Search results for: limit states design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16144

Search results for: limit states design

14644 Portrayal of Women in Television Advertisement

Authors: Priya Sarah Vijoy

Abstract:

The aim of this study is to analyze the Portrayal of women in Television Advertisements. This research study is conducted to analyze how women are portrayed in Television Advertisements. Advertising dates back to several hundreds of years. Right from the beginning, the seller wanted his goods to be sold and he used various techniques for achieving his objective. Advertisements have consistently confined women to traditional mother, home, or beauty/sex-oriented roles that are not representative of women’s diversity. Currently, in our society the television stereotyping of woman is the dominating forces in the media that degrade women and limit their representation. Thus the study analyzes how women are portrayed in Television advertisements and find whether roles of women in Television Advertisement are related to the product or not.

Keywords: advertising, stereotyping, television, women

Procedia PDF Downloads 430
14643 Reshoring Strategies for Enhanced Supply Chain Resilience: A Comprehensive Analysis of Procurement Challenges and Solutions in the United States

Authors: Emilia Segun-Ajao

Abstract:

The strategy of relocation aimed at strengthening supply chain resilience in the United States is examined, taking into account recent global disturbances and vulnerabilities in offshore manufacturing. It explains the procurement challenges faced by enterprises and offers solutions to mitigate risks and improve resilience. Through the analysis of innovative approaches, including technological advances, policy considerations, and strategic frameworks, this study provides insights to decision-makers about the complexity of supply chain management. Reshoring has gained attention as a strategy to improve supply chain resilience in the face of global disruptions. This analysis focuses on the importance of relocating as a multifaceted approach to strengthening supply chains, advocating economic benefits, technological advances, and policy frameworks to create a more robust supply landscape in the United States.

Keywords: collaborative partnerships, supply chain resilience, procurement challenges, technology adoption

Procedia PDF Downloads 43
14642 Two Points Crossover Genetic Algorithm for Loop Layout Design Problem

Authors: Xu LiYun, Briand Florent, Fan GuoLiang

Abstract:

The loop-layout design problem (LLDP) aims at optimizing the sequence of positioning of the machines around the cyclic production line. Traffic congestion is the usual criteria to minimize in this type of problem, i.e. the number of additional cycles spent by each part in the network until the completion of its required routing sequence of machines. This paper aims at applying several improvements mechanisms such as a positioned-based crossover operator for the Genetic Algorithm (GA) called a Two Points Crossover (TPC) and an offspring selection process. The performance of the improved GA is measured using well-known examples from literature and compared to other evolutionary algorithms. Good results show that GA can still be competitive for this type of problem against more recent evolutionary algorithms.

Keywords: crossover, genetic algorithm, layout design problem, loop-layout, manufacturing optimization

Procedia PDF Downloads 267
14641 Exploring Labor Market Participation of Highly Skilled Immigrant Women in the United States: Barriers and Strategies

Authors: Yurdum Cokadar

Abstract:

The United States is the country where the majority of highly skilled immigrants are hosted. Two-thirds of foreign-born migrants from Turkey - an underrepresented and understudied immigrant group in the United States - are highly skilled. Generated by the aim of filling this gap in the literature, the motivation of this research is to understand highly skilled Turkish immigrant women’s integration into the U.S. labor market, including barriers that they face and strategies they develop to rebuild their career after relocation. The in-depth interviews of 20 highly skilled Turkish women residing in the U.S. revealed that the majority of women participants are either not integrated into the labor market, occupy positions below their skill, or cannot reach the same upper segments of the labor market in the host country, arising from a range of structural and personal barriers interplaying in their career trajectories. Furthermore, many of them cannot transfer their social and cultural capital gained in their home country into the United States. The labor market participation process of these women is analyzed in the light of Bourdieu’s theory of capital and the intersectional approach of gender, class and ethnicity in order to understand the positions of highly skilled immigrant women in the host country labor market.

Keywords: deskilling, gender, class and ethnicity, highly skilled women immigrants, integration into the U.S. the labor market, labor market participation, skilled migration, theory of capital

Procedia PDF Downloads 179
14640 Zero Cross-Correlation Codes Based on Balanced Incomplete Block Design: Performance Analysis and Applications

Authors: Garadi Ahmed, Boubakar S. Bouazza

Abstract:

The Zero Cross-Correlation (C, w) code is a family of binary sequences of length C and constant Hamming-weight, the cross correlation between any two sequences equal zero. In this paper, we evaluate the performance of ZCC code based on Balanced Incomplete Block Design (BIBD) for Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) system using direct detection. The BER obtained is better than 10-9 for five simultaneous users.

Keywords: spectral amplitude coding-optical code-division-multiple-access (SAC-OCDMA), phase induced intensity noise (PIIN), balanced incomplete block design (BIBD), zero cross-correlation (ZCC)

Procedia PDF Downloads 357
14639 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia

Authors: Erika Ruíz, Luis Amaya, Diego Carreño

Abstract:

The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).

Keywords: location routing problem, logistic, mining collection, model

Procedia PDF Downloads 210
14638 Two Axial, Quick Mounting and Easily Adjustable Fixturing System

Authors: Özgür Cavbozar, Rasih Hakan Demirkol

Abstract:

In many industries, it is occasionally essential to mount heavy modules to stationary racks or constructions in correct position in minimum time. With the rapid advancement in technology, consumption has increased. Therefore, to meet the higher demands, manufacturers should develope innovative methods to produce and store rapidly manufactured products faster. It is usually very tough to fix the heavy modules in two axes in correct position with fasteners like bolts. This paper represents a design solution for fixing the heavy modules to their racks of stationary shelves exactly with minimum effort. The design solution for a particular study has been proposed. Regarding quick mounting and easily adjustable operations for heavy modules, design and production suggestions have been carried out.

Keywords: exact mounting, mounting of heavy modules, quick mounting, two axial fixturing

Procedia PDF Downloads 69
14637 Status and Results from EXO-200

Authors: Ryan Maclellan

Abstract:

EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.

Keywords: double-beta, Majorana, neutrino, neutrinoless

Procedia PDF Downloads 404
14636 Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm

Authors: Ramnath Narhete, Saket Pandey, Puran Gour

Abstract:

This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network.

Keywords: genetic algorithm, dual-band E, dual-band L, WLAN, compact radiator

Procedia PDF Downloads 570
14635 Influence of Driving Speed on Bearing Capacity Measurement of Intra-Urban Roads with the Traffic Speed Deflectometer(Tsd)

Authors: Pahirangan Sivapatham, Barbara Esser, Andreas Grimmel

Abstract:

In times of limited public funds and, in particular, an increased social, environmental awareness, as well as the limited availability of construction materials, sustainable and resource-saving pavement management system, is becoming more and more important. Therefore, the knowledge about the condition of the structural substances, particularly bearing capacity and its consideration while planning the maintenance measures of the subordinate network, i.e., state and municipal roads unavoidable. According to the experience, the recommended ride speed of the Traffic Speed Deflectometer (TSD) shall be higher than 40 km/h. Holding of this speed on the intra-urban roads is nearly not possible because of intersections and traffic lights as well as the speed limit. A sufficient background of experience for the evaluation of bearing capacity measurements with TSD in the range of lower speeds is not available yet. The aim of this study is to determine the possible lowest ride speed of the TSD while the bearing capacity measurement on the intra-urban roads. The manufacturer of the TSD used in this study states that the measurements can be conducted at a ride speed of higher than 5 km/h. It is well known that with decreasing ride speed, the viscous fractions in the response of the asphalt pavement increase. This must be taken into account when evaluating the bearing capacity data. In the scope of this study, several measurements were carried out at different speeds between 10 km/h and 60 km/h on the selected intra-urban roads with Pavement-Scanner of the University of Wuppertal, which is equipped with TSD. Pavement-Scanner is able to continuously determine the deflections of asphalt roads in flowing traffic at speeds of up to 80 km/h. The raw data is then aggregated to 10 m mean values so that, as a rule, a bearing capacity characteristic value can be determined for each 10 m road section. By means of analysing of obtained test results, the quality and validity of the determined data rate subject to the riding speed of TSD have been determined. Moreover, the data and pictures of the additional measuring systems of Pavement-Scanners such as High-Speed Road Monitor, Ground Penetration Radar and front cameras can be used to determine and eliminate irregularities in the pavement, which could influence the bearing capacity.

Keywords: bearing capacity measurement, traffic speed deflectometer, inter-urban roads, Pavement-Scanner, structural substance

Procedia PDF Downloads 224
14634 Evolution of Propiconazole and Tebuconazole Residues through the Post-Harvest Application in 'Angeleno' Plum

Authors: M. J. Rodríguez, F. M. Sánchez, B. Velardo, P. Calvo, M. J. Serradilla, J. Delgado, J. M. López

Abstract:

The main problems in storage and later transport of fruits, are the decays developed that reduce the quality on destination’s markets. Nowadays, there is an increasing interest in the use of compounds to avoid decays in post-harvest. Triazole fungicides are agrochemicals widely used in the agricultural industry due to their wide spectrum of actions, and in some case, they are used in citrus fruit post-harvest. Moreover, its use is not authorized in plum post-harvest, but in order to a future possible authorization, the evolutions of propiconazole and tebuconazole residues are studied after its post-harvest application in ‘Angeleno’ plum.

Keywords: maximum residue limit (MRL), triazole fungicides, decay, Prunus salicina

Procedia PDF Downloads 306
14633 Spin-Dependent Transport Signatures of Bound States: From Finger to Top Gates

Authors: Yun-Hsuan Yu, Chi-Shung Tang, Nzar Rauf Abdullah, Vidar Gudmundsson

Abstract:

Spin-orbit gap feature in energy dispersion of one-dimensional devices is revealed via strong spin-orbit interaction (SOI) effects under Zeeman field. We describe the utilization of a finger-gate or a top-gate to control the spin-dependent transport characteristics in the SOI-Zeeman influenced split-gate devices by means of a generalized spin-mixed propagation matrix method. For the finger-gate system, we find a bound state in continuum for incident electrons within the ultra-low energy regime. For the top-gate system, we observe more bound-state features in conductance associated with the formation of spin-associated hole-like or electron-like quasi-bound states around band thresholds, as well as hole bound states around the reverse point of the energy dispersion. We demonstrate that the spin-dependent transport behavior of a top-gate system is similar to that of a finger-gate system only if the top-gate length is less than the effective Fermi wavelength.

Keywords: spin-orbit, zeeman, top-gate, finger-gate, bound state

Procedia PDF Downloads 257
14632 Designing Social Media into Higher Education Courses

Authors: Thapanee Seechaliao

Abstract:

This research paper presents guiding on how to design social media into higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about guiding on how to design social media into higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by frequency and percentage. The research results were the lecturers’ opinions concerning the designing social media into higher education courses as follows: 1) Lecturers deem that the most suitable learning theory is Collaborative Learning. 2) Lecturers consider that the most important learning and innovation Skill in the 21st century is communication and collaboration skills. 3) Lecturers think that the most suitable evaluation technique is authentic assessment. 4) Lecturers consider that the most appropriate portion used as blended learning should be 70% in the classroom setting and 30% online.

Keywords: instructional design, social media, courses, higher education

Procedia PDF Downloads 504
14631 Design and Analysis of Piping System with Supports Using CAESAR-II

Authors: M. Jamuna Rani, K. Ramanathan

Abstract:

A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.

Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II

Procedia PDF Downloads 352
14630 Aircraft Pitch Attitude Control Using Backstepping

Authors: Labane Chrif

Abstract:

A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control.

Keywords: nonlinear control, backstepping, aircraft control, Lyapunov function, longitudinal model

Procedia PDF Downloads 569
14629 A Modularized Sensing Platform for Sensor Design Demonstration

Authors: Chun-Ming Huang, Yi-Jun Liu, Yi-Jie Hsieh, Jin-Ju Chue, Wei-Lin Lai, Chun-Yu Chen, Chih-Chyau Yang, Chien-Ming Wu

Abstract:

The market of wearable devices has been growing rapidly in two years. The integration of sensors and wearable devices has become the trend of the next technology products. Thus, the academics and industries are eager to cultivate talented persons in sensing technology. Currently, academic and industries have more and more demands on the integrations of versatile sensors and applications, especially for the teams who focus on the development of sensor circuit architectures. These teams tape-out many MEMs sensors chips through the chip fabrication service from National Chip Implementation Center (CIC). However, most of these teams are only able to focus on the circuit design of MEMs sensors; they lack the key support of further system demonstration. This paper follows the CIC’s main mission of promoting the chip/system advanced design technology and aims to establish the environments of the modularized sensing system platform and the system design flow with the measurement and calibration technology. These developed environments are used to support these research teams and help academically advanced sensor designs to perform the system demonstration. Thus, the research groups can promote and transfer their advanced sensor designs to industrial and further derive the industrial economic values. In this paper, the modularized sensing platform is proposed to enable the system demonstration for advanced sensor chip design. The environment of sensor measurement and calibration is established for academic to achieve an accurate sensor result. Two reference sensor designs cooperated with the modularized sensing platform are given to show the sensing system integration and demonstration. These developed environments and platforms are currently provided to academics in Taiwan, and so that the academics can obtain a better environment to perform the system demonstration and improve the research and teaching quality.

Keywords: modularized sensing platform, sensor design and calibration, sensor system, sensor system design flow

Procedia PDF Downloads 228
14628 Comparing Measurements of UV Radiation in Winter and Summer in Finland

Authors: R. Pääkkönen, L. Korpinen, F. Gobba

Abstract:

The objective of our study is to investigate UV exposure in Finland through sample measurements as a typical case study in summer and winter. We measured UV-BC weighted radiation and calculated a daily dose, which is about 100–150 times the Finnish exposure limit value in summer and 1–6 times in winter. The measured ultraviolet indices varied from 0 to 7 (scale 0–18), which is less than the values obtained in countries that are located farther south from Tampere latitude of 61 degrees. In wintertime, the UV exposure was modest compared to summertime, 50–150 mW/m2 and about 1–5 mW/m2 in summer and winter, respectively. However, technical means to manage UV exposure in Scandinavia are also needed in summer- and springtime.

Keywords: ultraviolet radiation, measurement, winter, summer

Procedia PDF Downloads 163
14627 Conceptual Design of Experimental Helium Cooling Loop for Indian TBM R&D Experiments

Authors: B. K. Yadav, A. Gandhi, A. K. Verma, T. S. Rao, A. Saraswat, E. R. Kumar, M. Sarkar, K. N. Vyas

Abstract:

This paper deals with the conceptual design of Experimental Helium Cooling Loop (EHCL) for Indian Test Blanket Module (TBM) and its related thermal hydraulic experiments. Indian TBM team is developing Lead Lithium cooled Ceramic Breeder (IN-LLCB) TBM to be tested in ITER. The TBM box structure is cooled by high pressure (8 MPa) and high temperature (300-500C) helium gas. The first wall of TBM made of complex channel geometry having several parallel channels carrying helium gas for efficient heat extraction. Several mock-ups of these channels need to be tested before finalizing the TBM first wall design and fabrication. Besides the individual testing of such mock-ups of breeding blanket, the testing of Pb-Li to helium heat exchanger, the operational experience of helium loop and understanding of the behaviour of high pressure and high temperature system components are very essential for final development of Helium Cooling System for LLCB TBM in ITER. The main requirements and characteristics of the EHCL and its conceptual design are presented in this paper.

Keywords: DEMO, EHCL, ITER, LLCB TBM

Procedia PDF Downloads 373
14626 Mannequin Evaluation of 3D-Printed Intermittent Oro-Esophageal Tube Guide for Dysphagia

Authors: Yujin Jeong, Youkyung Son, Myounghwan Choi, Sanghyub Lee, Sangyeol Lee, Changho Hwang, Kyo-in Koo

Abstract:

Dysphasia is difficulty in swallowing food because of oral cavity impairments induced by stroke, muscle damage, tumor. Intermittent oro-esophageal (IOE) tube feeding is one of the well-known feeding methods for the dysphasia patients. However, it is hard to insert at the proper position in esophagus. In this study, we design and fabricate the IOE tube guide using 3-dimensional (3D) printer. The printed IOE tube is tested in a mannequin (Airway Management Trainer, Co., Ltd., Copenhagen, Denmark) mimicking human’s esophagus. The gag reflex point is measured as the design point in the mannequin. To avoid the gag reflex, we design various shapes of IOE tube guide. One structure is separated into three parts; biting part, part through oral cavity, connecting part to oro-esophageal. We designed 6 types of IOE tube guide adjusting length and angle of these three parts. To evaluate the IOE tube guide, it is inserted in the mannequin, and through the inserted guide, an endoscopic camera successfully arrived at the oro-esophageal. We had planned to apply this mannequin-based design experience to patients in near future.

Keywords: dysphagia, feeding method, IOE tube guide, 3-D printer

Procedia PDF Downloads 420
14625 Smart Interior Design: A Revolution in Modern Living

Authors: Fatemeh Modirzare

Abstract:

Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.

Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design

Procedia PDF Downloads 60
14624 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand

Authors: Napat Watjanatepin, Wikorn Wong-Satiean

Abstract:

The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.

Keywords: PV-Wind hybrid autonomous system, greenhouse plantation, fogging system, central part of Thailand

Procedia PDF Downloads 304
14623 Intercultural Intelligence: How to Turn Cultural Difference into a Key Added Value with Tree Lighting Design Project Examples

Authors: Fanny Soulard

Abstract:

Today work environment is more multicultural than ever: spatial limits have been blown out, encouraging people and ideas mobility all around the globe. Indeed, opportunities to design with culturally diverse team workers, clients, or end-users, have become within everyone's reach. We enjoy traveling to discover other civilizations, but when it comes to business, we often take for granted that our own work methodology will be generic enough to federate each party and cover the project needs. This paper aims to explore why, by skipping cultural awareness, we often create misunderstandings, frustration, and even counterproductive design. Tree lighting projects successively developed by a French lighting studio, a Vietnamese lighting studio, and an Australian Engineering company will be assessed from their concept stage to completion. All these study cases are based in Vietnam, where the construction market is equally led by local and international consultants. Core criteria such as lighting standard reference, service scope, communication tools, internal team organization, delivery package content, key priorities, and client relationship will help to spot and list when and how cultural diversity has impacted the design output and effectiveness. On the second hand, we will demonstrate through the same selected projects how intercultural intelligence tools and mindset can not only respond positively to previous situations and avoid major clashes but also turn cultural differences into a key added value to generate significant benefits for individuals, teams, and companies. By understanding the major importance of including a cultural factor within any design, intercultural intelligence will quickly turn out as a “must have” skill to be developed and acquired by any designer.

Keywords: intercultural intelligence, lighting design, work methodology, multicultural diversity

Procedia PDF Downloads 82
14622 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 225
14621 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit

Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah

Abstract:

This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.

Keywords: CMOS process sensor, PVT sensor, threshold extractor circuit, Vth extractor circuit

Procedia PDF Downloads 168
14620 Performance Enhancement of Hybrid Racing Car by Design Optimization

Authors: Tarang Varmora, Krupa Shah, Karan Patel

Abstract:

Environmental pollution and shortage of conventional fuel are the main concerns in the transportation sector. Most of the vehicles use an internal combustion engine (ICE), powered by gasoline fuels. This results into emission of toxic gases. Hybrid electric vehicle (HEV) powered by electric machine and ICE is capable of reducing emission of toxic gases and fuel consumption. However to build HEV, it is required to accommodate motor and batteries in the vehicle along with engine and fuel tank. Thus, overall weight of the vehicle increases. To improve the fuel economy and acceleration, the weight of the HEV can be minimized. In this paper, the design methodology to reduce the weight of the hybrid racing car is proposed. To this end, the chassis design is optimized. Further, attempt is made to obtain the maximum strength with minimum material weight. The best configuration out of the three main configurations such as series, parallel and the dual-mode (series-parallel) is chosen. Moreover, the most suitable type of motor, battery, braking system, steering system and suspension system are identified. The racing car is designed and analyzed in the simulating software. The safety of the vehicle is assured by performing static and dynamic analysis on the chassis frame. From the results, it is observed that, the weight of the racing car is reduced by 11 % without compromising on safety and cost. It is believed that the proposed design and specifications can be implemented practically for manufacturing hybrid racing car.

Keywords: design optimization, hybrid racing car, simulation, vehicle, weight reduction

Procedia PDF Downloads 285
14619 Voters' Acceptance of Anti-guardians' Narratives: Electoral Politics in Establishmentarian Democracies

Authors: Rai Mansoor Imtiaz

Abstract:

Guardians in hybrid regimes fragment opposition parties and ban their political leaders, and disenfranchise their voters' political participation. When guardians in hybrid regimes are so powerful that they remain decisive on electoral politics of states, and have powers to ban political parties and their leadership, then "why do political parties backed by those powerful guardians lose elections" and "how do anti-establishment parties make electoral inroads at the local and national levels." These two questions are interrelated with the key research question of my research "why do people vote for political parties rejected by powerful guardians in establishmentarian democracies." Furthermore, this research question is important to be explored for two reasons. First, existing literature only reflects the electoral victories of opposition parties or defeats of military-sponsored parties (see Thailand and Turkey) but remains silent on political change that led the anti-military parties to win the elections. Second, why is it a case that people belonging to the countries where militaries remain popular among the public (see Turkey and Pakistan) have started putting their trust in anti-establishment politicians who criticise the military against their intervention in politics? For instance, in Pakistan, where commenting against the military is meant to comment against the state –– an anti-military narrative is getting popular support. The conceptual framework of hybrid states in this research relies on the concept of a 'reserved domain/tutelary body' (guardians of hybrid states). However, this research makes a case that hybrid states are not consolidated separate political entities but rather vacillated states that fluctuate between democratic and authoritarian practices. This paper, therefore, uses the term establishmentarian democracy as a subtype of the hybrid regime, which is more consolidated than a hybrid democracy.

Keywords: Guardians, Hybrid Regimes, Voters, Elections, Democracy, South Asia

Procedia PDF Downloads 96
14618 Improvement of Fixed Offshore Structures' Boat Landing Performance Using Practicable Design Criteria

Authors: A. Hamadelnil, Z. Razak, E. Matsoom

Abstract:

Boat landings on fixed offshore structure are designed to absorb the impact energy from the boats approaching the platform for crew transfer. As the size and speed of operating boats vary, the design and maintenance of the boat landings become more challenging. Different oil and gas operators adopting different design criteria for the boat landing design in the region of South East Asia. Rubber strip is used to increase the capacity of the boat landing in absorbing bigger impact energy. Recently, it has been reported that all the rubber strips peel off the boat landing frame within one to two years, and replacement is required to avoid puncturing of the boat’s hull by the exposed sharp edges and bolts used to secure the rubber strip. The capacity of the boat landing in absorbing the impact energy is reduced after the failure of the rubber strip and results in failure of the steel members. The replacement of the rubber strip is costly as it requires a diving spread. The objective of this study is to propose the most practicable criteria to be adopted by oil and gas operators in the design of the boat landings in the region of South East Asia to improve the performance of the boat landing and assure safe operation and cheaper maintenance. This study explores the current design and maintenance challenges of boat landing and compares between the criteria adopted by different operators. In addition, this study explains the reasons behind the denting of many of the boat landing. It also evaluates the effect of grout and rubber strip in the capacity of the boat landing and jacket legs and highlight. Boat landing model and analysis using USFOS and SACS software are carried out and presented in this study considering different design criteria. This study proposes the most practicable criteria to be used in designing the boat landing in South East Asia region to save cost and achieve better performance, safe operation and less cost and maintenance.

Keywords: boat landing, grout, plastic hinge, rubber strip

Procedia PDF Downloads 283
14617 The Co-Simulation Interface SystemC/Matlab Applied in JPEG and SDR Application

Authors: Walid Hassairi, Moncef Bousselmi, Mohamed Abid

Abstract:

Functional verification is a major part of today’s system design task. Several approaches are available for verification on a high abstraction level, where designs are often modeled using MATLAB/Simulink. However, different approaches are a barrier to a unified verification flow. In this paper, we propose a co-simulation interface between SystemC and MATLAB and Simulink to enable functional verification of multi-abstraction levels designs. The resulting verification flow is tested on JPEG compression algorithm. The required synchronization of both simulation environments, as well as data type conversion is solved using the proposed co-simulation flow. We divided into two encoder jpeg parts. First implemented in SystemC which is the DCT is representing the HW part. Second, consisted of quantization and entropy encoding which is implemented in Matlab is the SW part. For communication and synchronization between these two parts we use S-Function and engine in Simulink matlab. With this research premise, this study introduces a new implementation of a Hardware SystemC of DCT. We compare the result of our simulation compared to SW / SW. We observe a reduction in simulation time you have 88.15% in JPEG and the design efficiency of the supply design is 90% in SDR.

Keywords: hardware/software, co-design, co-simulation, systemc, matlab, s-function, communication, synchronization

Procedia PDF Downloads 389
14616 Pressure Surge Analysis for Al Gardabiya Pump Station Phase III of the Man-Made River Project

Authors: Ahmed Bensreti, Mohamed Gouarsha

Abstract:

This paper presents a review of the pressure surge simulations carried out for Phase III of the Man Made River project in Libya with particular emphasis on the transient generated by simultaneous pump trips at Al Gardabiya Pump Station. The omission of the surge vessel check valve and bypass system on the grounds of cost, ease of design, and construction will result in, as expected, increased surge fluctuations as the damping effect in the form was removed. From the hydraulic and control requirements, it is recommended for Al Gardabiya Pump station that the check valve and check valve bypass be included in the final surge vessel design.

Keywords: computational fluid dynamics, surge vessel design, transient surge analysis, water pipe hydraulics

Procedia PDF Downloads 60
14615 Assessment of the Effect of Building Materials on Indoor Comfort and Energy Demand of Residential Buildings in Jos: An Experimental and Numerical Approach

Authors: Selfa Johnson Zwalnan, Nanchen Nimyel Caleb, Gideon Duvuna Ayuba

Abstract:

Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the somewhat lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio of external opening area to the area of the external walls). This result shows that the innovative building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.

Keywords: building simulation, solar gain, comfort temperature, temperature, carbon foot print

Procedia PDF Downloads 87