Search results for: compressive strength prediction
4503 Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus
Authors: Muhammad Shahzad Iqbal, Zobia Sarwar, Salah-ud-Din
Abstract:
Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future.Keywords: tomato spotted wild virus (TSWV), Solanum lycopersicum, plant virus, miRNAs, microRNA target prediction, mRNA
Procedia PDF Downloads 1554502 A Case Study of Alkali-Silica Reaction Induced Consistent Damage and Strength Degradation Evaluation in a Textile Mill Building Due to Slow-Reactive Aggregates
Authors: Ahsan R. Khokhar, Fizza Hassan
Abstract:
Alkali-Silica Reaction (ASR) has been recognized as a potential cause of concrete degradation in the world since the 1940s. In Pakistan, mega hydropower structures like dams, weirs constructed from aggregates extracted from a local riverbed exhibited different levels of alkali-silica reactivity over an extended service period. The concrete expansion potential due to such aggregates has been categorized as slow-reactive. Apart from hydropower structures, ASR existence has been identified in the concrete structural elements of a Textile Mill building which used aggregates extracted from the nearby riverbed. The original structure of the Textile Mill was erected in the 80s with the addition of a textile ‘sizing and wrapping’ hall constructed in the 90s. In the years to follow, intensive spalling was observed in the structural members of the subject hall; enough to threat to the overall stability of the building. Limitations such as incomplete building data posed hurdles during the detailed structural investigation. The paper lists observations made while assessing the extent of damage and its effect on the building hall structure. Core testing and Petrographic tests were carried out as per the ASTM standards for strength degradation analysis followed by the identifying its root cause. Results confirmed significant structural strength reduction because of ASR which necessitated the formulation of an immediate re-strengthening solution. The paper also discusses the possible tracks of rehabilitative measures which are being adapted to stabilize the structure and seize further concrete expansion.Keywords: Alkali-Silica Reaction (ASR), concrete strength degradation, damage assessment, damage evaluation
Procedia PDF Downloads 1294501 An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene
Authors: Salihu Takuma
Abstract:
Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer.Keywords: biodegradable, elongation at break, epoxidation, epoxy fatty acids, sustainable, tensile strength and modulus
Procedia PDF Downloads 2344500 Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes
Authors: Shreemoyee Sarkar, Vikhyat Chadha
Abstract:
In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided.Keywords: local hurst exponent, lyapunov exponent, market crash prediction, time series chaos, time series local fractal properties
Procedia PDF Downloads 1524499 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition
Authors: Ali Nadi, Ali Edrissi
Abstract:
Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.Keywords: disaster management, real-time demand, reinforcement learning, relief demand
Procedia PDF Downloads 3164498 Crime Prevention with Artificial Intelligence
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.Keywords: artificial intelligence, criminology, crime, prevention, prediction
Procedia PDF Downloads 754497 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 2674496 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.Keywords: dissolved oxygen, water quality, predication DO, support vector machine
Procedia PDF Downloads 2904495 The Traditional Ceramics Value in the Middle East
Authors: Abdelmessih Malak Sadek Labib
Abstract:
Ceramic materials are known for their stability in harsh environments and excellent electrical, mechanical, and thermal properties. They have been widely used in various applications despite the emergence of new materials such as plastics and composites. However, ceramics are often brittle, which can lead to catastrophic failure. The fragility of ceramics and the mechanisms behind their failure have been a topic of extensive research, particularly in load-bearing applications like veneers. Porcelain, a type of traditional pottery, is commonly used in such applications. Traditional pottery consists of clay, silica, and feldspar, and the presence of quartz in the ceramic body can lead to microcracks and stress concentrations. The mullite hypothesis suggests that the strength of porcelain can be improved by increasing the interlocking of mullite needles in the ceramic body. However, there is a lack of reports on Young's moduli in the literature, leading to erroneous conclusions about the mechanical behavior of porcelain. This project aims to investigate the role of quartz and mullite on the mechanical strength of various porcelains while considering factors such as particle size, flexural strength, and fractographic forces. Research Aim: The aim of this research project is to assess the role of quartz and mullite in enhancing the mechanical strength of different porcelains. The project will also explore the effect of reducing particle size on the properties of porcelain, as well as investigate flexural strength and fractographic techniques. Methodology: The methodology for this project involves using scientific expressions and a mix of modern English to ensure the understanding of all attendees. It will include the measurement of Young's modulus and the evaluation of the mechanical behavior of porcelains through various experimental techniques. Findings: The findings of this study will provide a realistic assessment of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. The research will also contribute to a better understanding of the mechanical behavior of ceramics, specifically in load-bearing applications. Theoretical Importance: The theoretical importance of this research lies in its contribution to the understanding of the factors influencing the mechanical strength and fragility of ceramics, particularly porcelain. By investigating the interplay between quartz, mullite, and other variables, this study will enhance our knowledge of the properties and behavior of traditional ceramics. Data Collection and Analysis Procedures: Data for this research will be collected through experiments involving the measurement of Young's modulus and other mechanical properties of porcelains. The effects of quartz, mullite, particle size, flexural strength, and fractographic forces will be examined and analyzed using appropriate statistical techniques and fractographic analysis. Questions Addressed: This research project aims to address the following questions: (1) How does the presence of quartz and mullite affect the mechanical strength of porcelain? (2) What is the impact of reducing particle size on the properties of porcelain? (3) How do flexural strength and fractographic forces influence the behavior of porcelains? Conclusion: In conclusion, this research project aims to enhance the understanding of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. By investigating the mechanical properties of porcelains and considering factors such as particle size, flexural strength, and fractographic forces, this study will contribute to the knowledge of traditional ceramics and their potential applications. The findings will have practical implications for the use of ceramics in various fields.Keywords: stability, harsh environments, electrical, techniques, mechanical disadvantages, materials
Procedia PDF Downloads 684494 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 1304493 Analysis of Ancient Bone DNA Samples From Excavations at St Peter’s Burial Ground, Blackburn
Authors: Shakhawan K. Mawlood, Catriona Pickard, Benjamin Pickard
Abstract:
In summer 2015 the remains of 800 children are among 1,967 bodies were exhumed by archaeologists at St Peter's Burial Ground in Blackburn, Lancashire. One hundred samples from these 19th century ancient bones were selected for DNA analysis. These comprised samples biased for those which prior osteological evidence indicated a potential for microbial infection by Mycobacterium tuberculosis (causing tuberculosis, TB) or Treponema pallidum (causing Syphilis) species, as well a random selection of other bones for which visual inspection suggested good preservation (and, therefore, likely DNA retrieval).They were subject to polymerase chain reaction (PCR) assays aimed at detecting traces of DNA from infecting mycobacteria, with the purpose both of confirming the palaeopathological diagnosis of tuberculosis and determining in individual cases whether disease and death was due to M. tuberculosis or other reasons. Our secondary goal was to determine sex determination and age prediction. The results demonstrated that extraction of vast majority ancient bones DNA samples succeeded.Keywords: ancient bone, DNA, tuberculosis, age prediction
Procedia PDF Downloads 1034492 Heat Transfer Studies for LNG Vaporization During Underwater LNG Releases
Authors: S. Naveen, V. Sivasubramanian
Abstract:
A modeling theory is proposed to consider the vaporization of LNG during its contact with water following its release from an underwater source. The spillage of LNG underwater can lead to a decrease in the surface temperature of water and subsequent freezing. This can in turn affect the heat flux distribution from the released LNG onto the water surrounding it. The available models predict the rate of vaporization considering the surface of contact as a solid wall, and considering the entire phenomena as a solid-liquid operation. This assumption greatly under-predicted the overall heat transfer on LNG water interface. The vaporization flux would first decrease during the film boiling, followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. A superheat theory is introduced to enhance the accuracy in the prediction of the heat transfer between LNG and water. The work suggests that considering the superheat theory can greatly enhance the prediction of LNG vaporization on underwater releases and also help improve the study of overall thermodynamics.Keywords: evaporation rate, heat transfer, LNG vaporization, underwater LNG release
Procedia PDF Downloads 4394491 Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire
Authors: Robert Pečenko, Karin Tomažič, Igor Planinc, Sabina Huč, Tomaž Hozjan
Abstract:
Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future.Keywords: advanced numerical modelling, parametric fire exposure, timber structures, zero strength layer
Procedia PDF Downloads 1684490 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force
Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases.Keywords: axial force ratio, fire, reinforced concrete wall, residual strength
Procedia PDF Downloads 4614489 Prediction Study of the Structural, Elastic and Electronic Properties of the Parent and Martensitic Phases of Nonferrous Ti, Zr, and Hf Pure Metals
Authors: Tayeb Chihi, Messaoud Fatmi
Abstract:
We present calculations of the structural, elastic and electronic properties of nonferrous Ti, Zr, and Hf pure metals in both parent and martensite phases in bcc and hcp structures respectively. They are based on the generalized gradient approximation (GGA) within the density functional theory (DFT). The shear modulus, Young's modulus and Poisson's ratio for Ti, Zr, and Hf metals have were calculated and compared with the corresponding experimental values. Using elastic constants obtained from calculations GGA, the bulk modulus along the crystallographic axes of single crystals was calculated. This is in good agreement with experiment for Ti and Zr, whereas the hcp structure for Hf is a prediction. At zero temperature and zero pressure, the bcc crystal structure is found to be mechanically unstable for Ti, Zr, and Hf. In our calculations the hcp structures is correctly found to be stable at the equilibrium volume. In the electronic density of states (DOS), the smaller n(EF) is, the more stable the compound is. Therefore, in agreement with the results obtained from the total energy minimum.Keywords: Ti, Zr, Hf, pure metals, transformation, energy
Procedia PDF Downloads 3534488 Influence of Brazing Process Parameters on the Mechanical Properties of Nickel Based Superalloy
Authors: M. Zielinska, B. Daniels, J. Gabel, A. Paletko
Abstract:
A common nickel based superalloy Inconel625 was brazed with Ni-base braze filler material (AMS4777) containing melting-point-depressants such as B and Si. Different braze gaps, brazing times and forms of braze filler material were tested. It was determined that the melting point depressants B and Si tend to form hard and brittle phases in the joint during the braze cycle. Brittle phases significantly reduce mechanical properties (e. g. tensile strength) of the joint. Therefore, it is important to define optimal process parameters to achieve high strength joints, free of brittle phases. High ultimate tensile strength (UTS) values can be obtained if the joint area is free of brittle phases, which is equivalent to a complete isothermal solidification of the joint. Isothermal solidification takes place only if the concentration of the melting point depressant in the braze filler material of the joint is continuously reduced by diffusion into the base material. For a given brazing temperature, long brazing times and small braze filler material volumes (small braze gaps) are beneficial for isothermal solidification. On the base of the obtained results it can be stated that the form of the braze filler material has an additional influence on the joint quality. Better properties can be achieved by the use of braze-filler-material in form of foil instead of braze-filler-material in form of paste due to a reduced amount of voids and a more homogeneous braze-filler-material-composition in the braze-gap by using foil.Keywords: diffusion brazing, microstructure, superalloy, tensile strength
Procedia PDF Downloads 3644487 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data
Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding
Abstract:
The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)
Procedia PDF Downloads 1514486 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions
Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju
Abstract:
Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism
Procedia PDF Downloads 1654485 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites Through T6 and T8 Heat Treatments
Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.
Abstract:
In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of their benefits such as moderate strength; better deforming characteristics, excellent chemical decay resistance, and affordable cost. 7075 Al-alloys have been used in the transportation industry for the fabrication of several types of automobile parts, such as wheel covers, panels and structures. It is expected that substitution of such aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminium alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties achievable by selecting and tailoring the suitable heat treatment process. On subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments, known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. Decreasing peak hardness value with increasing aging temperature is the well-known behavior of age hardenable alloys. The peak hardness value is further increasing when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. Considering these aspects, it is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and upto 5 times increase in wear resistance are also observed in the present study.Keywords: reinforcement, precipitation, thermomechanical, dislocation, strain hardening
Procedia PDF Downloads 3114484 Thermal and Dielectric Breakdown Criterium for Low Voltage Switching Devices
Authors: Thomas Merciris, Mathieu Masquere, Yann Cressault, Pascale Petit
Abstract:
The goal of an alternative current (AC) switching device is to allow the arc (created during the opening phase of the contacts) to extinguish at the current zero. The plasma temperature rate of cooling down, the electrical characteristic of the arc (current-voltage), and the rise rate of the transient recovery voltage (TRV) are critical parameters which influence the performance of a switching device. To simulate the thermal extinction of the arc and to obtain qualitative data on the processes responsible for this phenomenon, a 1D MHD fluid model in the air was developed and coupled to an external electric circuit. After thermal extinction, the dielectric strength of the hot air (< 4kK) was then estimated by the Bolsig+ software and the critical electric fields method with the temperature obtained by the MHD simulation. The influence of copper Cu and silver Ag vapors was investigated on the thermal and dielectric part of the simulation with various current forms (100A to 1kA). Finally, those values of dielectric strength have been compared to the experimental values obtained in the case of two separating silver contacts. The preliminary results seem to indicate the dielectric strength after multiples hundreds of microseconds is the same order of magnitude as experimentally found.Keywords: MHD simulation, dielectric recovery, Bolsig+, silver vapors, copper vapors, breakers, electric arc
Procedia PDF Downloads 1154483 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils
Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha
Abstract:
Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering
Procedia PDF Downloads 3384482 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering
Authors: Sara Hasani
Abstract:
This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.Keywords: disaster management, natural disaster, pattern recognition, prediction
Procedia PDF Downloads 1534481 Using Analytics to Redefine Athlete Resilience
Authors: Phil P. Wagner
Abstract:
There is an overwhelming amount of athlete-centric information available for sport practitioners in this era of tech and big data, but protocols in athletic rehabilitation remain arbitrary. It is a common assumption that the rate at which tissue heals amongst individuals is the same; yielding protocols that are entirely time-based. Progressing athletes through rehab programs that lack individualization can potentially expose athletes to stimuli they are not prepared for or unnecessarily lengthen their recovery period. A 7-year aggregated and anonymous database was used to develop reliable and valid assessments to measure athletic resilience. Each assessment utilizes force plate technology with proprietary protocols and analysis to provide key thresholds for injury risk and recovery. Using a T score to analyze movement qualities, much like the Z score used for bone density from a Dexa scan, specific prescriptions are provided to mitigate the athlete’s inherent injury risk. In addition to obliging to surgical clearance, practitioners must put in place a clearance protocol guided by standardized assessments and achievement in strength thresholds. In order to truly hold individuals accountable (practitioners, athletic trainers, performance coaches, etc.), success in improving pre-defined key performance indicators must be frequently assessed and analyzed.Keywords: analytics, athlete rehabilitation, athlete resilience, injury prediction, injury prevention
Procedia PDF Downloads 2284480 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database
Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski
Abstract:
Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration
Procedia PDF Downloads 4624479 The Role of Psychological Factors in Prediction Academic Performance of Students
Authors: Hadi Molaei, Yasavoli Davoud, Keshavarz, Mozhde Poordana
Abstract:
The present study aimed was to prediction the academic performance based on academic motivation, self-efficacy and Resiliency in the students. The present study was descriptive and correlational. Population of the study consisted of all students in Arak schools in year 1393-94. For this purpose, the number of 304 schools students in Arak was selected using multi-stage cluster sampling. They all questionnaires, self-efficacy, Resiliency and academic motivation Questionnaire completed. Data were analyzed using Pearson correlation and multiple regressions. Pearson correlation showed academic motivation, self-efficacy, and Resiliency with academic performance had a positive and significant relationship. In addition, multiple regression analysis showed that the academic motivation, self-efficacy and Resiliency were predicted academic performance. Based on the findings could be conclude that in order to increase the academic performance and further progress of students must provide the ground to strengthen academic motivation, self-efficacy and Resiliency act on them.Keywords: academic motivation, self-efficacy, resiliency, academic performance
Procedia PDF Downloads 4974478 Studying the Effect of Carbon Nanotubes on the Mechanical Properties of Epoxy-Nanocomposite for the Oil Field Applications
Authors: Mohammed Al-Bahrani, Alistair Cree, Zoltan J. Gombos
Abstract:
Carbon nanotubes are currently considered to be one of the strongest and stiffest engineering materials available, possessing a calculated tensile strength of σTS ≈ 200GPa and Young’s moduli up to E = 1.4 TPa. In the context of manufactured engineering composites, epoxy resin is the most commonly used matrix material for many aerospace and oil field, and other, industrial applications. This paper reports the initial findings of a study which considered the effects that small additions of nickel coated multi-wall carbon nanotubes (Ni-MWCNTs) would have on the mechanical properties of an epoxy resin matrix material. To successfully incorporate these particles into the matrix materials, with good dispersive properties, standard mixing techniques using an ultrasonic bath were used during the manufacture of appropriate specimens for testing. The tensile and flexural strength properties of these specimens, as well as the microstructure, were then evaluated and studied. Scanning Electronics Microscope (SEM) was used to visualise the degree of dispersion of the Ni-MWCNT’s in matrix. The results obtained indicated that the mechanical properties of epoxy resin can be improved significantly by the addition of the Ni-MWCNT’s. Further, the addition of Ni-MWCNT’s increased the tensile strength by approximately 19% and the tensile modulus by 28%. The flexural strength increased by 20.7% and flexural modulus by 22.6% compared to unmodified epoxy resin. It is suggested that these improvements, seen with the Ni-MWCNT’s particles, were due to an increase in the degree of interfacial bonding between Ni-MWCNT and epoxy, so leading to the improved mechanical properties of the nanocomposite observed. Theoretical modelling, using ANSYS finite element analysis, also showed good correlation with the experimental results obtained.Keywords: carbon nanotubes, nanocomposite, epoxy resin, ansys
Procedia PDF Downloads 1744477 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete
Authors: Fatih Hattatoglu, Abdulrezzak Bakiş
Abstract:
In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.Keywords: combined cure, flexural test, reactive powder concrete (RPC), rigid pavement, pressure test
Procedia PDF Downloads 2094476 Solving Crimes through DNA Methylation Analysis
Authors: Ajay Kumar Rana
Abstract:
Predicting human behaviour, discerning monozygotic twins or left over remnant tissues/fluids of a single human source remains a big challenge in forensic science. Recent advances in the field of DNA methylations which are broadly chemical hallmarks in response to environmental factors can certainly help to identify and discriminate various single-source DNA samples collected from the crime scenes. In this review, cytosine methylation of DNA has been methodologically discussed with its broad applications in many challenging forensic issues like body fluid identification, race/ethnicity identification, monozygotic twins dilemma, addiction or behavioural prediction, age prediction, or even authenticity of the human DNA. With the advent of next-generation sequencing techniques, blooming of DNA methylation datasets and together with standard molecular protocols, the prospect of investigating and solving the above issues and extracting the exact nature of the truth for reconstructing the crime scene events would be undoubtedly helpful in defending and solving the critical crime cases.Keywords: DNA methylation, differentially methylated regions, human identification, forensics
Procedia PDF Downloads 3214475 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete
Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen
Abstract:
The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance
Procedia PDF Downloads 3094474 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements
Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang
Abstract:
Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation
Procedia PDF Downloads 144