Search results for: performance parameters
4809 Remote Sensing and GIS Based Methodology for Identification of Low Crop Productivity in Gautam Buddha Nagar District
Authors: Shivangi Somvanshi
Abstract:
Poor crop productivity in salt-affected environment in the country is due to insufficient and untimely canal supply to agricultural land and inefficient field water management practices. This could further degrade due to inadequate maintenance of canal network, ongoing secondary soil salinization and waterlogging, worsening of groundwater quality. Large patches of low productivity in irrigation commands are occurring due to waterlogging and salt-affected soil, particularly in the scarcity rainfall year. Satellite remote sensing has been used for mapping of areas of low crop productivity, waterlogging and salt in irrigation commands. The spatial results obtained for these problems so far are less reliable for further use due to rapid change in soil quality parameters over the years. The existing spatial databases of canal network and flow data, groundwater quality and salt-affected soil were obtained from the central and state line departments/agencies and were integrated with GIS. Therefore, an integrated methodology based on remote sensing and GIS has been developed in ArcGIS environment on the basis of canal supply status, groundwater quality, salt-affected soils, and satellite-derived vegetation index (NDVI), salinity index (NDSI) and waterlogging index (NSWI). This methodology was tested for identification and delineation of area of low productivity in the Gautam Buddha Nagar district (Uttar Pradesh). It was found that the area affected by this problem lies mainly in Dankaur and Jewar blocks of the district. The problem area was verified with ground data and was found to be approximately 78% accurate. The methodology has potential to be used in other irrigation commands in the country to obtain reliable spatial data on low crop productivity.Keywords: remote sensing, GIS, salt affected soil, crop productivity, Gautam Buddha Nagar
Procedia PDF Downloads 2844808 Advances in Artificial intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance
Procedia PDF Downloads 4754807 Preclinical Studying of Stable Fe-Citrate Effect on 68Ga-Citrate Tissue Distribution
Authors: A. S. Lunev, A. A. Larenkov, O. E. Klementyeva, G. E. Kodina
Abstract:
Background and aims: 68Ga-citrate is one of prospective radiopharmaceutical for PET-imaging of inflammation and infection. 68Ga-citrate is 67Ga-citrate analogue using since 1970s for SPECT-imaging. There's known rebinding reaction occurs past Ga-citrate injection and gallium (similar iron Fe3+) binds with blood transferrin. Then radiolabeled protein complex is delivered to pathological foci (inflammation/infection sites). But excessive gallium bindings with transferrin are cause of slow blood clearance, long accumulation time in foci (24-72 h) and exception of application possibility of the short-lived gallium-68 (T½ = 68 min). Injection of additional chemical agents (e.g. Fe3+ compounds) competing with radioactive gallium to the blood transferrin joining (blocking of its metal binding capacity) is one of the ways to solve formulated problem. This phenomenon can be used for correction of 68Ga-citrate pharmacokinetics for increasing of the blood clearance and accumulation in foci. The aim of real studying is research of effect of stable Fe-citrate on 68Ga-citrate tissue distribution. Materials and methods: 68Ga-citrate without/with extra injection of stable Fe-citrate (III) was injected nonlinear mice with inflammation models (aseptic soft tissue inflammation, lung infection, osteomyelitis). PET/X-RAY Genisys4 (Sofie Bioscience, USA) was used for non-invasive PET imaging (for 30, 60, 120 min past injection 68Ga-citrate) with subsequent reconstruction of imaging and their analysis (value of clearance, distribution volume). Scanning time is 10 min. Results and conclusions: I. v. injection of stable Fe-citrate blocks the metal-binding capability of transferrin serum and allows decreasing gallium-68 radioactivity in blood significantly and increasing accumulation in inflammation (3-5 time). It allows receiving more informative PET-images of inflammation early (for 30-60 min after injection). Pharmacokinetic parameters prove it. Noted there is no statistically significant difference between 68Ga-citrate accumulation for different inflammation model because PET imaging is indication of pathological processes and is not their identification.Keywords: 68Ga-citrate, Fe-citrate, PET imaging, mice, inflammation, infection
Procedia PDF Downloads 4864806 Characterization of Bovine SERPIN- Alpha-1 Antitrypsin (AAT)
Authors: Sharique Ahmed, Khushtar Anwar Salman
Abstract:
Alpha-1-antitrypsin (AAT) is a major plasma serine protease inhibitor (SERPIN). Hereditary AAT deficiency is one of the common diseases in some part of the world. AAT is mainly produced in the liver and functions to protect the lung against proteolytic damage (e.g., from neutrophil elastase) acting as the major inhibitor for neutrophil elastase. α (1)-Antitrypsin (AAT) deficiency is an under recognized genetic condition that affects approximately 1 in 2,000 to 1 in 5,000 individuals and predisposes to liver disease and early-onset emphysema. Not only does α-1-antitrypsin deficiency lead to disabling syndrome of pulmonary emphysema, there are other disorders too which include ANCA (antineutrophilic cytoplasmic antibody) positive Wegener's granulomatosis, diffuse bronchiectasis, necrotizing panniculitis in α-1-antitrypsin phenotype (S), idiopathic pulmonary fibrosis and steroid dependent asthma. Augmentation therapy with alpha-1 antitrypsin (AAT) from human plasma has been available for specific treatment of emphysema due to AAT deficiency. Apart from this several observations have also suggested a role for endogenous suppressors of HIV-1, alpha-1 antitrypsin (AAT) has been identified to be one of those. In view of its varied important role in humans, serum from a mammalian source was chosen for the isolation and purification. Studies were performed on the homogeneous fraction. This study suggests that the buffalo serum α-1-antritrypsin has characteristics close to ovine, dog, horse and more importantly to human α-1-antritrypsin in terms of its hydrodynamic properties such as molecular weight, carbohydrate content, etc. The similarities in the hydrodynamic properties of buffalo serum α-1-antitrypsin with other sources of mammalian α-1-antitrypsin mean that it can be further studied and be a potential source for "augmentation therapy", as well as a source of AAT replacement therapy to raise serum levels above the protective threshold. Other parameters like the amino acid sequence, the effect of denaturants, and the thermolability or thermostability of the inhibitor will be the interesting basis of future studies on buffalo serum alpha-1 antitrypsin (AAT).Keywords: α-1-antitrypsin, augmentation therapy , hydrodynamic properties, serine protease inhibitor
Procedia PDF Downloads 4884805 Morphometric Parametersand Evaluation of Male Persian Fallow Deer Semen
Authors: Behrang Ekrami, Amin Tamadon, Iman Razeghian Jahromi, Darioush Moghadas, Mehdi Ghahremani-Seno, Mostafa Ghaderi-Zefrehei, Ahmad Sodagar Amiri, Taheri Reza
Abstract:
Persian fallow deer (Dama dama mesopotamica) is belonging to the family Cervidae and is only found in a few protected areas in the northwest, north, and southwest of Iran. The aims of this study were analysis of inbreeding and morphometric parameters of semen in male Persian fallow deer to investigate the cause of reduced fertility of this endangered species in Dasht-e-Naz National Refuge, Sari, Iran. The Persian fallow deer semen was collected from four adult bucks randomly during the breeding and non-breeding season from five dehorned and horned deer's by an artificial vagina. Twelve blood samples was taken from Persian fallow deer and mitochondrial DNA was extracted, amplified, extracted, sequenced and then were considered for genetic analysis. The Persian fallow deer semen, both with normal and abnormal spermatozoa, is similar to that of domestic ruminants but very smaller and difficult to observe at the primary observation. The post-mating season collected ejaculates contained abnormal spermatozoa, debris and secretion of accessory glands in horned bucks and accessory glands secretion free of any spermatozoa in dehorned or early velvet budding bucks. Microscopic evaluation in all four bucks during the mating season showed the mean concentration of 9×106 spermatozoa/ml. The mean ± SD of age, testes length and testes width was 4.60 ± 1.52 years, 3.58 ± 0.32 and 1.86 ± 0.09 cm, respectively. The results identified 1120 loci (assuming each nucleotide as locus) in which 377 were polymorphic. In conclusion, reduced fertility of male Persian fallow deer may be caused by inbreeding of the protected herd in a limited area of Dasht-e-Naz National Refuge.Keywords: Persian fallow deer, genetic analysis, spermatozoa, reproductive characteristics
Procedia PDF Downloads 6004804 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant
Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon
Abstract:
In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt
Procedia PDF Downloads 5464803 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers
Authors: Ali Osman Güney, Bahattin Kanber
Abstract:
In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method
Procedia PDF Downloads 3454802 Feasibility of Phenolic Acids Rich Fraction from Gynura procumbens as Potential Antihyperlipidemic Agent
Authors: Vikneswaran Murugaiyah, Sultan Ayesh Mohammed Saghir, Kisantini Murugesu, Mohd. Zaini Asmawi, Amirin Sadikun
Abstract:
Gynura procumbens is a popular medicinal plant used as a folk medicine in Southeast Asia to treat kidney diseases, diabetes mellitus and hyperlipidemia. The present study aims to investigate the antihyperlipidemic potential of phenolic acids rich fraction (PARF) from G. procumbens in chemically-induced acute and high fat diet-induced chronic hyperlipidemic rats. Ethanolic extract of G. procumbens leaves exhibited significant reductions in total cholesterol (TC) and triglycerides (TG) levels (P < 0.01 and P < 0.001, respectively) of poloxamer 407-induced rats compared to hyperlipidemic control after 58 h of treatment. Upon bioactivity guided fractionation the antihyperlipidemic activity was found to be concentrated in the PARF, which significantly reduced the TC and TG levels (P < 0.001). HPLC analysis revealed that 3,5-dicaffeoylquinic acid; 4,5-dicaffeoylquinic acid and chlorogenic acid are the major compounds in the PARF. Likewise, chlorogenic acid (60 mg/kg) exhibited significant reductions in TC and TG levels of hyperlipidemic rats (P < 0.001). Both chlorogenic acid and PARF significantly reduced LDL, VLDL and atherogenic index (P<0.01), while PARF increased the HDL (P < 0.01) compared to hyperlipidemic control. Both were found to be not cytotoxic against normal and cancer cell lines. In addition, LD50 of orally administered PARF was more than 5,000 mg/kg. Further investigation in high fat diet-induced chronic hyperlipidemic rats revealed that chronic administration of PARF dose-dependently restored the increase in lipids parameters. In summary, the phenolic acids rich fraction of G. procumbens leaves showed promising antihyperlipidemic effect in both chemically- and diet-induced hyperlipidemic rats that warrants further elucidation on its mechanisms of action.Keywords: Antihyperlipidemic, Gynura procumbens, phenolic acids, chlorogenic acid, poloxamer-407, high fat diet
Procedia PDF Downloads 2304801 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks
Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh
Abstract:
In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.Keywords: aggregation, estimation, queuing, wireless sensor network
Procedia PDF Downloads 1864800 Analysis of the Extreme Hydrometeorological Events in the Theorical Hydraulic Potential and Streamflow Forecast
Authors: Sara Patricia Ibarra-Zavaleta, Rabindranarth Romero-Lopez, Rosario Langrave, Annie Poulin, Gerald Corzo, Mathias Glaus, Ricardo Vega-Azamar, Norma Angelica Oropeza
Abstract:
The progressive change in climatic conditions worldwide has increased frequency and severity of extreme hydrometeorological events (EHE). Mexico is an example; this has been affected by the presence of EHE leaving economic, social and environmental losses. The objective of this research was to apply a Canadian distributed hydrological model (DHM) to tropical conditions and to evaluate its capacity to predict flows in a basin in the central Gulf of Mexico. In addition, the DHM (once calibrated and validated) was used to calculate the theoretical hydraulic power and the performance to predict streamflow before the presence of an EHE. The results of the DHM show that the goodness of fit indicators between the observed and simulated flows in the calibration process (NSE=0.83, RSR=0.021 and BIAS=-4.3) and validation: temporal was assessed at two points: point one (NSE=0.78, RSR=0.113 and BIAS=0.054) and point two (NSE=0.825, RSR=0.103 and BIAS=0.063) are satisfactory. The DHM showed its applicability in tropical environments and its ability to characterize the rainfall-runoff relationship in the study area. This work can serve as a tool for identifying vulnerabilities before floods and for the rational and sustainable management of water resources.Keywords: HYDROTEL, hydraulic power, extreme hydrometeorological events, streamflow
Procedia PDF Downloads 3394799 Modeling and System Identification of a Variable Excited Linear Direct Drive
Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke
Abstract:
Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux
Procedia PDF Downloads 3684798 The Effects of Some Organic Amendments on Sediment Yield, Splash Loss, and Runoff of Soils of Selected Parent Materials in Southeastern Nigeria
Authors: Leonard Chimaobi Agim, Charles Arinzechukwu Igwe, Emmanuel Uzoma Onweremadu, Gabreil Osuji
Abstract:
Soil erosion has been linked to stream sedimentation, ecosystem degradation, and loss of soil nutrients. A study was conducted to evaluate the effect of some organic amendment on sediment yield, splash loss, and runoff of soils of selected parent materials in southeastern Nigeria. A total of 20 locations, five from each of four parent materials namely: Asu River Group (ARG), Bende Ameki Group (BAG), Coastal Plain Sand (CPS) and Falsebedded Sandstone (FBS) were used for the study. Collected soil samples were analyzed with standard methods for the initial soil properties. Rainfall simulation at an intensity of 190 mm hr-1was conducted for 30 minutes on the soil samples at both the initial stage and after amendment to obtain erosion parameters. The influence of parent material on sediment yield, splash loss and runoff based on rainfall simulation was tested for using one way analyses of variance, while the influence of organic material and their combinations were a factorially fitted in a randomized complete block design. The organic amendments include; goat dropping (GD), poultry dropping (PD), municipal solid waste (MSW) and their combinations (COA) applied at four rates of 0, 10, 20 and 30 t ha-1 respectively. Data were analyzed using analyses of variance suitable for a factorial experiment. Significant means were separated using LSD at 5 % probability levels. Result showed significant (p ≤ 0.05) lower values of sediment yield, splash loss and runoff following amendment. For instance, organic amendment reduced sediment yield under wet and dry runs by 12.91 % and 26.16% in Ishiagu, 40.76% and 45.67%, in Bende, 16.17% and 50% in Obinze and 22.80% and 42.35% in Umulolo respectively. Goat dropping and combination of amendment gave the best results in reducing sediment yield.Keywords: organic amendment, parent material, rainfall simulation, soil erosion
Procedia PDF Downloads 3424797 Identifying the Barriers Facing Chinese Small and Medium-Sized Enterprises and Evaluating the Effectiveness of Public Supports
Authors: A. Yongsheng Guo, B. Obedat. Abdulazeez, C. Xiaoxian Zhu
Abstract:
This study aimed to identify the barriers to the development of small and medium-sized enterprises (SMEs) in China and build a theoretical framework to evaluate the support provided by the authorities and institutions. A grounded theory approach was adopted to collect and analyze data. 32 interviews were conducted with SME managers, and open, axial and selective coding was utilized to develop themes. Based on institutional theory, grounded theory models were used to present findings. The findings showed that the main barriers in the business environment were defaulting on contracts, bureaucracy in procedures, lack of financial and legal support, limited intermediaries and channels, and poor quality of products and services. This study found that many programs were provided to support SMEs. A theoretical framework was developed to evaluate the performance of the programs from the managers’ perspective. The concepts of economy, efficiency and effectiveness were used to evaluate the perceived value of the programs. This study suggests that specialized programs are needed to suit sector-specific requirements, and creative packages are helpful in supporting SMEs' growth.Keywords: business support, public economics, public programme, SME
Procedia PDF Downloads 484796 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 2274795 Readiness Assessment to Implement Net-Zero Energy Building Program of Government Buildings in the Philippines
Authors: Patrick T. Aquino, Jimwel B. Balunday, Cephas Olivier V. Cabatit, Mary Grace Q. Razonable
Abstract:
In 2023, the Philippine Department of Energy (PDOE) published the National Energy Efficiency and Conservation Plan (NEECP) and Roadmap 2023-2050 to be the basis of a comprehensive program for the efficient supply and economical use of energy. The building sector, as one of the most energy-intensive sectors, shall conform to the energy-conserving design to reduce the use of energy. The concept of Net-Zero Energy Building (NZEB), and its definitions promote to improve energy efficiency of the buildings. The PDOE partnered with Meralco Power Academy to survey and conduct focus group discussions to establish the readiness into NZE-aspiring buildings of government entities. This paper outlines important NZEB principles, best practices from other countries, issues and gaps relating to energy management program, and the recommendations on the development of a framework for NZEB under government building in the Philippines. Results revealed the limitation on specific data to establish a baseline building energy efficiency performance index and significant energy uses; the need to update the Guidelines for Energy Conservation Design of Buildings, including NZEB definition and requirements; appropriate enabling infrastructures and programs to transition government buildings into NZE-aspiring buildings to Nearly Zero Energy Buildings by 2050.Keywords: NZEB, energy efficiency, buildings, Philippines
Procedia PDF Downloads 844794 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 4664793 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency
Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu
Abstract:
In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal
Procedia PDF Downloads 1494792 Augmented Reality Using Cuboid Tracking as a Support for Early Stages of Architectural Design
Authors: Larissa Negris de Souza, Ana Regina Mizrahy Cuperschmid, Daniel de Carvalho Moreira
Abstract:
Augmented Reality (AR) alters the elaboration of the architectural project, which relates to project cognition: representation, visualization, and perception of information. Understanding these features from the earliest stages of the design can facilitate the study of relationships, zoning, and overall dimensions of the forms. This paper’s goal was to explore a new approach for information visualization during the early stages of architectural design using Augmented Reality (AR). A three-dimensional marker inspired by the Rubik’s Cube was developed, and its performance, evaluated. This investigation interwovens the acquired knowledge of traditional briefing methods and contemporary technology. We considered the concept of patterns (Alexander et al. 1977) to outline geometric forms and associations using visual programming. The Design Science Research was applied to develop the study. An SDK was used in a game engine to generate the AR app. The tool's functionality was assessed by verifying the readability and precision of the reconfigurable 3D marker. The results indicated an inconsistent response. To use AR in the early stages of architectural design the system must provide consistent information and appropriate feedback. Nevertheless, we conclude that our framework sets the ground for looking deep into AR tools for briefing design.Keywords: augmented reality, cuboid marker, early design stages, graphic representation, patterns
Procedia PDF Downloads 974791 Discursive (Re/De)Construction of Objectivity-Subjectivity: Critiquing Rape/Flesh Trade-Documentaries
Authors: Muhammed Shahriar Haque
Abstract:
As an offshoot of journalistic discourse, the documentary should be objective in nature without harbouring any preconceived notion to foster ulterior motifs. When it comes to a social issue like rape in South Asian countries, as media in recent times is inundated with this violent act in India, Pakistan, Myanmar, Bangladesh, how does one document it in terms of objectivity and subjectivity? The objective of this study is twofold: to document the history of documentaries, and to critically analyze South Asian rape/flesh trade-documentaries. The overall goal is to trace the (re/de)construction of objectivity-subjectivity in documentaries. This paper adopts a qualitative approach to documentarist discourse through the lens of critical discourse analysis (CDA). Data was gathered for 10 documentaries on the theme of rape and/or flesh trade from eight South Asian countries, predominantly the South Asian Association of Regional Cooperation (SAARC) region. The documentaries were primarily categorised by using three frameworks based on six modes, six subgenres, and four basic approaches of documentary. Subsequently, the findings were critiqued from CDA perspective. The outcome suggests that there a two schools of thoughts regarding documentaries. According to journalistic ethics, news and/or documentaries should be objective in orientation and focus on informing the audience and/common people. The empirical findings tend to challenge ethical parameters of objectivity. At times, it seems that journalistic discourse is discursively (re)constructed to give an augmented simulation of objectivity. Based on the findings it may be recommended that if documentaries steer away from empirical facts and indulge in poetic naivety, their credibility could be questioned. A research of this nature is significant as it raises questions with regard to ethical and moral conscience of documentary filmmakers. Furthermore, it looks at whether they uphold journalistic integrity or succumb to their bias, and thereby depict subjective views, which could be tainted with political and/or propagandist ulterior motifs.Keywords: discursive (re/de)construction, documentaries, journalistic integrity, rape/flesh trade
Procedia PDF Downloads 1524790 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change
Authors: Ermias A. Tegegn, Million Meshesha
Abstract:
Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model
Procedia PDF Downloads 1414789 Modification Encryption Time and Permutation in Advanced Encryption Standard Algorithm
Authors: Dalal N. Hammod, Ekhlas K. Gbashi
Abstract:
Today, cryptography is used in many applications to achieve high security in data transmission and in real-time communications. AES has long gained global acceptance and is used for securing sensitive data in various industries but has suffered from slow processing and take a large time to transfer data. This paper suggests a method to enhance Advance Encryption Standard (AES) Algorithm based on time and permutation. The suggested method (MAES) is based on modifying the SubByte and ShiftRrows in the encryption part and modification the InvSubByte and InvShiftRows in the decryption part. After the implementation of the proposal and testing the results, the Modified AES achieved good results in accomplishing the communication with high performance criteria in terms of randomness, encryption time, storage space, and avalanche effects. The proposed method has good randomness to ciphertext because this method passed NIST statistical tests against attacks; also, (MAES) reduced the encryption time by (10 %) than the time of the original AES; therefore, the modified AES is faster than the original AES. Also, the proposed method showed good results in memory utilization where the value is (54.36) for the MAES, but the value for the original AES is (66.23). Also, the avalanche effects used for calculating diffusion property are (52.08%) for the modified AES and (51.82%) percentage for the original AES.Keywords: modified AES, randomness test, encryption time, avalanche effects
Procedia PDF Downloads 2454788 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 664787 Combining Ability for Maize Grain Yield and Yield Component for Resistant to Striga hermmonthica (Del) Benth in Southern Guinea Savannah of Nigeria
Authors: Terkimbi Vange, Obed Abimiku, Lateef Lekan Bello, Lucky Omoigui
Abstract:
In 2014 and 2015, eight maize inbred lines resistant to Striga hermonthica (Del) Benth were crossed in 8 x 8 half diallel (Griffing method 11, model 1). The eight parent inbred lines were planted out in a Randomized Complete Block Design (RCBD) with three replications at two different Striga infested environments (Lafia and Makurdi) during the late cropping season. The objectives were to determine the combining ability of Striga resistant maize inbred lines and identify suitable inbreds for hybrids development. The lines were used to estimate general combining ability (GCA), and specific combining ability (SCA) effects for Striga related parameters such as Striga shoot counts, Striga damage rating (SDR), plant height and grain yield and other agronomic traits. The result of combined ANOVA revealed that mean squares were highly significant for all traits except Striga damage rating (SDR1) at 8WAS and Striga emergence count (STECOI) at 8WAS. Mean squares for SCA were significantly low for all traits. TZSTR190 was the highest yielding parent, and TZSTR166xTZST190 was the highest yielding hybrid (cross). Parent TZSTR166, TZEI188, TZSTR190 and TZSTR193 shows significant (p < 0.05) positive GCA effects for grain yield while the rest had negative GCA effects for grain yield. Parent TZSTR166, TZEI188, TZSTR190, and TZSTR193 could be used for initiating hybrid development. Also, TZSTR166xTZSTR190 cross was the best specific combiner followed by TZEI188xTZSTR193, TZEI80xTZSTR193, and TZSTR190xTZSTR193. TZSTR166xTZSTR190 and TZSTR190xTZSTR193 had the highest SCA effects. However, TZEI80 and TZSTR190 manifested a high positive SCA effect with TZSTR166 indicating that these two inbreds combined better with TZSTR166.Keywords: combining ability, Striga hermonthica, resistance, grain yield
Procedia PDF Downloads 2404786 Information Technology Competences for Professional Accountants in Thai Small to Medium Accounting Practice
Authors: Manirath Wongsim, Chatchawarn Srimontree, Pornpichit Phosri
Abstract:
Today, the majority of the data innovation may be currently majorly influencing business, what more accepted part of the accountant may be evolving. Information Technology elements have been appearing to be crucial in triggering changes of accountants’ roles. Thus, this study aims to investigate IT competencies among professional accountants to enhance firm performance. This research was conducted with 47 respondents at five organizations in Thailand and used quantitative research. The results indicate that the factor IT competencies for professional accountants in Thai small to medium accounting within the organizational issues defines18 factors. Specifically, these new factors, based on the research findings and the literature, then unique to IT competencies for professional accountants, include ERP software skills and accounting law and legal skills. The evidence in this study suggests that Analytical skills, teamwork skills, and accounting software were ranked as much-needed skills to be acquired by accountants while communication skills were ranked as the most required skills and delegation skills as the least required. The findings of the research’s empirical evidence suggest that organizations should understand appropriate in developing information technology influence competencies for knowledge employees in general and professional accountants in particular and provide assistance in all processes of decision making.Keywords: IT competencies, IT competences for professional accountants, IT skills for accounting, IT skills in SMEs
Procedia PDF Downloads 2284785 Effect of Yogurt on Blood and Liver Lipids Lavel in Rats
Authors: Nora Mohammed Al-Kehayez
Abstract:
This present investigation was performed to study the effect of low fat yogurt on serum and liver lipids profile of male albino rats (weighing 100 g+or- 5 gram) when fed balanced or high fat high cholesterol diets and given yogurt ad libitum compared with control groups. Rats were divided into 4 groups, each group contains 6 rats. The groups of rats were fed as follows: Group(1) was fed balanced diet + water(control). Group(2) was fed balanced diet + low fat yogurt. Group(3) was fed high fat high cholesterol diet + water(Control). Group(4) was fed high fat high cholesterol diet + low fat yogurt. The obtained results could be summarized as follows: When rats were given low fat yogurt and fed balanced or high fat high cholesterol diets a significantly greater weight gains resulted in comparison with the control groups given water instead of yogurt. The data on the weights of liver and heart expressed' as percentage increased the body weight in case of rats which were fed balanced diet with low fat yogurt while in case of rats which were fed high fat high cholesterol diet with low fat yogurt the increment scenes to be less. Results of serum cholesterol levels in serum of rats were given balanced or high fat high cholesterol diets and consuming low fat yogurt was showed a significant reduction values. However the low fat yogurt produced the highest significant decrease values. The values of serum cholesterol go hand in hand with serum lipoprotein fractions in rats given low fat yogurt with both balanced or high fat high cholesterol diets. An increase of high density lipoprotein HDL-C and a decrease of low density lipoprotein LDL-C values were obtained. When rats ingested low fat yogurt a significant decrease in serum and liver triglycerides content was obtained wether with balanced or high fat high cholesterol diets. Rats consuming high fat high cholesterol diets with water showed a significant increase in liver total lipids, total cholesterol and phospholipides levels in comparison with the same liver parameters in rats given balanced diet with water. Supplement with low fat yogurt significantly suppressed these effects.Keywords: yogurt, lipids profile, albino, rats
Procedia PDF Downloads 4214784 The Role of Instruction in Knowledge Construction in Online Learning
Authors: Soo Hyung Kim
Abstract:
Two different learning approaches were suggested: focusing on factual knowledge or focusing on the embedded meaning in the statements. Each way of learning has positive effects on different question categories, where factual knowledge helps more with simple fact questions, and searching for meaning in given information helps learn causal relationship and the embedded meaning. To test this belief, two groups of learners (12 male and 39 female adults aged 18-37) watched a ten-minute long Youtube video about various factual events of American history, their meaning, and the causal relations of the events. The fact group was asked to focus on factual knowledge in the video, and the meaning group was asked to focus on the embedded meaning in the video. After watching the video, both groups took multiple-choice questions, which consisted of 10 questions asking the factual knowledge addressed in the video and 10 questions asking embedded meaning in the video, such as the causal relationship between historical events and the significance of the event. From ANCOVA analysis, it was found that the factual knowledge showed higher performance on the factual questions than the meaning group, although there was no group difference on the questions about the meaning between the two groups. The finding suggests that teacher instruction plays an important role in learners constructing a different type of knowledge in online learning.Keywords: factual knowledge, instruction, meaning-based knowledge, online learning
Procedia PDF Downloads 1324783 A Predictive Analytics Approach to Project Management: Reducing Project Failures in Web and Software Development Projects
Authors: Tazeen Fatima
Abstract:
Use of project management in web & software development projects is very significant. It has been observed that even with the application of effective project management, projects usually do not complete their lifecycle and fail. To minimize these failures, key performance indicators have been introduced in previous studies to counter project failures. However, there are always gaps and problems in the KPIs identified. Despite of incessant efforts at technical and managerial levels, projects still fail. There is no substantial approach to identify and avoid these failures in the very beginning of the project lifecycle. In this study, we aim to answer these research problems by analyzing the concept of predictive analytics which is a specialized technology and is very easy to use in this era of computation. Project organizations can use data gathering, compute power, and modern tools to render efficient Predictions. The research aims to identify such a predictive analytics approach. The core objective of the study was to reduce failures and introduce effective implementation of project management principles. Existing predictive analytics methodologies, tools and solution providers were also analyzed. Relevant data was gathered from projects and was analyzed via predictive techniques to make predictions well advance in time to render effective project management in web & software development industry.Keywords: project management, predictive analytics, predictive analytics methodology, project failures
Procedia PDF Downloads 3464782 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 1484781 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method
Authors: J. Satya Eswari, Ch. Venkateswarlu
Abstract:
The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization
Procedia PDF Downloads 4074780 Microthermometry of Carbonated Rocks of the Hondita-Lomagorda Formations, the Tiger Cave Sector, Municipality of Yaguara, Colombia
Authors: Camila Lozano-Vivas, Camila Quevedo-Villamil, Ingrid Munoz-Quijano, Diego Loaiza
Abstract:
Colombia's limited oil reserves make the finding of new fields of extraction or the potentiate of the existing ones a more important task to do every day; the exploration projects that allow to have a better knowledge of the oil basins are essential. The upper Magdalena Valley basin - VSM, whose reserves are limited, has been one of the first basins for the exploration and production of hydrocarbons in Colombia. The Hondita and Lomagorda formations were deposited in the Late Cretaceous Middle Albian to the Coniacian and are characterized by being the hydrocarbon-generating rocks in the VSM basin oil system along with the Shale de Bambucá; therefore multiple studies have been made. In the oil industry, geochemical properties are used to understand the origin, migration, accumulation, and alteration of hydrocarbons and, in general, the evolution of the basin containing them. One of the most important parameters to understand this evolution is the formation temperature of the oil system. For this reason, a microthermometric study of fluid inclusions was carried out to recognize formation temperatures and to determine certain basic physicochemical variables, homogenization temperature, pressure, density and salinity of the fluid at the time of entrapment, providing evidence on the history of different events in different geological environments in the evolution of a sedimentary basin. Prior to this study, macroscopic and microscopic petrographic analyses of the samples collected in the field were performed. The results of the mentioned properties of the fluid inclusions in the different samples analyzed have salinities ranging from 20.22% to 26.37% eq. by weight NaCl, similar densities found in the ranges of 1.05 to 1.16 g/cc and an average homogenization temperature at 142.92°C, indicating that, at the time of their entanglement, the rock was in the window of generation of medium hydrocarbons –light with fragile characteristics of the rock that would make it useful to treat them as naturally fractured reservoirs.Keywords: homogenization temperature, fluid inclusions, microthermometry, salinity
Procedia PDF Downloads 147