voice) between-subject experimental design. Four contexts were created for the study and randomly assigned. The results of the study showed significant gender differences in perceived similarity, trust, and perceived emotion of the AIs, with females rating them significantly higher than males. Trust was higher in relation to AIs presenting the same gender (e.g., human female to female AI, human male to male AI). Mediation modeling tests indicated that emotion perception and similarity played a sufficiently mediating role in trust. Notably, although trust in AIs was strongly correlated with human gender, there was no significant effect on the gender of the AI. In addition, the study discusses the effects of subjects' age, job search experience, and job type on the findings.

Keywords: artificial intelligence, gender differences, human-robot trust, mediation modeling

Procedia PDF Downloads 45
4216 Fintech Credit and Bank Efficiency Two-way Relationship: A Comparison Study Across Country Groupings

Authors: Tan Swee Liang

Abstract:

This paper studies the two-way relationship between fintech credit and banking efficiency using the Generalized panel Method of Moment (GMM) estimation in structural equation modeling (SEM). Banking system efficiency, defined as its ability to produce the existing level of outputs with minimal inputs, is measured using input-oriented data envelopment analysis (DEA), where the whole banking system of an economy is treated as a single DMU. Banks are considered an intermediary between depositors and borrowers, utilizing inputs (deposits and overhead costs) to provide outputs (increase credits to the private sector and its earnings). Analysis of the interrelationship between fintech credit and bank efficiency is conducted to determine the impact in different country groupings (ASEAN, Asia and OECD), in particular the banking system response to fintech credit platforms. Our preliminary results show that banks do respond to the greater pressure caused by fintech platforms to enhance their efficiency, but differently across the different groups. The author’s earlier research on ASEAN-5 high bank overhead costs (as a share of total assets) as the determinant of economic growth suggests that expenses may not have been channeled efficiently to income-generating activities. One practical implication of the findings is that policymakers should enable alternative financing, such as fintech credit, as a warning or encouragement for banks to improve their efficiency.

Keywords: fintech lending, banking efficiency, data envelopment analysis, structural equation modeling

Procedia PDF Downloads 91
4215 Influence of Gender Inequality on Pre – Primary School Children’s Literacy Skills Development in Ojo Local Government Area, Lagos State

Authors: Morenikeji Aliu Balaji

Abstract:

Gender inequality is seen as persistent discrimination of one group of people based gender, and it manifests itself differently according to race, culture, politics, country and economic situation. Multiple explanations have been offered for gender differences in literacy skill development. Three prominent explanations that precipitated the gender differences are; biological, where the assumption is that differential brain structures and hemispheric activation patterns cause the sexes to be hardwired differently for reading, with girls developing the cognitive skills associated with reading before boys. Secondly, schooling favour girls and ‘girly’ behaviour, and that boys are, as a result, lagging behind on several behavioural, social and academic measures and thirdly, cultural influences, where literacy is defined as a feminine characteristic – propagated by an overrepresentation of female teachers – and that modern culture steers boys towards activities such as sport and computers. Therefore the study investigated the influence of gender inequality on pre – primary school children literacy skills development in Ojo Local Government Area, Lagos State. Descriptive survey research design was adopted for the study. 100 pre-primary school teachers were involved in the study. A self-designed instrument was used for data collection titled ‘Influence of Gender Inequality on Literacy Skill Development in Children Questionnaire (IGILSDCQ)’. The instrument was validated and tested for reliability. The reliability index for IGILSDCQ (α = 0.79). Five research questions were answered using descriptive (frequency count, simple percentage, mean and standard deviation). The findings showed that that gender inequality to some extent influence children phonemic awareness (WA=1.76), the extent to which gender inequality influence children awareness of print is high (WA=2.8), gender inequality to some extent influence children vocabulary development (WA = 2.4), the extent to which gender inequality influence children speaking skill development is high (WA = 2.5) and lastly, the extent to which gender inequality influence children comprehension ability is high (WA = 2.5). It was recommended among others that effort by the school administrators is necessary in the provision of reading materials and literacy skill development packages that are both male-oriented and female-oriented.

Keywords: pre-primart, literacy, awareness, phonemic, gender

Procedia PDF Downloads 28
4214 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011

Authors: S. Abera, T. Gidey, W. Terefe

Abstract:

Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.

Keywords: data mining, HIV, testing, ethiopia

Procedia PDF Downloads 496
4213 Docking, Pharmacophore Modeling and 3d QSAR Studies on Some Novel HDAC Inhibitors with Heterocyclic Linker

Authors: Harish Rajak, Preeti Patel

Abstract:

The application of histone deacetylase inhibitors is a well-known strategy in prevention of cancer which shows acceptable preclinical antitumor activity due to its ability of growth inhibition and apoptosis induction of cancer cell. Molecular docking were performed using Histone Deacetylase protein (PDB ID:1t69) and prepared series of hydroxamic acid based HDACIs. On the basis of docking study, it was predicted that compound 1 has significant binding interaction with HDAC protein and three hydrogen bond interactions takes place, which are essential for antitumor activity. On docking, most of the compounds exhibited better glide score values between -8 to -10 which is close to the glide score value of suberoylanilide hydroxamic acid. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. The 3D-QSAR models provided a good correlation between predicted and actual anticancer activity. Best QSAR model showed Q2 (0.7974), R2 (0.9200) and standard deviation (0.2308). QSAR visualization maps suggest that hydrogen bond acceptor groups at carbonyl group of cap region and hydrophobic groups at ortho, meta, para position of R9 were favorable for HDAC inhibitory activity. We established structure activity correlation using docking, pharmacophore modeling and atom based 3D QSAR model for hydroxamic acid based HDACIs.

Keywords: HDACIs, QSAR, e-pharmacophore, docking, suberoylanilide hydroxamic acid

Procedia PDF Downloads 302
4212 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 428
4211 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 428
4210 3D Visualization for the Relationship of the Urban Rule and Building Form by Using CityEngine

Authors: Chin Ku, Han liang Lin

Abstract:

The purpose of this study is to visualize how the rule related to urban design influences the building form by 3D modeling software CityEngine. In order to make the goal of urban design clearly connect to urban form, urban planner or designer should understand how the rule affects the form, especially the building form. In Taiwan, the rule pertained to urban design includes traditional zoning, urban design review and building codes. However, zoning cannot precisely expect the outcome of building form and lack of thinking about public realm and 3D form. In addition to that, urban design review is based on case by case, do not have a comprehensive regulation plan and the building code is just for general regulation. Therefore, rule cannot make the urban form reach the vision or goal of the urban design. Consequently, another kind of zoning called Form-based code (FBC) has arisen. This study uses the component of FBC which pertained to urban fabric such as street width, block and plot size, etc., to be the variants of building form, and find out the relationship between the rule and building form. There are three stages of this research, it will start from a field survey of Taichung City in Taiwan to induce the rule-building form relationship by using cluster analysis and descriptive Statistics. Second, visualize the relationship through the parameterized and codified process in CityEngine which is the procedural modeling, and can analyze, monitor and visualize the 3D world. Last, compare the CityEngine result with real world to examine how extent do this model represent the real world appearance.

Keywords: 3D visualization, CityEngine, form-based code, urban form

Procedia PDF Downloads 550
4209 Equipment Design for Lunar Lander Landing-Impact Test

Authors: Xiaohuan Li, Wangmin Yi, Xinghui Wu

Abstract:

In order to verify the performance of lunar lander structure, landing-impact test is urgently needed. Moreover, the test equipment is necessary for the test. The functions and the key points of the equipment is presented to satisfy the requirements of the test,and the design scheme is proposed. The composition, the major function and the critical parts’ design of the equipment are introduced. By the load test of releasing device and single-beam hoist, and the compatibility test of landing-impact testing system, the rationality and reliability of the equipment is proved.

Keywords: landing-impact test, lunar lander, releasing device, test equipment

Procedia PDF Downloads 622