Search results for: Gaussian Mixture Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18083

Search results for: Gaussian Mixture Model

16583 Studies on Effect of Nano Size and Surface Coating on Enhancement of Bioavailability and Toxicity of Berberine Chloride; A p-gp Substrate

Authors: Sanjay Singh, Parameswara Rao Vuddanda

Abstract:

The aim of the present study is study the factual benefit of nano size and surface coating of p-gp efflux inhibitor on enhancement of bioavailability of Berberine chloride (BBR); a p-gp substrate. In addition, 28 days sub acute oral toxicity study was also conducted to assess the toxicity of the formulation on chronic administration. BBR loaded polymeric nanoparticles (BBR-NP) were prepared by nanoprecipitation method. BBR NP were surface coated (BBR-SCNP) with the 1 % w/v of vitamin E TPGS. For bioavailability study, total five groups (n=6) of rat were treated as follows first; pure BBR, second; physical mixture of BBR, carrier and vitamin E TPGS, third; BBR-NP, fourth; BBR-SCNP and fifth; BBR and verapamil (widely used p-gp inhibitor). Blood was withdrawn at pre-set timing points in 24 hrs study and drug was quantified by HPLC method. In oral chronic toxicity study, total four groups (n=6) were treated as follows first (control); water, second; pure BBR, third; BBR surface coated nanoparticles and fourth; placebo BBR surface coated nanoparticles. Biochemical levels of liver (AST, ALP and ALT) and kidney (serum urea and creatinine) along with their histopathological studies were also examined (0-28 days). The AUC of BBR-SCNP was significantly 3.5 folds higher compared to all other groups. The AUC of BBR-NP was 3.23 and 1.52 folds higher compared to BBR solution and BBR with verapamil group, respectively. The physical mixture treated group showed slightly higher AUC than BBR solution treated group but significantly low compared to other groups. It indicates that encapsulation of BBR in nanosize form can circumvent P-gp efflux effect. BBR-NP showed pharmacokinetic parameters (Cmax and AUC) which are near to BBR-SCNP. However, the difference in values of T1/2 and clearance indicate that surface coating with vitamin E TPGS not only avoids the P-gp efflux at its absorption site (intestine) but also at organs which are responsible for metabolism and excretion (kidney and liver). It may be the reason for observed decrease in clearance of BBR-SCNP. No toxicity signs were observed either in biochemical or histopathological examination of liver and kidney during toxicity studies. The results indicate that administration of BBR in surface coated nanoformulation would be beneficial for enhancement of its bioavailability and longer retention in systemic circulation. Further, sub acute oral dose toxicity studies for 28 days such as evaluation of intestine, liver and kidney histopathology and biochemical estimations indicated that BBR-SCNP developed were safe for long use.

Keywords: bioavailability, berberine nanoparticles, p-gp efflux inhibitor, nanoprecipitation method

Procedia PDF Downloads 390
16582 Generating Product Description with Generative Pre-Trained Transformer 2

Authors: Minh-Thuan Nguyen, Phuong-Thai Nguyen, Van-Vinh Nguyen, Quang-Minh Nguyen

Abstract:

Research on automatically generating descriptions for e-commerce products is gaining increasing attention in recent years. However, the generated descriptions of their systems are often less informative and attractive because of lacking training datasets or the limitation of these approaches, which often use templates or statistical methods. In this paper, we explore a method to generate production descriptions by using the GPT-2 model. In addition, we apply text paraphrasing and task-adaptive pretraining techniques to improve the qualify of descriptions generated from the GPT-2 model. Experiment results show that our models outperform the baseline model through automatic evaluation and human evaluation. Especially, our methods achieve a promising result not only on the seen test set but also in the unseen test set.

Keywords: GPT-2, product description, transformer, task-adaptive, language model, pretraining

Procedia PDF Downloads 197
16581 Predicting Depth of Penetration in Abrasive Waterjet Cutting of Polycrystalline Ceramics

Authors: S. Srinivas, N. Ramesh Babu

Abstract:

This paper presents a model to predict the depth of penetration in polycrystalline ceramic material cut by abrasive waterjet. The proposed model considered the interaction of cylindrical jet with target material in upper region and neglected the role of threshold velocity in lower region. The results predicted with the proposed model are validated with the experimental results obtained with Silicon Carbide (SiC) blocks.

Keywords: abrasive waterjet cutting, analytical modeling, ceramics, micro-cutting and inter-grannular cracking

Procedia PDF Downloads 305
16580 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
16579 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 84
16578 Image Segmentation Using Active Contours Based on Anisotropic Diffusion

Authors: Shafiullah Soomro

Abstract:

Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.

Keywords: active contours, anisotropic diffusion, level-set, partial differential equations

Procedia PDF Downloads 161
16577 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow

Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng

Abstract:

The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.

Keywords: area-based traffic, car-following model, micro-simulation, stochastic modeling

Procedia PDF Downloads 147
16576 Flexural Properties of Typha Fibers Reinforced Polyester Composite

Authors: Sana Rezig, Yosr Ben Mlik, Mounir Jaouadi, Foued Khoffi, Slah Msahli, Bernard Durand

Abstract:

Increasing interest in environmental concerns, natural fibers are once again being considered as reinforcements for polymer composites. The main objective of this study is to explore another natural resource, Typha fiber; which is renewable without production cost and available abundantly in nature. The aim of this study was to study the flexural properties of composite resin with and without reinforcing Typha leaf and stem fibers. The specimens were made by the hand-lay-up process using polyester matrix. In our work, we focused on the effect of various treatment conditions (sea water, alkali treatment and a combination of the two treatments), as a surface modifier, on the flexural properties of the Typha fibers reinforced polyester composites. Moreover, weight ratio of Typha leaf or stem fibers was investigated. Besides, both fibers from leaf and stem of Typha plant were used to evaluate the reinforcing effect. Another parameter, which is reinforcement structure, was investigated. In fact, a first composite was made with air-laid nonwoven structure of fibers. A second composite was with a mixture of fibers and resin for each kind of treatment. Results show that alkali treatment and combined process provided better mechanical properties of composites in comparison with fiber treated by sea water. The fiber weight ratio influenced the flexural properties of composites. Indeed, a maximum value of flexural strength of 69.8 and 62,32 MPa with flexural modulus of 6.16 and 6.34 GPawas observed respectively for composite reinforced with leaf and stem fibers for 12.6 % fiber weight ratio. For the different treatments carried out, the treatment using caustic soda, whether alone or after retting seawater, show the best results because it improves adhesion between the polyester matrix and the fibers of reinforcement. SEM photographs were made to ascertain the effects of the surface treatment of the fibers. By varying the structure of the fibers of Typha, the reinforcement used in bulk shows more effective results as that used in the non-woven structure. In addition, flexural strength rises with about (65.32 %) in the case of composite reinforced with a mixture of 12.6% leaf fibers and (27.45 %) in the case of a composite reinforced with a nonwoven structure of 12.6 % of leaf fibers. Thus, to better evaluate the effect of the fiber origin, the reinforcing structure, the processing performed and the reinforcement factor on the performance of composite materials, a statistical study was performed using Minitab. Thus, ANOVA was used, and the patterns of the main effects of these parameters and interaction between them were established. Statistical analysis, the fiber treatment and reinforcement structure seem to be the most significant parameters.

Keywords: flexural properties, fiber treatment, structure and weight ratio, SEM photographs, Typha leaf and stem fibers

Procedia PDF Downloads 415
16575 Document Analysis for Modelling iTV Advertising towards Impulse Purchase

Authors: Azizah Che Omar

Abstract:

The study provides a systematic literature review which analyzed the literature for the purpose of looking for concepts, theories, approaches and guidelines in order to propose a conceptual design model of interactive television advertising toward impulse purchase (iTVAdIP). An extensive review of literature was purposely carried out to understand the concepts of interactive television (iTV). Therefore, some elements; iTV guidelines, advertising theories, persuasive approaches, and the impulse purchase elements were analyzed to reach the scope of this work. The extensive review was also a necessity to achieve the objective of this study, which was to determine the concept of iTVAdIP design model. Through systematic review analysis, this study discovered that all the previous models did not emphasize the conceptual design model of interactive television advertising. As a result, the finding showed that the concept of the proposed model should contain the iTV guidelines, advertising theory, persuasive approach and impulse purchase elements. In addition, a summary diagram for the development of the proposed model is depicted to provide clearer understanding towards the concepts of conceptual design model of iTVAdIP.

Keywords: impulse purchase, interactive television advertising, human computer interaction, advertising theories

Procedia PDF Downloads 371
16574 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams

Authors: Woo-Young Jung, Minho Kwon

Abstract:

Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.

Keywords: torsion, non-linear analysis, three-dimensional lattice, high-strength concrete

Procedia PDF Downloads 351
16573 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 91
16572 Efficacy of Technology for Successful Learning Experience; Technology Supported Model for Distance Learning: Case Study of Botho University, Botswana

Authors: Ivy Rose Mathew

Abstract:

The purpose of this study is to outline the efficacy of technology and the opportunities it can bring to implement a successful delivery model in Distance Learning. Distance Learning has proliferated over the past few years across the world. Some of the current challenges faced by current students of distance education include lack of motivation, a sense of isolation and a need for greater and improved communication. Hence the author proposes a creative technology supported model for distance learning exactly mirrored on the traditional face to face learning that can be adopted by distance learning providers. This model suggests the usage of a range of technologies and social networking facilities, with the aim of creating a more engaging and sustaining learning environment to help overcome the isolation often noted by distance learners. While discussing the possibilities, the author also highlights the complexity and practical challenges of implementing such a model. Design/methodology/approach: Theoretical issues from previous research related to successful models for distance learning providers will be considered. And also the analysis of a case study from one of the largest private tertiary institution in Botswana, Botho University will be included. This case study illustrates important aspects of the distance learning delivery model and provides insights on how curriculum development is planned, quality assurance is done, and learner support is assured for successful distance learning experience. Research limitations/implications: While some of the aspects of this study may not be applicable to other contexts, a number of new providers of distance learning can adapt the key principles of this delivery model.

Keywords: distance learning, efficacy, learning experience, technology supported model

Procedia PDF Downloads 247
16571 On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme

Authors: Shahram Jamali, Samira Hamed

Abstract:

One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count.

Keywords: active queue management, RED, Markov model, random early detection algorithm

Procedia PDF Downloads 539
16570 Singularization: A Technique for Protecting Neural Networks

Authors: Robert Poenaru, Mihail Pleşa

Abstract:

In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.

Keywords: machine learning, ANE, CNN, security

Procedia PDF Downloads 14
16569 New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science

Authors: Nicola G. G. Cecca

Abstract:

In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory.

Keywords: chemical bond, molecular orbital theory, magnetic attraction force, GEOMAG™

Procedia PDF Downloads 267
16568 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 643
16567 Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD

Authors: Norhaslina Mat Zian, Hasril Hasini, Nur Irmawati Om

Abstract:

This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone.

Keywords: cfd, combustion, flame, syngas

Procedia PDF Downloads 284
16566 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis

Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas

Abstract:

Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.

Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum

Procedia PDF Downloads 161
16565 A Model for Reverse-Mentoring in Education

Authors: Sabine A. Zauchner-Studnicka

Abstract:

As the term indicates, reverse-mentoring flips the classical roles of mentoring: In school, students take over the role of mentors for adults, i.e. teachers or parents. Originally reverse-mentoring stems from US enterprises, which implemented this innovative method in order to benefit from the resources of skilled younger employees for the enhancement of IT competences of senior colleagues. However, reverse-mentoring in schools worldwide is rare. Based on empirical studies and theoretical approaches, in this article an implementation model for reverse-mentoring is developed in order to bring the significant potential reverse-mentoring has for education into practice.

Keywords: reverse-mentoring, innovation in education, implementation model, school education

Procedia PDF Downloads 248
16564 Steady State Modeling and Simulation of an Industrial Steam Boiler

Authors: Amina Lyria Deghal Cheridi, Abla Chaker, Ahcene Loubar

Abstract:

Relap5 system code is one among powerful tools, which is used in the area of design and safety evaluation. This work aims to simulate the behavior of a radiant steam boiler at the steady-state conditions using Relap5 code system. To perform this study, a detailed Relap5 model is built including all the parts of the steam boiler. The control and regulation systems are also considered. To reproduce the most important parameters and phenomena with an acceptable accuracy and fidelity, a strong qualification work is undertaken concerning the facility nodalization. It consists of making a comparison between the code results and the plant available data in steady-state operation mode. Therefore, the model qualification results at the steady-state are in good agreement with the steam boiler experimental data. The steam boiler Relap5 model has proved satisfactory; and the model was capable of predicting the main thermal-hydraulic steady-state conditions of the steam boiler.

Keywords: industrial steam boiler, model qualification, natural circulation, relap5/mod3.2, steady state simulation

Procedia PDF Downloads 272
16563 Development of 3D Neck Muscle to Analyze the Effect of Active Muscle Contraction in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are mostly experienced in car accidents. Symptoms of whiplash are commonly reported in studies, neck pain and headaches are two most common symptoms observed. The whiplash Injury mechanism is poorly understood. In present study, hybrid neck muscle model were developed with a combination of solid tetrahedral elements and 1D beam elements. Solid tetrahedral elements represents passive part of the muscle whereas, 1D beam elements represents active part. To simulate the active behavior of the muscle, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Some important muscles were then inserted into THUMS (Total Human Model for Safety) THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, THUMS, whiplash injury mechanism

Procedia PDF Downloads 334
16562 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 231
16561 A Performance Model for Designing Network in Reverse Logistic

Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi

Abstract:

In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.

Keywords: reverse logistics, network design, performance model, open loop configuration

Procedia PDF Downloads 435
16560 Developing a Mathematical Model for Trade-Off Analysis of New Green Products

Authors: M. R. Gholizadeh, N. Bhuiyan, M. Salari

Abstract:

In the near future, companies will be increasingly forced to shift their activities along a new road in order to decrease the harmful effects of their design, production and after-life on our environment. Products must meet environmental standards to not only prevent penalties but to consider the sustainability for future generations. However, the most important factor that companies will face is selecting a reasonable strategy to maximize their profit. Thus, companies need to have precise forecast from their profit after design stage through Trade-off analysis. This paper is an attempt to introduce a mathematical model that considers effective factors that impact the total profit when products are designed for resource and energy efficiency or recyclability. The modification is according to different strategies based on a Cost-Volume-Profit model. Here, the cost structure consists of Recycling cost, Development cost, Ramp-up cost, Production cost, and Pollution cost. Also, the model shows the effect of implementation of design for recyclable on revenue structure through revenue of used parts and revenue of recycled materials. A numerical example is used to evaluate the proposed model. Results show that fulfillment of Green Product Development not only can reduce the environmental impact of products but also it will increase profit of company in long term.

Keywords: green product, design for environment, C-V-P model, trade-off analysis

Procedia PDF Downloads 316
16559 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith

Abstract:

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Keywords: exoskeleton- upper limb system, model free terminal sliding mode, gravity compensation, robustness analysis

Procedia PDF Downloads 144
16558 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
16557 Multivariate Rainfall Disaggregation Using MuDRain Model: Malaysia Experience

Authors: Ibrahim Suliman Hanaish

Abstract:

Disaggregation daily rainfall using stochastic models formulated based on multivariate approach (MuDRain) is discussed in this paper. Seven rain gauge stations are considered in this study for different distances from the referred station starting from 4 km to 160 km in Peninsular Malaysia. The hourly rainfall data used are covered the period from 1973 to 2008 and July and November months are considered as an example of dry and wet periods. The cross-correlation among the rain gauges is considered for the available hourly rainfall information at the neighboring stations or not. This paper discussed the applicability of the MuDRain model for disaggregation daily rainfall to hourly rainfall for both sources of cross-correlation. The goodness of fit of the model was based on the reproduction of fitting statistics like the means, variances, coefficients of skewness, lag zero cross-correlation of coefficients and the lag one auto correlation of coefficients. It is found the correlation coefficients based on extracted correlations that was based on daily are slightly higher than correlations based on available hourly rainfall especially for neighboring stations not more than 28 km. The results showed also the MuDRain model did not reproduce statistics very well. In addition, a bad reproduction of the actual hyetographs comparing to the synthetic hourly rainfall data. Mean while, it is showed a good fit between the distribution function of the historical and synthetic hourly rainfall. These discrepancies are unavoidable because of the lowest cross correlation of hourly rainfall. The overall performance indicated that the MuDRain model would not be appropriate choice for disaggregation daily rainfall.

Keywords: rainfall disaggregation, multivariate disaggregation rainfall model, correlation, stochastic model

Procedia PDF Downloads 516
16556 Economic Development Process: A Compartmental Analysis of a Model with Two Delays

Authors: Amadou Banda Ndione, Charles Awono Onana

Abstract:

In this paper the compartmental approach is applied to build a macroeconomic model characterized by countries. We consider a total of N countries that are subdivided into three compartments according to their economic status: D(t) denotes the compartment of developing countries at time t, E(t) stands for the compartment of emerging countries at time t while A(t) represents advanced countries at time t. The model describes the process of economic development and includes the notion of openness through collaborations between countries. Two delays appear in this model to describe the average time necessary for collaborations between countries to become efficient for their development process. Our model represents the different stages of development. It further gives the conditions under which a country can change its economic status and demonstrates the short-term positive effect of openness on economic growth. In addition, we investigate bifurcation by considering the delay as a bifurcation parameter and examine the onset and termination of Hopf bifurcations from a positive equilibrium. Numerical simulations are provided in order to illustrate the theoretical part and to support discussion.

Keywords: compartmental systems, delayed dynamical system, economic development, fiscal policy, hopf bifurcation

Procedia PDF Downloads 137
16555 Conventional and Computational Investigation of the Synthesized Organotin(IV) Complexes Derived from o-Vanillin and 3-Nitro-o-Phenylenediamine

Authors: Harminder Kaur, Manpreet Kaur, Akanksha Kapila, Reenu

Abstract:

Schiff base with general formula H₂L was derived from condensation of o-vanillin and 3-nitro-o-phenylenediamine. This Schiff base was used for the synthesis of organotin(IV) complexes with general formula R₂SnL [R=Phenyl or n-octyl] using equimolar quantities. Elemental analysis UV-Vis, FTIR, and multinuclear spectroscopic techniques (¹H, ¹³C, and ¹¹⁹Sn) NMR were carried out for the characterization of the synthesized complexes. These complexes were coloured and soluble in polar solvents. Computational studies have been performed to obtain the details of the geometry and electronic structures of ligand as well as complexes. Geometry of the ligands and complexes have been optimized at the level of Density Functional Theory with B3LYP/6-311G (d,p) and B3LYP/MPW1PW91 respectively followed by vibrational frequency analysis using Gaussian 09. Observed ¹¹⁹Sn NMR chemical shifts of one of the synthesized complexes showed tetrahedral geometry around Tin atom which is also confirmed by DFT. HOMO-LUMO energy distribution was calculated. FTIR, ¹HNMR and ¹³CNMR spectra were also obtained theoretically using DFT. Further IRC calculations were employed to determine the transition state for the reaction and to get the theoretical information about the reaction pathway. Moreover, molecular docking studies can be explored to ensure the anticancer activity of the newly synthesized organotin(IV) complexes.

Keywords: DFT, molecular docking, organotin(IV) complexes, o-vanillin, 3-nitro-o-phenylenediamine

Procedia PDF Downloads 160
16554 Application of Stochastic Models to Annual Extreme Streamflow Data

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.

Keywords: stochastic models, ARIMA, extreme streamflow, Karkheh river

Procedia PDF Downloads 148