Search results for: ecosystem-based approaches
2520 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 302519 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 652518 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)
Authors: Jainendra Singh, Zaheeruddin
Abstract:
A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.Keywords: wireless sensor network, energy efficiency, clustering, routing
Procedia PDF Downloads 2712517 An Attempt to Improve Student´s Understanding on Thermal Conductivity Using Thermal Cameras
Authors: Mariana Faria Brito Francisquini
Abstract:
Many thermal phenomena are present and play a substantial role in our daily lives. This presence makes the study of this area at both High School and University levels a very widely explored topic in the literature. However, a lot of important concepts to a meaningful understanding of the world are neglected at the expense of a traditional approach with senseless algebraic problems. In this work, we intend to show how the introduction of new technologies in the classroom, namely thermal cameras, can work in our favor to make a clearer understanding of many of these concepts, such as thermal conductivity. The use of thermal cameras in the classroom tends to diminish the everlasting abstractness in thermal phenomena as they enable us to visualize something that happens right before our eyes, yet we cannot see it. In our study, we will provide the same amount of heat to metallic cylindrical rods of the same length, but different materials in order to study the thermal conductivity of each one. In this sense, the thermal camera allows us to visualize the increase in temperature along each rod in real time enabling us to infer how heat is being transferred from one part of the rod to another. Therefore, we intend to show how this approach can contribute to the exposure of students to more enriching, intellectually prolific, scenarios than those provided by traditional approaches.Keywords: teaching physics, thermal cameras, thermal conductivity, thermal physics
Procedia PDF Downloads 2852516 Impact of Natural Language Processing in Educational Setting: An Effective Approach towards Improved Learning
Authors: Khaled M. Alhawiti
Abstract:
Natural Language Processing (NLP) is an effective approach for bringing improvement in educational setting. This involves initiating the process of learning through the natural acquisition in the educational systems. It is based on following effective approaches for providing the solution for various problems and issues in education. Natural Language Processing provides solution in a variety of different fields associated with the social and cultural context of language learning. It is based on involving various tools and techniques such as grammar, syntax, and structure of text. It is effective approach for teachers, students, authors, and educators for providing assistance for writing, analysis, and assessment procedure. Natural Language Processing is widely integrated in the large number of educational contexts such as research, science, linguistics, e-learning, evaluations system, and various other educational settings such as schools, higher education system, and universities. Natural Language Processing is based on applying scientific approach in the educational settings. In the educational settings, NLP is an effective approach to ensure that students can learn easily in the same way as they acquired language in the natural settings.Keywords: natural language processing, education, application, e-learning, scientific studies, educational system
Procedia PDF Downloads 5072515 Impression Evaluation by Design Change of Anthropomorphic Agent
Authors: Kazuko Sakamoto
Abstract:
Anthropomorphic agents have been successful in areas where there are many human interactions, such as education and medical care. The persuasive effect is also expected in e-shopping sites on the web. This indicates that customer service is not necessarily human but can play that role. However, the 'humanity' in anthropomorphism sometimes has a risk of working negatively. In general, as the appearance of anthropomorphic agents approaches humans, it is thought that their affinity with humans increases. However, when the degree of similarity reaches a certain level, it gives the user a weird feeling. This is the 'eerie valley' phenomenon. This is a concept used in the world of robotics, but it seems to be applicable to anthropomorphic agents such as characters. Then what kind of design can you accept as an anthropomorphic agent that gives you a feeling of friendliness or good feeling without causing discomfort or fear to people? This study focused on this point and examined what design and characteristics would be effective for marketing communication. As a result of the investigation, it was found that there is no need for gaze and blinking, the size of the eyes is normal or large, and the impression evaluation is higher when the structure is as simple as possible. Conversely, agents with high eye-gaze and white-eye ratios had low evaluations, and the negative impact on eye-gaze was particularly large.Keywords: anthropomorphicgents, design evaluation, marketing communication, customer service
Procedia PDF Downloads 1162514 Eco Scale: A Tool for Assessing the Greenness of Pharmaceuticals Analysis
Authors: Heba M. Mohamed
Abstract:
Owing to scientific and public concern about health and environment and seeking for a better quality of life; “Green”, “Environmentally” and “Eco” friendly practices have been presented and implemented in different research areas. Subsequently, researchers’ attention is drawn in the direction of greening the analytical methodologies and taking the Green Analytical Chemistry principles (GAC) into consideration. It is of high importance to appraise the environmental impact of each of the implemented green approaches. Compared to the other traditional green metrics (E-factor, Atom economy and the process profile), the eco scale is the optimum choice to assess the environmental impact of the analytical procedures used for pharmaceuticals analysis. For analytical methodologies, Eco-Scale is calculated by allotting penalty points to any factor of the used analytical procedure which disagree and not match with the model green analysis, where the perfect green analysis has its Eco-Scale value of 100. In this work, calculation and comparison of the Eco-Scale for some of the reported green analytical methods was done, to accentuate their greening potentials. Where the different scores can reveal how green the method is, compared to the ideal value. The study emphasizes that greenness measurement is not only about the waste quantity determination but also dictates a holistic scheme, considering all factors.Keywords: eco scale, green analysis, environmentally friendly, pharmaceuticals analysis
Procedia PDF Downloads 4452513 Shifting of Global Energy Security: A Comparative Analysis of Indonesia and China’s Renewable Energy Policies
Authors: Widhi Hanantyo Suryadinata
Abstract:
Efforts undertaken by Indonesia and China to shift the strategies and security of renewable energy on a global stage involve approaches through policy construction related to rare minerals processing or value-adding in Indonesia and manufacturing policies through the New Energy Vehicles (NEVs) policy in China. Both policies encompass several practical regulations and policies that can be utilized for the implementation of Indonesia and China's grand efforts and ideas. Policy development in Indonesia and China can be analyzed using a comparative analysis method, as well as employing a pyramid illustration to identify policy construction phases based on the real conditions of the domestic market and implemented policies. This approach also helps to identify the potential integration of policies needed to enhance the policy development phase of a country within the pyramid. It also emphasizes the significance of integration policy to redefine renewable energy strategy and security on the global stage.Keywords: global renewable energy security, global energy security, policy development, comparative analysis, shifting of global energy security, Indonesia, China
Procedia PDF Downloads 762512 Architectural Building Safety and Health Performance Model for Stratified Low-Cost Housing: Education and Management Tool for Building Managers
Authors: Zainal Abidin Akasah, Maizam Alias, Azuin Ramli
Abstract:
The safety and health performances aspects of a building are the most challenging aspect of facility management. It requires a deep understanding by the building managers on the factors that contribute to health and safety performances. This study attempted to develop an explanatory architectural safety performance model for stratified low-cost housing in Malaysia. The proposed Building Safety and Health Performance (BSHP) model was tested empirically through a survey on 308 construction practitioners using Partial Least Squares (PLS) and Structural Equation Modelling (SEM) tool. Statistical analysis results supports the conclusion that architecture, building services, external environment, management approaches and maintenance management have positive influence on safety and health performance of stratified low-cost housing in Malaysia. The findings provide valuable insights for construction industry to introduce BSHP model in the future where the model could be used as a guideline for training purposes of managers and better planning and implementation of building management.Keywords: building management, stratified low-cost housing, safety, health model
Procedia PDF Downloads 5612511 An enhanced Framework for Regional Tourism Sustainable Adaptation to Climate Change
Authors: Joseph M. Njoroge
Abstract:
The need for urgent adaptation have triggered tourism stakeholders and research community to develop generic adaptation framework(s) for national, regional and or local tourism desti-nations. Such frameworks have been proposed to guide the tourism industry in the adaptation process with an aim of reducing tourism industry’s vulnerability and to enhance their ability to cope to climate associated externalities. However research show that current approaches are far from sustainability since the adaptation options sought are usually closely associated with development needs-‘business as usual’-where the implication of adaptation to social justice and environmental integrity are often neglected. Based on this view there is a need to look at adaptation beyond addressing vulnerability and resilience to include the need for adaptation to enhance social justice and environmental integrity. This paper reviews the existing adaptation frameworks/models and evaluates their suitability in enhancing sustainable adaptation for regional tourist destinations. It is noted that existing frameworks contradicts the basic ‘principles of sustainable adaptation’. Further attempts are made to propose a Sustainable Regional Tourism Adaptation Framework (SRTAF) to assist regional tourism stakeholders in the achieving sustainable adaptation.Keywords: sustainable adaptation, sustainability principles, sustainability portfolio, Regional Tourism
Procedia PDF Downloads 4052510 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders
Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh
Abstract:
Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches
Procedia PDF Downloads 812509 Handwriting Velocity Modeling by Artificial Neural Networks
Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb
Abstract:
The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling
Procedia PDF Downloads 4442508 Drug Abuse among Immigrant Youth in Canada
Authors: Qin Wei
Abstract:
There has been an increased number of immigrants arriving in Canada and a concurrent rise in the number of immigrant youth suffering from drug abuse. Immigrant youths’ drug abuse has become a significant social and public health concern for researchers. This literature review explores the nature of immigrant youths’ drug abuse by examining the factors influencing the onset of substance misuse, the barriers that discourage youth to seek out treatment, and how to resolve addictions amidst immigrant youth. Findings from the literature demonstrate that diminished parental supervision, acculturation challenges, peer conformity, discrimination, and ethnic marginalization are all significant factors influencing youth to use drugs as an outlet for their pain, while culturally competent care and fear of family and culture-based addiction stigma act as barriers discouraging youth from seeking out addiction support. To resolve addiction challenges amidst immigrant youth, future research should focus on promoting and implementing culturally sensitive practices and psychoeducational initiatives into immigrant communities and within public health policies.Keywords: approaches, barriers, drug abuse, Canada, immigrant youth, reasons
Procedia PDF Downloads 2392507 Object-Centric Process Mining Using Process Cubes
Authors: Anahita Farhang Ghahfarokhi, Alessandro Berti, Wil M.P. van der Aalst
Abstract:
Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches.Keywords: multidimensional process mining, mMulti-perspective business processes, OLAP, process cubes, process discovery, process mining
Procedia PDF Downloads 2612506 The Quality of Management: A Leadership Maturity Model to Leverage Complexity
Authors: Marlene Kuhn, Franziska Schäfer, Heiner Otten
Abstract:
Today´s production processes experience a constant increase in complexity paving new ways for progressive forms of leadership. In the customized production, individual customer requirements drive companies to adapt their manufacturing processes constantly while the pressure for smaller lot sizes, lower costs and faster lead times grows simultaneously. When production processes are becoming more dynamic and complex, the conventional quality management approaches show certain limitations. This paper gives an introduction to complexity science from a quality management perspective. By analyzing and evaluating different characteristics of complexity, the critical complexity parameters are identified and assessed. We found that the quality of leadership plays a crucial role when dealing with increasing complexity. Therefore, we developed a concept for qualitative leadership customized for the management within complex processes based on a maturity model. The maturity model was then applied in the industry to assess the leadership quality of several shop floor managers with a positive evaluation feedback. In result, the maturity model proved to be a sustainable approach to leverage the rising complexity in production processes more effectively.Keywords: maturity model, process complexity, quality of leadership, quality management
Procedia PDF Downloads 3742505 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network
Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.Keywords: DSEP, fuzzy logic, energy model, WSN
Procedia PDF Downloads 2102504 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.Keywords: connected components, embrace threads, local weighted kernel, structuring elements
Procedia PDF Downloads 4432503 Silviculture for Climate Change: Future Scenarios for Nigeria Forests
Authors: Azeez O. Ganiyu
Abstract:
Climate change is expected to lead to substantial changes in rainfall patterns in southwest Nigeria, and this may have substantial consequence for forest management and for conservation outcomes throughout the region. We examine three different forest types across an environmental spectrum from semi-arid to humid subtropical and consider their response to water shortages and other environmental stresses; we also explore the potential consequence for conservation and timber production by considering impacts on forest structure and limiting stand density. Analysis of a series of scenarios provides the basis for a critique of existing management practices and suggests practical alternatives to develop resilient forests with minimal diminution of production and environmental services. We specifically discuss practical silviculture interventions that are feasible at the landscape-scale, that are economically viable, and that have the potential to enhance resilience of forest stands. We also discuss incentives to encourage adoption of these approaches by private forest owners. We draw on these case studies in southwestern Nigeria to offer generic principle to assist forest researchers and managers faced with similar challenges elsewhere.Keywords: climate change, forest, future, silviculture, Nigeria
Procedia PDF Downloads 1212502 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm
Authors: A. Baviskar, C. Sandeep, K. Shankar
Abstract:
Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)
Procedia PDF Downloads 2792501 Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion
Authors: Hebert Montegranario, Mauricio Londoño
Abstract:
Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability.Keywords: Helmholtz equation, meshless methods, seismic imaging, wavefield inversion
Procedia PDF Downloads 5512500 An Accidental Forecasting Modelling for Various Median Roads
Authors: Pruethipong Xinghatiraj, Rajwanlop Kumpoopong
Abstract:
Considering the current situation of road safety, Thailand has the world’s second-highest road fatality rate. Therefore, decreasing the road accidents in Thailand is a prime policy of the Thai government seeking to accomplish. One of the approaches to reduce the accident rate is to improve road environments to fit with the local behavior of the road users. The Department of Highways ensures that choosing the road median types right to the road characteristics, e.g. roadside characteristics, traffic volume, truck traffic percentage, etc., can decrease the possibility of accident occurrence. Presently, raised median, depressed median, painted median and median barriers are typically used in Thailand Highways. In this study, factors affecting road accident for each median type will be discovered through the analysis of the collecting of accident data, death numbers on sample of 600 Kilometers length across the country together with its roadside characteristics, traffic volume, heavy vehicles percentage, and other key factors. The benefits of this study can assist the Highway designers to select type of road medians that can match local environments and then cause less accident prone.Keywords: highways, road safety, road median, forecasting model
Procedia PDF Downloads 2712499 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm
Procedia PDF Downloads 1552498 Linguistic Landscape as a Bottom-up Approach: Investigation of Semiotic Features and Language Use in the Catering Industry in Hong Kong
Authors: Tsz Ching Jasmine Lam
Abstract:
Linguistic landscape (LL) can serve as both top-down and bottom-up approaches to understanding language planning policy in various dimensions. It can reflect the language identities, motives and contestations perceived by stakeholders of different decision-making levels. Prior studies adopted the bottom-up approach to investigate the language practice and ideologies reflected by the design and linguistic features observed in the linguistic landscapes in ethnically and linguistically diverse areas, like Medan in Russia and Seoul in Korea. As Hong Kong is also a trilingual city with an inclusive combination of nationalities, this paper is intended to take it as a case study to explore the de facto language ideologies reflected by LL at the micro-level. We would look into the catering industry from a holistic perspective by reviewing the food menus of 66 restaurants located in diversified districts and serving different types of cuisines. This bottom-up LL research reveals that business owners and the public share the language ideologies of perceiving English as a prestigious language, multilingualism and traditional Chinese as a standard character.Keywords: bottom-up, language ideologies, language planning policy, language policy, language identities, linguistic landscape
Procedia PDF Downloads 882497 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.Keywords: land development, GIS, sand dunes, segmentation, remote sensing
Procedia PDF Downloads 762496 Gender Differences in Risk Aversion Behavior: Case Study of Saudi Arabia and Jordan
Authors: Razan Salem
Abstract:
Men and women have different approaches towards investing, both in terms of strategies and risk attitudes. This study aims to focus mainly on investigating the financial risk behaviors of Arab women investors and to examine the financial risk tolerance levels of Arab women relative to Arab men investors. Using survey data on 547 Arab men and women investors, the results of Wilcoxon Signed-Rank (One-Sample) test Mann-Whitney U test reveal that Arab women are risk-averse investors and have lower financial risk tolerance levels relative to Arab men. Such findings can be explained by the fact of women's nature and lower investment literacy levels. Further, the current political uncertainty in the Arab region may be considered as another explanation of Arab women’s risk aversion behavior. The study's findings support the existing literature by validating the stereotype of “women are more risk-averse than men” in the Arab region. Overall, when it comes to investment and financial behaviors, women around the world behave similarly.Keywords: Arab region, culture, financial risk behavior, gender differences, women investors
Procedia PDF Downloads 1762495 Corporate Social Responsibility and Students’ Job Performance: A Case Study of Silpakorn University’s Internship Program
Authors: Naritphol Boonyakiat
Abstract:
This research attempts to investigate the relationship between corporate social responsibility and students’ job performance of the Silpakorn University’s internship program within various organizations. The goal of this study is to fill the literature gap by gaining an understanding of corporate social responsibility that fundamentally relate to students’ job performance within the organizations. Thus, this study will focus on the outcomes that derive from selected employers’ qualitative assessment and evaluation forms from various companies. The results represent the perceptions of students towards the corporate social responsibility aspects and their job performance evaluation from the employers in various organizations. The findings indicate that corporate social responsibility has significant effects on students’ job performance. This study may assist us in gaining a better understanding of the integrated aspects of university and workplace environments to discover how to allocate optimally university’s resources and management approaches to gain benefits from corporate social responsibility practices toward students’ job performance within an organizational setting. Therefore, there is good reason to believe that the findings can contribute to research in the area of CSR and students’ job performance as an essential aspect of long-term success sustainability.Keywords: corporate social responsibility, job performance, university students, internship program
Procedia PDF Downloads 3842494 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 2332493 Addressing the Gap in Health and Wellbeing Evidence for Urban Real Estate Brownfield Asset Management Social Needs and Impact Analysis Using Systems Mapping Approach
Authors: Kathy Pain, Nalumino Akakandelwa
Abstract:
The study explores the potential to fill a gap in health and wellbeing evidence for purposeful urban real estate asset management to make investment a powerful force for societal good. Part of a five-year programme investigating the root causes of unhealthy urban development funded by the United Kingdom Prevention Research Partnership (UKPRP), the study pilots the use of a systems mapping approach to identify drivers and barriers to the incorporation of health and wellbeing evidence in urban brownfield asset management decision-making. Urban real estate not only provides space for economic production but also contributes to the quality of life in the local community. Yet market approaches to urban land use have, until recently, insisted that neo-classical technology-driven efficient allocation of economic resources should inform acquisition, operational, and disposal decisions. Buildings in locations with declining economic performance have thus been abandoned, leading to urban decay. Property investors are recognising the inextricable connection between sustainable urban production and quality of life in local communities. The redevelopment and operation of brownfield assets recycle existing buildings, minimising embodied carbon emissions. It also retains established urban spaces with which local communities identify and regenerate places to create a sense of security, economic opportunity, social interaction, and quality of life. Social implications of urban real estate on health and wellbeing and increased adoption of benign sustainability guidance in urban production are driving the need to consider how they affect brownfield real estate asset management decisions. Interviews with real estate upstream decision-makers in the study, find that local social needs and impact analysis is becoming a commercial priority for large-scale urban real estate development projects. Evidence of the social value-added of proposed developments is increasingly considered essential to secure local community support and planning permissions, and to attract sustained inward long-term investment capital flows for urban projects. However, little is known about the contribution of population health and wellbeing to socially sustainable urban projects and the monetary value of the opportunity this presents to improve the urban environment for local communities. We report early findings from collaborations with two leading property companies managing major investments in brownfield urban assets in the UK to consider how the inclusion of health and wellbeing evidence in social valuation can inform perceptions of brownfield development social benefit for asset managers, local communities, public authorities and investors for the benefit of all parties. Using holistic case studies and systems mapping approaches, we explore complex relationships between public health considerations and asset management decisions in urban production. Findings indicate a strong real estate investment industry appetite and potential to include health as a vital component of sustainable real estate social value creation in asset management strategies.Keywords: brownfield urban assets, health and wellbeing, social needs and impact, social valuation, sustainable real estate, systems mapping
Procedia PDF Downloads 762492 D6tions: A Serious Game to Learn Software Engineering Process and Design
Authors: Hector G. Perez-Gonzalez, Miriam Vazquez-Escalante, Sandra E. Nava-Muñoz, Francisco E. Martinez-Perez, Alberto S. Nunez-Varela
Abstract:
The software engineering teaching process has been the subject of many studies. To improve this process, researchers have proposed merely illustrative techniques in the classroom, such as topic presentations and dynamics between students on one side or attempts to involve students in real projects with companies and institutions to bring them to a real software development problem on the other hand. Simulators and serious games have been used as auxiliary tools to introduce students to topics that are too abstract when these are presented in the traditional way. Most of these tools cover a limited area of the huge software engineering scope. To address this problem, we have developed D6tions, an educational serious game that simulates the software engineering process and is designed to experiment the different stages a software engineer (playing roles as project leader or as a developer or designer) goes through, while participating in a software project. We describe previous approaches to this problem, how D6tions was designed, its rules, directions, and the results we obtained of the use of this game involving undergraduate students playing the game.Keywords: serious games, software engineering, software engineering education, software engineering teaching process
Procedia PDF Downloads 4982491 Improved Dynamic Bayesian Networks Applied to Arabic On Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology. This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data. Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables. In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization. The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, computer vision
Procedia PDF Downloads 436