Search results for: hybrid frequent subgraph mining
2219 Evaluation of Arsenic Removal in Soils Contaminated by the Phytoremediation Technique
Authors: V. Ibujes, A. Guevara, P. Barreto
Abstract:
Concentration of arsenic represents a serious threat to human health. It is a bioaccumulable toxic element and is transferred through the food chain. In Ecuador, values of 0.0423 mg/kg As are registered in potatoes of the skirts of the Tungurahua volcano. The increase of arsenic contamination in Ecuador is mainly due to mining activity, since the process of gold extraction generates toxic tailings with mercury. In the Province of Azuay, due to the mining activity, the soil reaches concentrations of 2,500 to 6,420 mg/kg As whereas in the province of Tungurahua it can be found arsenic concentrations of 6.9 to 198.7 mg/kg due to volcanic eruptions. Since the contamination by arsenic, the present investigation is directed to the remediation of the soils in the provinces of Azuay and Tungurahua by phytoremediation technique and the definition of a methodology of extraction by means of analysis of arsenic in the system soil-plant. The methodology consists in selection of two types of plants that have the best arsenic removal capacity in synthetic solutions 60 μM As, a lower percentage of mortality and hydroponics resistance. The arsenic concentrations in each plant were obtained from taking 10 ml aliquots and the subsequent analysis of the ICP-OES (inductively coupled plasma-optical emission spectrometry) equipment. Soils were contaminated with synthetic solutions of arsenic with the capillarity method to achieve arsenic concentration of 13 and 15 mg/kg. Subsequently, two types of plants were evaluated to reduce the concentration of arsenic in soils for 7 weeks. The global variance for soil types was obtained with the InfoStat program. To measure the changes in arsenic concentration in the soil-plant system, the Rhizo and Wenzel arsenic extraction methodology was used and subsequently analyzed with the ICP-OES (optima 8000 Pekin Elmer). As a result, the selected plants were bluegrass and llanten, due to the high percentages of arsenic removal of 55% and 67% and low mortality rates of 9% and 8% respectively. In conclusion, Azuay soil with an initial concentration of 13 mg/kg As reached the concentrations of 11.49 and 11.04 mg/kg As for bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.79 and 11.10 mg/kg As for blue grass and llanten after 7 weeks. For the Tungurahua soil with an initial concentration of 13 mg/kg As it reached the concentrations of 11.56 and 12.16 mg/kg As for the bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.97 and 12.27 mg/kg Ace for bluegrass and llanten after 7 weeks. The best arsenic extraction methodology of soil-plant system is Wenzel.Keywords: blue grass, llanten, phytoremediation, soil of Azuay, soil of Tungurahua, synthetic arsenic solution
Procedia PDF Downloads 1012218 Musculoskeletal Pain, Work Characteristics and Presenteeism among Hotel Employees
Authors: Ruey-Yu Chen, Yao-Tsung Chang, Ching-Ying Yeh, Yu-Ting Huang
Abstract:
Musculoskeletal problems in the hotel sector have been little studied. The aim of this study was to examine relationships of musculoskeletal pain and work characteristics with presenteeism, i.e., feeling sick but going to work anyway. Data of a self-reported questionnaire were collected from 1,101 employees, who joined the study on a voluntary basis from four hotels in northern Taiwan. The results showed that respondents who were female, were younger, had a higher educational level, and worked in the real-service department had higher presenteeism. There were significant positive associations between presenteeism and heavy loads, frequent beatings or hits of hard objects, improper bench height, employees’ lower limb and lower back pain. Our study results imply that knowledge of work characteristics and employees' musculoskeletal problems could be advantageously used to reduce presenteeism in the workplace.Keywords: musculoskeletal pain, absenteeism, presenteeism, hotel employees
Procedia PDF Downloads 1932217 The Crisis of Turkey's Downing the Russian Warplane within the Concept of Country Branding: The Examples of BBC World, and Al Jazeera English
Authors: Derya Gül Ünlü, Oguz Kuş
Abstract:
The branding of a country means that the country has its own position different from other countries in its region and thus it is perceived more specifically. It is made possible by the branding efforts of a country and the uniqueness of all the national structures, by presenting it in a specific way, by creating the desired image and attracting tourists and foreign investors. Establishing a national brand involves, in a sense, the process of managing the perceptions of the citizens of the other country about the target country, by structuring the image of the country permanently and holistically. By this means, countries are not easily affected by their crisis of international relations. Therefore, within the scope of the research that will be carried out from this point, it is aimed to show how the warplane downing crisis between Turkey and Russia is perceived on social media. The Russian warplane was downed by Turkey on November 24, 2015, on the grounds that Turkey violated the airspace on the Syrian border. Whereupon the relations between the two countries have been tensed, and Russia has called on its citizens not to go to Turkey and citizens in Turkey to return to their countries. Moreover, relations between two countries have been weakened, for example, tourism tours organized in Russia to Turkey and visa-free travel were canceled and all military dialogue was cut off. After the event, various news sites on social media published plenty of news related to topic and the readers made various comments about the event and Turkey. In this context, an investigation into the perception of Turkey's national brand before and after the warplane downing crisis has been conducted. through comments fetched from the reports on the BBC World, and from Al Jazeera English news sites on Facebook accounts, which takes place widely in the social media. In order to realize study, user comments were fetched from jet downing-related news which are published on Facebook fan-page of BBC World Service, and Al Jazeera English. Regarding this, all the news published between 24.10.2015-24.12.2015 and containing Turk and Turkey keyword in its title composed data set of our study. Afterwards, comments written to these news were analyzed via text mining technique. Furthermore, by sentiment analysis, it was intended to reveal reader’s emotions before and after the crisis.Keywords: Al Jazeera English, BBC World, country branding, social media, text mining
Procedia PDF Downloads 2222216 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce
Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya
Abstract:
Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews
Procedia PDF Downloads 2002215 In-situ Phytoremediation Of Polluted Soils By Micropollutants From Artisanal Gold Mining Processes In Burkina Faso
Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien
Abstract:
Artisanal gold mining has seen a resurgence in recent years in Burkina Faso with its corollary of soil and water pollution. Indeed, in addition to visible impacts, it generates discharges rich in trace metal elements and acids. This pollution has significant environmental consequences, making these lands unusable while the population depends on the natural environment for its survival. The goal of this study is to assess the decontamination potential of Chrysopogon zizanioides on two artisanal gold processing sites in Burkina Faso. The cyanidation sites of Nebia (1Ha) and Nimbrogo (2Ha) located respectively in the Central West and Central South regions were selected. The soils were characterized to determine the initial pollution levels before the implementation of phytoremediation. After development of the site, parallel trenches equidistant 6 m apart, 30 cm deep, 40 cm wide and opposite to the water flow direction were dug and filled with earth amended with manure. The Chrysopogon zizanioides plants were transplanted 5 cm equidistant into the trenches. The mere fact that Chrysopogon zizanioides grew in the polluted soil is an indication that this plant tolerates and resists the toxicity of trace elements present on the site. The characterization shows sites very polluted with free cyanide 900 times higher than the national standard, the level of Hg in the soil is 5 times more than the limit value, iron and Zn are respectively 1000 times and 200 more than the tolerated environmental value. At time T1 (6 months) and T2 (12 months) of culture, Chrysopogon zizanioides showed less development on the Nimbrogo site than that of the Nebia site. Plant shoots and associated soil samples were collected and analyzed for total As, Hg, Fe and Zn concentration. The trace element content of the soil, the bioaccumulation factor and the hyper accumulation thresholds were also determined to assess the remediation potential. The concentration of As and Hg in the soil was below international risk thresholds, while that of Fe and Zn was well above these thresholds. The CN removal efficiency at the Nebia site is respectively 29.90% and 68.62% compared to 6.6% and 60.8% at Nimbrogo at time T1 and T2.Keywords: chrysopogon zizanioides, in-situ phytoremediation, polluted soils, micropollutants
Procedia PDF Downloads 762214 The Effect of Annual Weather and Sowing Date on Different Genotype of Maize (Zea mays L.) in Germination and Yield
Authors: Ákos Tótin
Abstract:
In crop production the most modern hybrids are available for us, therefore the yield and yield stability is determined by the agro-technology. The purpose of the experiment is to adapt the modern agrotechnology to the new type of hybrids. The long-term experiment was set up in 2015-2016 on chernozem soil in the Hajdúság (eastern Hungary). The plots were set up in 75 thousand ha-1 plant density. We examined some mainly use hybrids of Hungary. The conducted studies are: germination dynamic, growing dynamic and the effect of annual weather for the yield. We use three different sowing date as early, average and late, and measure how many plant germinated during the germination process. In the experiment, we observed the germination dynamics in 6 hybrid in 4 replication. In each replication, we counted the germinated plants in 2m long 2 row wide area. Data will be shown in the average of the 6 hybrid and 4 replication. Growing dynamics were measured from the 10cm (4-6 leaf) plant highness. We measured 10 plants’ height in two weeks replication. The yield was measured buy a special plot harvester - the Sampo Rosenlew 2010 – what measured the weight of the harvested plot and also took a sample from it. We determined the water content of the samples for the water release dynamics. After it, we calculated the yield (t/ha) of each plot at 14% of moisture content to compare them. We evaluated the data using Microsoft Excel 2015. The annual weather in each crop year define the maize germination dynamics because the amount of heat is determinative for the plants. In cooler crop year the weather is prolonged the germination. At the 2015 crop year the weather was cold in the beginning what prolonged the first sowing germination. But the second and third sowing germinated faster. In the 2016 crop year the weather was much favorable for plants so the first sowing germinated faster than in the previous year. After it the weather cooled down, therefore the second and third sowing germinated slower than the last year. The statistical data analysis program determined that there is a significant difference between the early and late sowing date growing dynamics. In 2015 the first sowing date had the highest amount of yield. The second biggest yield was in the average sowing time. The late sowing date has lowest amount of yield.Keywords: germination, maize, sowing date, yield
Procedia PDF Downloads 2302213 Transient Heat Transfer of a Spiral Fin
Authors: Sen-Yung Lee, Li-Kuo Chou, Chao-Kuang Chen
Abstract:
In this study, the problem of temperature transient response of a spiral fin, with its end insulated, is analyzed with base end subjected to a variation of fluid temperature. The hybrid method of Laplace transforms/Adomian decomposed method-Padé, is applied to the temperature transient response of the fin, the result of the temperature distribution and the heat flux at the base of the spiral fin are obtained, show a good agreement in the physical phenomenon.Keywords: Laplace transforms, Adomian decomposed method- Padé, transient response, heat transfer
Procedia PDF Downloads 4252212 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1492211 Connected Objects with Optical Rectenna for Wireless Information Systems
Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli
Abstract:
Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.Keywords: antenna, IoT, optical rectenna, solar cell
Procedia PDF Downloads 1772210 Development of an Optimization Method for Myoelectric Signal Processing by Active Matrix Sensing in Robot Rehabilitation
Authors: Noriyoshi Yamauchi, Etsuo Horikawa, Takunori Tsuji
Abstract:
Training by exoskeleton robot is drawing attention as a rehabilitation method for body paralysis seen in many cases, and there are many forms that assist with the myoelectric signal generated by exercise commands from the brain. Rehabilitation requires more frequent training, but it is one of the reasons that the technology is required for the identification of the myoelectric potential derivation site and attachment of the device is preventing the spread of paralysis. In this research, we focus on improving the efficiency of gait training by exoskeleton type robots, improvement of myoelectric acquisition and analysis method using active matrix sensing method, and improvement of walking rehabilitation and walking by optimization of robot control.Keywords: active matrix sensing, brain machine interface (BMI), the central pattern generator (CPG), myoelectric signal processing, robot rehabilitation
Procedia PDF Downloads 3842209 Human Resources Management Practices in Hospitality Companies
Authors: Dora Martins, Susana Silva, Cândida Silva
Abstract:
Human Resources Management (HRM) has been recognized by academics and practitioners as an important element in organizations. Therefore, this paper explores the best practices of HRM and seeks to understand the level of participation in the development of these practices by human resources managers in the hospitality industry and compare it with other industries. Thus, the study compared the HRM practices of companies in the hospitality sector with HRM practices of companies in other sectors, and identifies the main differences between their HRM practices. The results show that the most frequent HRM practices in all companies, independently of its sector of activity, are hiring and training. When comparing hospitality sector with other sectors of activity, some differences were noticed, namely in the adoption of the practices of communication and information sharing, and of recruitment and selection. According to these results, the paper discusses the major theoretical and practical implications. Suggestions for future research are also presented.Keywords: exploratory study, human resources management practices, human resources manager, hospitality companies, Portuguese companies
Procedia PDF Downloads 4812208 Prediction and Identification of a Permissive Epitope Insertion Site for St Toxoid in cfaB from Enterotoxigenic Escherichia coli
Authors: N. Zeinalzadeh, Mahdi Sadeghi
Abstract:
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of non-inflammatory diarrhea in the developing countries, resulting in approximately 20% of all diarrheal episodes in children in these areas. ST is one of the most important virulence factors and CFA/I is one of the frequent colonization factors that help to process of ETEC infection. ST and CfaB (CFA/I subunit) are among vaccine candidates against ETEC. So, ST because of its small size is not a good immunogenic in the natural form. However to increase its immunogenic potential, here we explored candidate positions for ST insertion in CfaB sequence. After bioinformatics analysis, one of the candidate positions was selected and the chimeric gene (cfaB*st) sequence was synthesized and expressed in E. coli BL21 (DE3). The chimeric recombinant protein was purified with Ni-NTA columns and characterized with western blot analysis. The residue 74-75 of CfaB sequence could be a good candidate position for ST and other epitopes insertion.Keywords: bioinformatics, CFA/I, enterotoxigenic E. coli, ST toxoid
Procedia PDF Downloads 4462207 Problems of Using Mobile Photovoltaic Installations
Authors: Ksenia Siadkowska, Łukasz Grabowski, Michał Gęca
Abstract:
The dynamic development of photovoltaics in the 21st century has resulted in more possibilities for using photovoltaic systems. In order to reduce emissions, a retrofitting of vehicles with photovoltaic modules has recently become increasingly popular. Preparing such an installation, however, requires professional knowledge and compliance with safety rules. The paper discusses the advantages and disadvantages of some types of flexible photovoltaic modules that can be applied to mobile installations, types and causes of damage to photovoltaic modules as well as the most frequent types of misinstallation. Our attention has been drawn to the risk of fire caused by misintallation or defective insulation and the need to closely monitor mobile installations, for example by a non-destructive testing with a thermal imaging camera. The paper also presents certain selected results of the research conducted at the Lublin University of Technology. This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS2/A6/16/2013.Keywords: flexible PV module, mobile PV module, photovoltaic module, photovoltaic
Procedia PDF Downloads 2512206 Predicting Success and Failure in Drug Development Using Text Analysis
Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev
Abstract:
Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.Keywords: data analysis, drug development, sentiment analysis, text-mining
Procedia PDF Downloads 1562205 LIS Students’ Experience of Online Learning During Covid-19
Authors: Larasati Zuhro, Ida F Priyanto
Abstract:
Background: In March 2020, Indonesia started to be affected by Covid-19, and the number of victims increased slowly but surely until finally, the highest number of victims reached the highest—about 50,000 persons—for the daily cases in the middle of 2021. Like other institutions, schools and universities were suddenly closed in March 2020, and students had to change their ways of studying from face-to-face to online. This sudden changed affected students and faculty, including LIS students and faculty because they never experienced online classes in Indonesia due to the previous regulation that academic and school activities were all conducted onsite. For almost two years, school and academic activities were held online. This indeed has affected the way students learned and faculty delivered their courses. This raises the question of whether students are now ready for their new learning activities due to the covid-19 disruption. Objectives: this study was conducted to find out the impact of covid-19 pandemic on the LIS learning process and the effectiveness of online classes for students of LIS in Indonesia. Methodology: This was qualitative research conducted among LIS students at UIN Sunan Kalijaga, Yogyakarta, Indonesia. The population are students who were studying for masters’program during covid-19 pandemic. Results: The study showed that students were ready with the online classes because they are familiar with the technology. However, the Internet and technology infrastructure do not always support the process of learning. Students mention slow WIFI is one factor that causes them not being able to study optimally. They usually compensate themselves by visiting a public library, a café, or any other places to get WIFI network. Noises come from the people surrounding them while they are studying online.Some students could not concentrate well when attending the online classes as they studied at home, and their families sometimes talk to other family members, or they asked the students while they are attending the online classes. The noise also came when they studied in a café. Another issue is that the classes were held in shorter time than that in the face-to-face. Students said they still enjoyed the onsite classes instead of online, although they do not mind to have hybrid model of learning. Conclusion: Pandemic of Covid-19 has changed the way students of LIS in Indonesia learn. They have experienced a process of migrating the way they learn from onsite to online. They also adapted their learning with the condition of internet access speed, infrastructure, and the environment. They expect to have hybrid classes in the future.Keywords: learning, LIS students, pandemic, covid-19
Procedia PDF Downloads 1282204 A Word-to-Vector Formulation for Word Representation
Authors: Sandra Rizkallah, Amir F. Atiya
Abstract:
This work presents a novel word to vector representation that is based on embedding the words into a sphere, whereby the dot product of the corresponding vectors represents the similarity between any two words. Embedding the vectors into a sphere enabled us to take into consideration the antonymity between words, not only the synonymity, because of the suitability to handle the polarity nature of words. For example, a word and its antonym can be represented as a vector and its negative. Moreover, we have managed to extract an adequate vocabulary. The obtained results show that the proposed approach can capture the essence of the language, and can be generalized to estimate a correct similarity of any new pair of words.Keywords: natural language processing, word to vector, text similarity, text mining
Procedia PDF Downloads 2732203 Comparative Analysis of Feature Extraction and Classification Techniques
Authors: R. L. Ujjwal, Abhishek Jain
Abstract:
In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.Keywords: computer vision, age group, face detection
Procedia PDF Downloads 3672202 The Urban Stray Animal Identification Management System Based on YOLOv5
Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan
Abstract:
Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1032201 Sustaining Efficiency in Electricity Distribution to Enhance Effective Human Security for the Vulnerable People in Ghana
Authors: Anthony Nyamekeh-Armah Adjei, Toshiaki Aoki
Abstract:
The unreliable and poor efficiency of electricity distribution leading to frequent power outages and high losses are the major challenge facing the power distribution sector in Ghana. Distribution system routes electricity from the power generating station at a higher voltage through the transmission grid and steps it down through the low voltage lines to end users. Approximately all electricity problems and disturbances that have increased the call for renewable and sustainable energy in recent years have their roots in the distribution system. Therefore, sustaining electricity distribution efficiency can potentially contribute to the reserve of natural energy resources use in power generation, reducing greenhouse gas emission (GHG), decreasing tariffs for consumers and effective human security. Human Security is a people-centered approach where individual human being is the principal object of concern, focuses on protecting the vital core of all human lives in ways for meeting basic needs that enhance the safety and protection of individuals and communities. The vulnerability is the diminished capacity of an individual or group to anticipate, resist and recover from the effect of natural, human-induced disaster. The research objectives are to explore the causes of frequent power outages to consumers, high losses in the distribution network and the effect of poor electricity distribution efficiency on the vulnerable (poor and ordinary) people that mostly depend on electricity for their daily activities or life to survive. The importance of the study is that in a developing country like Ghana where raising a capital for new infrastructure project is difficult, it would be beneficial to enhance the efficiency that will significantly minimize the high energy losses, reduce power outage, to ensure safe and reliable delivery of electric power to consumers to secure the security of people’s livelihood. The methodology used in this study is both interview and questionnaire survey to analyze the response from the respondents on causes of power outages and high losses facing the electricity company of Ghana (ECG) and its effect on the livelihood on the vulnerable people. Among the outcome of both administered questionnaire and the interview survey from the field were; poor maintenance of existing sub-stations, use of aging equipment, use of poor distribution infrastructure and poor metering and billing system. The main observation of this paper is that the poor network efficiency (high losses and power outages) affects the livelihood of the vulnerable people. Therefore, the paper recommends that policymakers should insist on all regulation guiding electricity distribution to improve system efficiency. In conclusion, there should be decentralization of off-grid solar PV technologies to provide a sustainable and cost-effective, which can increase daily productivity and improve the quality of life of the vulnerable people in the rural communities.Keywords: electricity efficiency, high losses, human security, power outage
Procedia PDF Downloads 2862200 Soil Reinforcement by Fibers Using Triaxial Compression Test
Authors: Negadi Kheira, Arab Ahmed, Kamal Elbokl Mohamed, Setti Fatima
Abstract:
In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure.Keywords: soil, monotonic, triaxial test, root fiber, undrained
Procedia PDF Downloads 4142199 A Multi Cordic Architecture on FPGA Platform
Authors: Ahmed Madian, Muaz Aljarhi
Abstract:
Coordinate Rotation Digital Computer (CORDIC) is a unique digital computing unit intended for the computation of mathematical operations and functions. This paper presents a multi-CORDIC processor that integrates different CORDIC architectures on a single FPGA chip and allows the user to select the CORDIC architecture to proceed with based on what he wants to calculate and his/her needs. Synthesis show that radix 2 CORDIC has the lowest clock delay, radix 8 CORDIC has the highest LUT usage and lowest register usage while Hybrid Radix 4 CORDIC had the highest clock delay.Keywords: multi, CORDIC, FPGA, processor
Procedia PDF Downloads 4682198 Hybrid Speciation and Morphological Differentiation in Senecio (Senecioneae, Asteraceae) from the Andes
Authors: Luciana Salomon
Abstract:
The Andes hold one of the highest plant species diversity in the world. How such diversity originated is one of the most intriguing questions in studies addressing the pattern of plant diversity worldwide. Recently, the explosive adaptive radiations found in high Andean groups have been pointed as major triggers of this spectacular diversity. The Andes are one of the most species-rich area for the largest genus from the Asteraceae family, Senecio. There, the genus presents an incredible variation in growth form and ecological niche space. If this diversity of Andean Senecio can be explained by a monophyletic origin and subsequent radiation has not been tested up to now. Previous studies trying to disentangle the evolutionary history of some Andean Senecio struggled with the relatively low resolution and support of the phylogenies, which is indicative of recently radiated groups. Using Hyb-Seq, a powerful approach is available to address phylogenetic questions in groups whose evolutionary histories are recent and rapid. This approach was used for Senecio to build a phylogenetic backbone on which to study the mechanisms shaping its hyper-diversity in the Andes, focusing on Senecio ser. Culcitium, an exclusively Andean and well circumscribed group presenting large morphological variation and which is widely distributed across the Andes. Hyb-Seq data for about 130 accessions of Seneciowas generated. Using standard data analysis work flows and a newly developed tool to utilize paralogs for phylogenetic reconstruction, robustness of the species treewas investigated. Fully resolved and moderately supported species trees were obtained, showing Senecio ser. Culcitium as monophyletic. Within this group, some species formed well-supported clades congruent with morphology, while some species would not have exclusive ancestry, in concordance with previous studies showing a geographic differentiation. Additionally, paralogs were detected for a high number of loci, indicating duplication events and hybridization, known to be common in Senecio ser. Culcitium might have lead to hybrid speciation. The rapid diversification of the group seems to have followed a south-north distribution throughout the Andes, having accelerated in the conquest of new habitats more recently available: i.e., Montane forest, Paramo, and Superparamo.Keywords: evolutionary radiations, andes, paralogy, hybridization, senecio
Procedia PDF Downloads 1282197 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 3842196 Structural Analysis and Modelling in an Evolving Iron Ore Operation
Authors: Sameh Shahin, Nannang Arrys
Abstract:
Optimizing pit slope stability and reducing strip ratio of a mining operation are two key tasks in geotechnical engineering. With a growing demand for minerals and an increasing cost associated with extraction, companies are constantly re-evaluating the viability of mineral deposits and challenging their geological understanding. Within Rio Tinto Iron Ore, the Structural Geology (SG) team investigate and collect critical data, such as point based orientations, mapping and geological inferences from adjacent pits to re-model deposits where previous interpretations have failed to account for structurally controlled slope failures. Utilizing innovative data collection methods and data-driven investigation, SG aims to address the root causes of slope instability. Committing to a resource grid drill campaign as the primary source of data collection will often bias data collection to a specific orientation and significantly reduce the capability to identify and qualify complexity. Consequently, these limitations make it difficult to construct a realistic and coherent structural model that identifies adverse structural domains. Without the consideration of complexity and the capability of capturing these structural domains, mining operations run the risk of inadequately designed slopes that may fail and potentially harm people. Regional structural trends have been considered in conjunction with surface and in-pit mapping data to model multi-batter fold structures that were absent from previous iterations of the structural model. The risk is evident in newly identified dip-slope and rock-mass controlled sectors of the geotechnical design rather than a ubiquitous dip-slope sector across the pit. The reward is two-fold: 1) providing sectors of rock-mass controlled design in previously interpreted structurally controlled domains and 2) the opportunity to optimize the slope angle for mineral recovery and reduced strip ratio. Furthermore, a resulting high confidence model with structures and geometries that can account for historic slope instabilities in structurally controlled domains where design assumptions failed.Keywords: structural geology, geotechnical design, optimization, slope stability, risk mitigation
Procedia PDF Downloads 462195 An Enhanced Connectivity Aware Routing Protocol for Vehicular Ad Hoc Networks
Authors: Ahmadu Maidorawa, Kamalrulnizam Abu Bakar
Abstract:
This paper proposed an Enhanced Connectivity Aware Routing (ECAR) protocol for Vehicular Ad hoc Network (VANET). The protocol uses a control broadcast to reduce the number of overhead packets needed in a route discovery process. It is also equipped with an alternative backup route that is used whenever a primary path to destination failed, which highly reduces the frequent launching and re-launching of the route discovery process that waste useful bandwidth and unnecessarily prolonging the average packet delay. NS2 simulation results show that the performance of ECAR protocol outperformed the original connectivity aware routing (CAR) protocol by reducing the average packet delay by 28%, control overheads by 27% and increased the packet delivery ratio by 22%.Keywords: alternative path, primary path, protocol, routing, VANET, vehicular ad hoc networks
Procedia PDF Downloads 4012194 Examining the Dynamics of FDI Inflows in Both BRICS and G7 Economies: Dissecting the Influence of Geopolitical Risk versus Economic Policy Uncertainty
Authors: Adelakun O. Johnson
Abstract:
The quest to mitigate the probable adverse effects of geopolitical risk on FDI inflows tends to result in more frequent changes in economic policies and, as a result, heightened policy uncertainty. In this regard, we extend the literature on the dynamics of FDI inflows to include the hypothesis of the possibility of geopolitical risk escalating the adverse effects of economic policy uncertainty on FDI inflows. To test the robustness of this hypothesis, we use the cases of different economic groups characterized by different levels of economic development and varying degrees of FDI confidence. Employing an ARDL-based dynamic panel data model that accounts for both non-stationarity and heterogeneity effects, we show result that suggests GPR and EPU retard the inflows of FDI in both economies but mainly in the short-run situation. In the long run, however, higher EPU not attributed to GPR is likely to boost the inflows of FDI rather than retarding, at least in the case of the G7 economy.Keywords: FDI inflows, geopolitical risk, economic policy uncertainty, panel ARDL model
Procedia PDF Downloads 232193 Synthesis of Size-Tunable and Stable Iron Nanoparticles for Cancer Treatment
Authors: Ambika Selvaraj
Abstract:
Magnetic iron oxide nanoparticles (IO) of < 20nm (superparamagnetic) become promising tool in cancer therapy, and integrated nanodevices for cancer detection and screening. The obstacles include particle heterogeneity and cost. It can be overcome by developing monodispersed nanoparticles in economical approach. We have successfully synthesized < 7 nm IO by low temperature controlled technique, in which Fe0 is sandwiched between stabilizer and Fe2+. Size analysis showed the excellent size control from 31 nm at 33°C to 6.8 nm at 10°C. Resultant monodispersed IO were found to be stable for > 50 reuses, proved its applicability in biomedical applications.Keywords: low temperature synthesis, hybrid iron nanoparticles, cancer therapy, biomedical applications
Procedia PDF Downloads 3382192 Micro-Nutrient Bio-Fortification in Sprouts Grown on Fortified Fiber Mats
Authors: J. Nyenhuis, J. Drelich
Abstract:
This research study was designed to determine if food crops could be bio-fortified with micro-nutrients by growing sprouts on mineral fortified fiber mats. Diets high in processed foods have been found to lack essential micro-nutrients for optimum human development and overall health. Some micro-nutrients such as copper (Cu) have been found to enhance the inflammatory response through its oxidative functions, thereby having a role in cardiovascular disease (CVD), metabolic syndrome (MetS), diabetes and related complications. Recycled cellulose fibers and clay saturated with micro-nutrient ions can be converted to a novel mineral-metal hybrid material in which the fiber mat becomes a carrier of essential micro-nutrients. The reduction of ionic to metallic copper was accomplished using hydrogen at temperatures ranging from 400o to 600oC. Copper particles with diameters ranging from ~1 to 400-500 nm reside on the recycled fibers that make up the mats. Seeds purchased from a commercial, organic supplier were germinated on the specially engineered cellulose fiber mats that incorporated w10 wt% clay fillers saturated with either copper particles or ionic copper. After the appearance of the first leaves, the sprouts were dehydrated and analyzed for Cu content. Nutrient analysis showed 1.5 to 1.6 increase in Cu of the sprouts grown on the fiber mats with copper particles, and 2.3 to 2.5 increase on mats with ionic copper as compared to the control samples. The antibacterial properties of materials saturated with copper ions at room temperature and at temperatures up to 400°C have been verified with halo method tests against Escherichia Coli in previous studies. E. coli is a known pathogenic risk in sprout production. Copper exhibits excellent antibacterial properties when tested on S. aureus, a pathogenic gram-positive bacterium. This has also been confirmed for the fiber-copper hybrid material in this study. This study illustrates the potential for the use of engineered mats as a viable way to increase the micro-nutrient composition of locally-grown food crops and the need for additional research to determine the uptake, nutritional implications and risks of micro-nutrient bio-fortification.Keywords: bio-fortification, copper nutrient analysis, micro-nutrient uptake, sprouts and mineral-fortified mats
Procedia PDF Downloads 3532191 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction
Authors: Renzhi Qi, Zhaoping Zhong
Abstract:
Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction
Procedia PDF Downloads 802190 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction
Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner
Abstract:
Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling
Procedia PDF Downloads 81