Search results for: inflow performance relationship
3506 Digestibility in Yankasa Rams Fed Brachiaria ruziziensis – Centrosema pascuorum Hay Mixtures with Concentrate
Authors: Ibrahim Sani, J. T. Amodu, M. R. Hassan, R. J. Tanko, N. Adamu
Abstract:
This study investigated the digestibility of Brachiaria ruziziensis and Centrosema pascuorum hay mixtures at varying proportions in Yankasa rams. Twelve Yankasa rams with average initial weight 10.25 ± 0.1 kg were assigned to three dietary treatments of B. ruziziensis and C. pascuorum hay at different mixtures (75BR:25CP, 50BR:50CP and 25BR:75CP, respectively) in a Completely Randomized Design (CRD) for a period of 14 days. Concentrate diet was given to the experimental animals as supplement at fixed proportion, while the forage mixture (basal diet) was fed at 3% body weight. Animals on 50BR:50CP had better nutrient digestibility (crude protein, acid and neutral detergent fibre, ether extract and nitrogen free extract) than other treatment diets, except in dry matter digestibility (87.35%) which compared with 87.54% obtained in 25BR:75CP treatment diet and also organic matter digestibility. All parameters taken on nitrogen balance with the exception of nitrogen retained were significantly higher (P < 0.05) in animals fed 25BR:75CP diet, but were statistically similar with values obtained for animals on 50BR:50CP diet. From results obtained in this study, it is concluded that mixture of 25%BR75%CP gave the best nutrient digestibility and nitrogen balance in Yankasa rams. It is therefore recommended that B. ruziziensis and C. pascuorum should be fed at 50:50 mixture ratio for enhanced animal growth and performance in Nigeria.Keywords: B. ruziziensis, C. pascuorum, digestibilty, rams, Yankasa
Procedia PDF Downloads 1293505 Flow: A Fourth Musical Element
Authors: James R. Wilson
Abstract:
Music is typically defined as having the attributes of melody, harmony, and rhythm. In this paper, a fourth element is proposed -"flow". "Flow" is a new dimension in music that has always been present but only recently identified and measured. The Adagio "Flow Machine" enables us to envision this component and even suggests a new approach to music theory and analysis. The Adagio was created specifically to measure the underlying “flow” in music. The Adagio is an entirely new way to experience and visualize the music, to assist in performing music (both as a conductor and/or performer), and to provide a whole new methodology for music analysis and theory. The Adagio utilizes musical “hit points”, such as a transition from one musical section to another (for example, in a musical composition utilizing the sonata form, a transition from the exposition to the development section) to help define the compositions flow rate. Once the flow rate is established, the Adagio can be used to determine if the composer/performer/conductor has correctly maintained the proper rate of flow throughout the performance. An example is provided using Mozart’s Piano Concerto Number 21. Working with the Adagio yielded an unexpected windfall; it was determined via an empirical study conducted at Nova University’s Biofeedback Lab that watching the Adagio helped volunteers participating in a controlled experiment recover from stressors significantly faster than the control group. The Adagio can be thought of as a new arrow in the Musicologist's quiver. It provides a new, unique way of viewing the psychological impact and esthetic effectiveness of music composition. Additionally, with the current worldwide access to multi-media via the internet, flow analysis can be performed and shared with others with little time and/or expense.Keywords: musicology, music analysis, music flow, music therapy
Procedia PDF Downloads 1773504 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach
Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier
Abstract:
Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube
Procedia PDF Downloads 1543503 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 933502 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project
Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende
Abstract:
Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport
Procedia PDF Downloads 203501 The Mayan Calendar: An Ideology Laden and Worldview Changing Discourse
Authors: John Rosswell Cummings III
Abstract:
This research examines the discourse ancient Maya ritual practice manifest and maintained through language in a contemporary society as led by a daykeeper— a Maya spiritual leader— with the objective of discovering if the Maya Calendar has an influence on worldview. Through an ethnography of communication and discursive analysis framework, this research examines the discourse of and around the Maya calendar through original research. Data collected includes the ceremonial performance of the Tzolkin ritual, a ritual that takes place every 13 days to ceremonially welcome one of the 20 Universal Forces. During the ceremony, participants supplicate, sacrifice, and venerate. This ritual, based off the Tzolkin cycle in the Mayan Calendar, contains strong, culture-binding ideologies. This research performs a close analysis of the 20 energies of the Tzolkin and their glyphs so as to gain a better understanding of current ideologies in Maya communities. Through a linguistic relativity frame of reference, including both the strong and weak versions, the 20 Universal Forces are shown to influence ways of life. This research argues that it is not just the native language, but the discourses native to the community as held through the calendar, influence thought and have the potential to offer an alternate worldview, thus shaping the cultural narrative which in return influences identity of the community. Research of this kind, on calendric systems and linguistic relativity, has the power to make great discoveries about the societies of the world and their worldviews.Keywords: anthropological linguistics, discourse analysis, cultural studies, sociolinguistics
Procedia PDF Downloads 1473500 A Systematic Review of Chronic Neurologic Complications of COVID-19; A Potential Risk Factor for Narcolepsy, Parkinson's Disease, and Multiple Sclerosis.
Authors: Sulemana Saibu, Moses Ikpeme
Abstract:
Background: The severity of the COVID-19 pandemic, brought on by the SARS-CoV-2 coronavirus, has been unprecedented since the 1918 influenza pandemic. SARS-CoV-2 cases of CNS and peripheral nervous system disease, including neurodegenerative disorders and chronic immune-mediated diseases, may be anticipated based on knowledge of past coronaviruses, particularly those that caused the severe acute respiratory syndrome and Middle East respiratory syndrome outbreaks. Although respiratory symptoms are the most common clinical presentation, neurological symptoms are becoming increasingly recognized, raising concerns about their potential role in causing Parkinson's disease, Multiple sclerosis, and Narcolepsy. This systematic review aims to summarize the current evidence by exploring the association between COVID-19 infection and how it may overlap with etiological mechanisms resulting in Narcolepsy, Parkinson's disease, and Multiple sclerosis. Methods: A systematic search was conducted using electronic databases ((PubMed/MedLine, Embase, PsycINFO, ScieLO, Web of Science, ProQuest (Biotechnology, Virology, and AIDS), Scopus, and CINAHL)) to identify studies published between January 2020 and December 2022 that investigated the association between COVID-19 and Parkinson's disease, multiple sclerosis, and Narcolepsy. Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the review was performed and reported. Study quality was assessed using the Critical Appraisal Skills Programme Checklist and the Joanna Briggs Institute Critical appraisal tools. Results: A total of 21 studies out of 1025 met the inclusion criteria, including 8 studies reporting Parkinson's disease, 11 on multiple sclerosis, and 2 on Narcolepsy. In COVID-19 individuals compared to the general population, Narcolepsy, Parkinson's disease, and multiple sclerosis were shown to have a higher incidence. The findings imply that COVID-19 may worsen the signs or induce multiple sclerosis and Parkinson's disease and may raise the risk of developing Narcolepsy. Further research is required to confirm these connections because the available data is insufficient. Conclusion: According to the existing data, COVID-19 may raise the risk of Narcolepsy and have a causative relationship with Parkinson's disease, multiple sclerosis, and other diseases. More study is required to confirm these correlations and pinpoint probable mechanisms behind these interactions. Clinicians should be aware of how COVID-19 may affect various neurological illnesses and should treat patients who are affected accordingly.Keywords: COVID-19, parkinson’s disease, multiple sclerosis, narcolepsy, neurological disorders, sars-cov-2, neurodegenerative disorders, chronic immune-mediated diseases
Procedia PDF Downloads 843499 The Gypsy Community Facing the Sexual Orientation: An Empirical Approach to the Attitudes of the Gypsy Population of Granada Towards Homosexual Sex-Affective Relationships
Authors: Elena Arquer Cuenca
Abstract:
The gypsy community has been a mistreated and rejected group since its arrival in the Iberian Peninsula in the 15th century. At present, despite being the largest ethnic minority group in Spain as well as in Europe, the different legal and social initiatives in favour of equality continue to suffer discrimination by the general society. This has fostered a strengthening of the endogroup accompanied by cultural conservatism as a form of self-protection. Despite the current trend of normalization of sexual diversity in modern societies, LGB people continue to suffer discrimination, especially in more traditional environments or communities. This rejection for reasons of sexual orientation within the family or community can hinder the free development of the person and compromise peaceful coexistence. The present work is intended as an approach to the attitudes of the gypsy population towards non-heterosexual sexual orientation. The objective is none other than ‘to know the appreciation that the gypsy population has about homosexual sex-affective relationships, in order to assess whether this has any impact on family and community coexistence’. The following specific objectives are derived from this general objective: ‘To find out whether there is a relationship between the dichotomous Roma gender system and the acceptance/rejection of homosexuality’; ‘to analyse whether sexual orientation has an impact on the coexistence of the Roman family and community’; ‘to analyse whether the historical discrimination suffered by the Roman population favours the maintenance of the patriarchal heterosexual reproductive family’; and lastly ‘to explore whether ICTs have promoted the process of normalisation and/or acceptance of homosexuality within the Roma community’. In order to achieve these objectives, a bibliographical and documentary review has been used, as well as the semi-structured interview technique, in which 4 gypsy people participated (2 women and 2 men of different ages). One of the main findings was the inappropriateness of the use of the homogenising category "Gypsy People" at present, given the great diversity among the Roma communities. Moreover, the difficulty in accepting homosexuality seems to be related to the fact that the heterosexual reproductive family has been the main survival mechanism of Roma communities over centuries. However, it will be concluded that attitudes towards homosexuality will vary depending on the socio-economic and cultural context and factors such as age or professed religion. Three main contributions of this research are: firstly, the inclusion of sexual orientation as a variable to be considered when analysing peaceful coexistence; secondly socio-historical dynamics and structures of inequality have been taken into account when analysing Roma attitudes towards homosexuality; and finally, the processual nature of socio-cultural changes has also been considered.Keywords: gender, homosexuality, ICTs, peaceful coexistence, Roma community, sexual orientation
Procedia PDF Downloads 863498 Characterization the Internal Corrosion Behavior by Using Natural Inhibitor in Crude Oil of Low Carbon Steel Pipeline
Authors: Iman Adnan Annon, Kadhim F. Alsultan
Abstract:
This study investigate the internal corrosion of low carbon steel pipelines in the crude oil, as well as prepare and use natural and locally available plant as a natural corrosion inhibiter, the nature extraction achieved by two types of solvents in order to show the solvent effect on inhibition process, the first being distilled water and the second is diethyl ether. FT-IR spectra and using a chemical reagents achieved to detection the presence of many active groups and the presence of tannins, phenols, and alkaloids in the natural extraction. Some experiments were achieved to estimate the performance of a new inhibitor, one of these tests include corrosion measurement by simple immersion in crude oil within and without inhibitors which added in different amounts 30,40,50and 60 ppm at tow temperature 300 and 323k, where the best inhibition efficiencies which get when added the inhibitors in a critical amounts or closest to it, since for the aqueous extract (EB-A) the inhibition efficiency reached (94.4) and (86.71)% at 300 and 323k respectively, and for diethyl ether extract (EB-D) reached (82.87) and (84.6)% at 300 and 323k respectively. Optical microscopy examination have been conducted to evaluate the corrosion nature where it show a clear difference in the topography of the immersed samples surface after add the inhibitors at two temperatures. The results show that the new corrosion inhibitor is not only equivalent to a chemical inhibitor but has greatly improvement properties such as: high efficiency, low cost, non-toxic, easily to produce, and nonpolluting as compared with chemical inhibitor.Keywords: corrosion in pipeline, inhibitors, crude oil, carbon steel, types of solvent
Procedia PDF Downloads 1403497 Challenges in Early Diagnosis of Enlarged Vestibular Aqueduct (EVA) in Pediatric Population: A Single Case Report
Authors: Asha Manoharan, Sooraj A. O, Anju K. G
Abstract:
Enlarged vestibular aqueduct (EVA) refers to the presence of congenital sensorineural hearing loss with an enlarged vestibular aqueduct. The Audiological symptoms of EVA are fluctuating and progressive in nature and the diagnosis of EVAS can be confirmed only with radiological evaluation. Hence it is difficult to differentiate EVA from conditions like Meniere’s disease, semi-circular dehiscence, etc based on audiological findings alone. EVA in adults is easy to identify due to distinct vestibular symptoms. In children, EVA can remain either unidentified or misdiagnosed until the vestibular symptoms are evident. Motor developmental delay, especially the ones involving a change of body alignment, has been reported in the pediatric population with EVA. So, it should be made mandatory to recommend radiological evaluation in young children with fluctuating hearing loss reporting with motor developmental delay. This single case study of a baby with Enlarged Vestibular Aqueduct (EVA) primarily aimed to address the following: a) Challenges while diagnosing young patients with EVA and fluctuating hearing loss, b) Importance of radiological evaluation in audiological diagnosis in the pediatric population, c) Need for regular monitoring of hearing, hearing aid performance, and cochlear implant mapping closely for potential fluctuations in such populations, d) Importance of reviewing developmental, language milestones in very young children with fluctuating hearing loss.Keywords: enlarged vestibular aqueduct (EVA), motor delay, radiological evaluation, fluctuating hearing loss, cochlear implant
Procedia PDF Downloads 1673496 Quantification of Dowel-Concrete Interaction in Jointed Plain Concrete Pavements Using 3D Numerical Simulation
Authors: Lakshmana Ravi Raj Gali, K. Sridhar Reddy, M. Amaranatha Reddy
Abstract:
Load transfer between adjacent slabs of the jointed plain concrete pavement (JPCP) system is inevitable for long-lasting performance. Dowel bars are generally used to ensure sufficient degree of load transfer, in addition to the load transferred by aggregate interlock mechanism at the joints. Joint efficiency is the measure of joint quality, a major concern and therefore the dowel bar system should be designed and constructed well. The interaction between dowel bars and concrete that includes various parameters of dowel bar and concrete will explain the degree of joint efficiency. The present study focuses on the methodology of selecting contact stiffness, which quantifies dowel-concrete interaction. In addition, a parametric study which focuses on the effect of dowel diameter, dowel shape, the spacing between dowel bars, joint opening, the thickness of the slab, the elastic modulus of concrete, and concrete cover on contact stiffness was also performed. The results indicated that the thickness of the slab is most critical among various parameters to explain the joint efficiency. Further displacement equivalency method was proposed to find out the contact stiffness. The proposed methodology was validated with the available field surface deflection data collected by falling weight deflectometer (FWD).Keywords: contact stiffness, displacement equivalency method, Dowel-concrete interaction, joint behavior, 3D numerical simulation
Procedia PDF Downloads 1513495 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data
Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer
Abstract:
This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML
Procedia PDF Downloads 1293494 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data
Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query
Procedia PDF Downloads 1613493 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals
Authors: Ying-chang Yu, Yuan-lung Lo
Abstract:
More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss
Procedia PDF Downloads 1333492 Economic Analysis, Growth and Yield of Grafting Tomato Varieties for Solanum torvum as a Rootstock
Authors: Evy Latifah, Eko Widaryanto, M. Dawam Maghfoer, Arifin
Abstract:
Tomato (Lycopersicon esculentum Mill.) is potential vegetables to develop, because it has high economic value and has the potential to be exported. There is a decrease in tomato productivity due to unfavorable growth conditions such as bacterial wilt, fusarium wilt, high humidity, high temperature and inappropriate production technology. Grafting technology is one alternative technology. In addition to being able to control the disease in the soil, grafting is also able to increase the growth and yield of production. Besides, it is also necessary to know the economic benefits if using grafting technology. A promising eggplant rootstock for tomato grafting is Solanum torvum. S. torvum is selected as a rootstock with high compatibility. The purpose of this research is to know the effect of grafting several varieties of tomatoes with Solanum torvum as a rootstock. The experiment was conducted in Agricultural Extension Center Pare. Experimental Garden of Pare Kediri sub-district from July to early December 2016. The materials used were tomato Cervo varieties, Karina, Timoty, and Solanum torvum. Economic analysis, growth, and yield including plant height, number of leaves, percentage of disease and tomato production were used as performance measures. The study showed that grafting tomato Timoty scion with Solanum torvum as rootstock had higher production. Financially, grafting tomato Timoty and Cervo scion had higher profit about. 28,6% and 16,3% compared to Timoty and Cervo variety treatment without grafting.Keywords: grafting technology, economic analysis, growth, yield of tomato, Solanum torvum
Procedia PDF Downloads 2363491 Finding the Longest Common Subsequence in Normal DNA and Disease Affected Human DNA Using Self Organizing Map
Authors: G. Tamilpavai, C. Vishnuppriya
Abstract:
Bioinformatics is an active research area which combines biological matter as well as computer science research. The longest common subsequence (LCSS) is one of the major challenges in various bioinformatics applications. The computation of the LCSS plays a vital role in biomedicine and also it is an essential task in DNA sequence analysis in genetics. It includes wide range of disease diagnosing steps. The objective of this proposed system is to find the longest common subsequence which presents in a normal and various disease affected human DNA sequence using Self Organizing Map (SOM) and LCSS. The human DNA sequence is collected from National Center for Biotechnology Information (NCBI) database. Initially, the human DNA sequence is separated as k-mer using k-mer separation rule. Mean and median values are calculated from each separated k-mer. These calculated values are fed as input to the Self Organizing Map for the purpose of clustering. Then obtained clusters are given to the Longest Common Sub Sequence (LCSS) algorithm for finding common subsequence which presents in every clusters. It returns nx(n-1)/2 subsequence for each cluster where n is number of k-mer in a specific cluster. Experimental outcomes of this proposed system produce the possible number of longest common subsequence of normal and disease affected DNA data. Thus the proposed system will be a good initiative aid for finding disease causing sequence. Finally, performance analysis is carried out for different DNA sequences. The obtained values show that the retrieval of LCSS is done in a shorter time than the existing system.Keywords: clustering, k-mers, longest common subsequence, SOM
Procedia PDF Downloads 2673490 What Constitutes Pre-School Mathematics and How It Look Like in the Classroom?
Authors: Chako G. Chako
Abstract:
This study reports on an ongoing research that explores pre-school mathematics. Participants in the study includes three pre-school teachers and their pre-school learners from one school in Gaborone. The school was purposefully selected based on its performance in Botswana’s 2019 national examinations. Specifically, the study is interested on teachers’ explanations of mathematics concepts embedded in pre-school mathematics tasks. The interest on explanations was informed by the view that suggests that, the mathematics learners get to learn, resides in teachers’ explanations. Recently, Botswana’s basic education has integrated pre-school education into the mainstream public primary school education. This move is part of the government’s drive to elevate Botswana to a knowledge-based-economy. It is believed that provision of pre-school education to all Batswana children will contribute immensely towards a knowledge-based-economy. Since pre-school is now a new phenomenon in our education, there is limited research at this level of education in Botswana. In particular, there is limited knowledge about what and how the teaching is conducted in Pre-Schools in Botswana. Hence, the study seeks to gain insight into what constitutes mathematics in tasks that learners are given, and how concepts are made accessible to Pre-school learners. The research question of interest for this study is stated as: What is the nature Pre-school teachers’ explanations of mathematics concepts embedded in tasks given to learners. Casting some light into what and how pre-school mathematics tasks are enacted is critical for policy and Pre-school teacher professional development. The sociocultural perspective framed the research. Adler and Rhonda’s (2014) notion of exemplification and explanatory communication are used to analyze tasks given to learners and teachers’ explanations respectively.Keywords: classroom, explanation, mathematics, pre-school, tasks
Procedia PDF Downloads 1563489 Thermomechanical Behavior of Asphalt Modified with Thermoplastic Polymer and Nanoclay Dellite 43B
Authors: L. F. Tamele Jr., G. Buonocore, H. F. Muiambo
Abstract:
Asphalt binders play an essential role in the performance and properties of asphalt mixtures. The increase in heavy loads, greater traffic volume, and high tire pressure, combined with a substantial variation in daily and seasonal pavement temperatures, are the main responsible for the failure of asphalt pavements. To avoid or mitigate these failures, the present research proposes the use of thermoplastic polymers, HDPE and LLDPE, and nanoclay Dellite 43B for modification of asphalt in order to improve its thermomechanical and rheological properties. The nanocomposites were prepared by the solution intercalation method in a high shear mixer for a mixing time of 2 h, at 180℃ and 5000 rpm. The addition of Dellite 43B improved the physical, rheological, and thermal properties of asphalt, either separated or in the form of polymer/bitumen blends. The results of the physical characterization showed a decrease in penetration and an increase in softening point, thermal susceptibility, viscosity, and stiffness. On the other hand, thermal characterization showed that the nanocomposites have greater stability at higher temperatures by exhibiting greater amounts of residues and improved initial and final decomposition temperatures. Thus, the modification of asphalt by polymers and nanoclays seems to be a suitable solution for road pavement in countries which experiment with high temperatures combined with long heavy rain seasons.Keywords: asphalt, nanoclay dellite 43B, polymer modified asphalt, thermal and rheological properties
Procedia PDF Downloads 1473488 The Process of Irony Comprehension in Young Children: Evidence from Monolingual and Bilingual Preschoolers
Authors: Natalia Banasik
Abstract:
Comprehension of verbal irony is an example of pragmatic competence in understanding figurative language. The knowledge of how it develops may shed new light on the understanding of social and communicative competence that is crucial for one's effective functioning in the society. Researchers agree it is a competence that develops late in a child’s development. One of the abilities that seems crucial for irony comprehension is theory of mind (ToM), that is the ability to understand that others may have beliefs, desires and intentions different from one’s own. Although both theory of mind and irony comprehension require the ability to understand the figurative use of the false description of the reality, the exact relationship between them is still unknown. Also, even though irony comprehension in children has been studied for over thirty years, the results of the studies are inconsistent as to the age when this competence are acquired. The presented study aimed to answer questions about the developmental trajectories of irony comprehension and ascribing function to ironic utterances by preschool children. Specifically, we were interested in how it is related to the development of ToM and how comprehension of the function of irony changes with age. Data was collected from over 150 monolingual, Polish-speaking children and (so far) thirty bilingual children speaking Polish and English who live in the US. Four-, five- and six-year-olds were presented with a story comprehension task in the form of audio and visual stimuli programmed in the E-prime software (pre-recorded narrated stories, some of which included ironic utterances, and pictures accompanying the stories displayed on a touch screen). Following the presentation, the children were then asked to answer a series of questions. The questions checked the children’s understanding of the intended utterance meaning, evaluation of the degree to which it was funny and evaluation of how nice the speaker was. The children responded by touching the screen, which made it possible to measure reaction times. Additionally, the children were asked to explain why the speaker had uttered the ironic statement. Both quantitive and qualitative analyses were applied. The results of our study indicate that for irony recognition there is a significant difference among the three age groups, but what is new is that children as young as four do understand the real meaning behind the ironic statement as long as the utterance is not grammtically or lexically complex also, there is a clear correlation of ToM and irony comprehension. Although four-year olds and six-year olds understand the real meaning of the ironic utterance, it is not earlier than at the age of six when children start to explain the reason of using this marked form of expression. They talk about the speaker's intention to tell a joke, be funny, or to protect the listener's emotions. There are also some metalinguistic references, such as "mommy sometimes says things that don't make sense and this is called a metaphor".Keywords: child's pragmatics, figurative speech, irony comprehension in children, theory of mind and irony
Procedia PDF Downloads 3123487 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending
Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim
Abstract:
Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions
Procedia PDF Downloads 1043486 Tribological Behavior of PTFE Composites Used for Guide Rings of Hydraulic Actuating Cylinders under Oil-Lubricated Condition
Authors: Trabelsi Mohamed, Kharrat Mohamed, Dammak Maher
Abstract:
Guide rings play an important role in the performance and durability of hydraulic actuating cylinders. In service, guide rings surfaces are subjected to friction and wear against steel counterface. A good mastery of these phenomena is required for the improvement of the energy safeguard and the durability of the actuating cylinder. Polytetrafluoroethylene (PTFE) polymer is extensively used in guide rings thanks to its low coefficient of friction, its good resistance to solvents as well as its high temperature stability. In this study, friction and wear behavior of two PTFE composites filled with bronze and bronze plus MoS2 were evaluated under oil-lubricated condition, aiming as guide rings for hydraulic actuating cylinder. Wear tests of the PTFE composite specimen sliding against steel ball were conducted using reciprocating linear tribometer. The wear mechanisms of the composites under the same sliding condition were discussed, based on Scanning Electron Microscopy examination of the worn composite surface and the optical micrographs of the steel counter surface. As for the results, comparative friction behaviors of the PTFE composites and lower friction coefficients were recorded under oil lubricated condition. The wear behavior was considerably improved to compare with this in dry sliding, while the oil adsorbed layer limited the transfer of the PTFE to the steel counter face during the sliding test.Keywords: PTFE, composite, bronze, MoS2, friction, wear, oil-lubrication
Procedia PDF Downloads 2993485 Re-Inhabiting the Roof: Han Slawick Covered Roof Terrace, Amsterdam
Authors: Simone Medio
Abstract:
If we observe many modern cities from above, we are typically confronted with a sea of asphalt-clad flat rooftops. In contrast to the modernist expectation of a populated flat roof, flat rooftops in modern multi-story buildings are rarely used. On the contrary, they typify a desolate and abandoned landscape encouraging mechanical system allocation. Flat roof technology continues to be seen as a state-of-fact in most multi-storey building designs and its greening its prevalent environmental justification. This paper aims to seek a change in the approach to flat roofing. It makes a case for the opportunity at hand for architectonically resolute, sheltered, livable spaces that make a better use of the environment at rooftop level. The researcher is looking for the triggers that allow for that change to happen in the design process of case study buildings. The paper begins by exploring Han Slawick covered roof terrace in Amsterdam as a simple and essential example of transforming the flat roof in a usable, inhabitable space. It investigates the design challenges and the logistic, financial and legislative hurdles faced by the architect, and the outcomes in terms of building performance and occupant use and satisfaction. The researcher uses a grounded research methodology with direct interview process to the architect in charge of the building and the building user. Energy simulation tools and calculation of running costs are also used as further means of validating change.Keywords: environmental design, flat rooftop persistence, roof re-habitation, tectonics
Procedia PDF Downloads 2733484 The Legal Nature of Grading Decisions and the Implications for Handling of Academic Complaints in or out of Court: A Comparative Legal Analysis of Academic Litigation in Europe
Authors: Kurt Willems
Abstract:
This research examines complaints against grading in higher education institutions in four different European regions: England and Wales, Flanders, the Netherlands, and France. The aim of the research is to examine the correlation between the applicable type of complaint handling on the one hand, and selected qualities of the higher education landscape and of public law on the other hand. All selected regions report a rising number of complaints against grading decisions, not only as to internal complaint handling within the institution but also judicially if the dispute persists. Some regions deem their administrative court system appropriate to deal with grading disputes (France) or have even erected a specialty administrative court to facilitate access (Flanders, the Netherlands). However, at the same time, different types of (governmental) dispute resolution bodies have been established outside of the judicial court system (England and Wales, and to lesser extent France and the Netherlands). Those dispute procedures do not seem coincidental. Public law issues such as the underlying legal nature of the education institution and, eventually, the grading decision itself, have an impact on the way the academic complaint procedures are developed. Indeed, in most of the selected regions, contractual disputes enjoy different legal protection than administrative decisions, making the legal qualification of the relationship between student and higher education institution highly relevant. At the same time, the scope of competence of government over different types of higher education institutions; albeit direct or indirect (o.a. through financing and quality control) is relevant as well to comprehend why certain dispute handling procedures have been established for students. To answer the above questions, the doctrinal and comparative legal method is used. The normative framework is distilled from the relevant national legislative rules and their preparatory texts, the legal literature, the (published) case law of academic complaints and the available governmental reports. The research is mainly theoretical in nature, examining different topics of public law (mainly administrative law) and procedural law in the context of grading decisions. The internal appeal procedure within the education institution is largely left out of the scope of the research, as well as different types of non-governmental-imposed cooperation between education institutions, given the public law angle of the research questions. The research results in the categorization of different academic complaint systems, and an analysis of the possibility to introduce each of those systems in different countries, depending on their public law system and higher education system. By doing so, the research also adds to the debate on the public-private divide in higher education systems, and its effect on academic complaints handling.Keywords: higher education, legal qualification of education institution, legal qualification of grading decisions, legal protection of students, academic litigation
Procedia PDF Downloads 2323483 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 2073482 The Relationship between Anthropometric Obesity Indices and Insulin in Children with Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
The number of indices developed for the evaluation of obesity both in adults and pediatric population is ever increasing. These indices are also used in cases with metabolic syndrome (MetS), mostly the ultimate form of morbid obesity. Aside from anthropometric measurements, formulas constituted using these parameters also find clinical use. These formulas can be listed as two groups; being weight-dependent and –independent. Some are extremely sophisticated equations and their clinical utility is questionable in routine clinical practice. The aim of this study is to compare presently available obesity indices and find the most practical one. Their associations with MetS components were also investigated to determine their capacities in differential diagnosis of morbid obesity with and without MetS. Children with normal body mass index (N-BMI) and morbid obesity were recruited for this study. Three groups were constituted. Age- and sex- dependent BMI percentiles for morbid obese (MO) children were above 99 according to World Health Organization tables. Of them, those with MetS findings were evaluated as MetS group. Children, whose values were between 85 and 15 were included in N-BMI group. The study protocol was approved by the Ethics Committee of the Institution. Parents filled out informed consent forms to participate in the study. Anthropometric measurements and blood pressure values were recorded. Body mass index, hip index (HI), conicity index (CI), triponderal mass index (TPMI), body adiposity index (BAI), body shape index (ABSI), body roundness index (BRI), abdominal volume index (AVI), waist-to-hip ratio (WHR) and waist circumference+hip circumference/2 ((WC+HC)/2) were the formulas examined within the scope of this study. Routine biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) were performed. Statistical package program SPSS was used for the evaluation of study data. p<0.05 was accepted as the statistical significance degree. Hip index did not differ among the groups. A statistically significant difference was noted between N-BMI and MetS groups in terms of ABSI. All the other indices were capable of making discrimination between N-BMI-MO, N-BMI- MetS and MO-MetS groups. No correlation was found between FBG and any obesity indices in any groups. The same was true for INS in N-BMI group. Insulin was correlated with BAI, TPMI, CI, BRI, AVI and (WC+HC)/2 in MO group without MetS findings. In MetS group, the only index, which was correlated with INS was (WC+HC)/2. These findings have pointed out that complicated formulas may not be required for the evaluation of the alterations among N-BMI and various obesity groups including MetS. The simple easily computable weight-independent index, (WC+HC)/2, was unique, because it was the only index, which exhibits a valuable association with INS in MetS group. It did not exhibit any correlation with other obesity indices showing associations with INS in MO group. It was concluded that (WC+HC)/2 was pretty valuable practicable index for the discrimination of MO children with and without MetS findings.Keywords: children, insulin, metabolic syndrome, obesity indices
Procedia PDF Downloads 773481 Cognition in Crisis: Unravelling the Link Between COVID-19 and Cognitive-Linguistic Impairments
Authors: Celine Davis
Abstract:
The novel coronavirus 2019 (COVID-19) is an infectious disease caused by the virus SARS-CoV-2, which has detrimental respiratory, cardiovascular, and neurological effects impacting over one million lives in the United States. New researches has emerged indicating long-term neurologic consequences in those who survive COVID-19 infections, including more than seven million Americans and another 27 million people worldwide. These consequences include attentional deficits, memory impairments, executive function deficits and aphasia-like symptoms which fall within the purview of speech-language pathology. The National Health Interview Survey (NHIS) is a comprehensive annual survey conducted by the National Center for Health Statistics (NCHS), a branch of the Centers for Disease Control and Prevention (CDC) in the United States. The NHIS is one of the most significant sources of health-related data in the country and has been conducted since 1957. The longitudinal nature of the study allows for analysis of trends in various variables over the years, which can be essential for understanding societal changes and making treatment recommendations. This current study will utilize NHIS data from 2020-2022 which contained interview questions specifically related to COVID-19. Adult cases of individuals between the ages of 18-50 diagnosed with COVID-19 in the United States during 2020-2022 will be identified using the National Health Interview Survey (NHIS). Multiple regression analysis of self-reported data confirming COVID-19 infection status and challenges with concentration, communication, and memory will be performed. Latent class analysis will be utilized to identify subgroups in the population to indicate whether certain demographic groups have higher susceptibility to cognitive-linguistic deficits associated with COVID-19. Completion of this study will reveal whether there is an association between confirmed COVID-19 diagnosis and heightened incidence of cognitive deficits and subsequent implications, if any, on activities of daily living. This study is distinct in its aim to utilize national survey data to explore the relationship between confirmed COVID-19 diagnosis and the prevalence of cognitive-communication deficits with a secondary focus on resulting activity limitations. To the best of the author’s knowledge, this will be the first large-scale epidemiological study investigating the associations between cognitive-linguistic deficits, COVID-19 and implications on activities of daily living in the United States population. These findings will highlight the need for targeted interventions and support services to address the cognitive-communication needs of individuals recovering from COVID-19, thereby enhancing their overall well-being and functional outcomes.Keywords: cognition, COVID-19, language, limitations, memory, NHIS
Procedia PDF Downloads 533480 The Implementation of the Lean Six Sigma Production Process in a Telecommunications Company in Brazil
Authors: Carlos Fontanillas
Abstract:
The implementation of the lean six sigma methodology aims to implement practices to systematically improve processes by eliminating defects, making them cheaper. The implementation of projects with the methodology uses a division into five phases: definition, measurement, analysis, implementation, and control. In this process, it is understood that the implementation of said methodology generates benefits to organizations that adhere through the improvement of their processes. In the case of a telecommunications company, it was realized that the implementation of a lean six sigma project contributed to the improvement of the presented process, generating a financial return with the avoided cost. However, such study has limitations such as a specific segment of performance and procedure, i.e., it can not be defined that return under other circumstances will be the same. It is also concluded that lean six sigma projects tend to contribute to improved processes evaluated due to their methodology that is based on statistical analysis and quality management tools and can generate a financial return. It is hoped that the present study can be used to provide a clearer view of the methodology for entrepreneurs who wish to implement process improvement actions in their companies, as well as to provide a foundation for professionals working with lean six sigma projects. After the review of the processes, the completion of the project stages and the monitoring for three months in partnership with the owner of the process to ensure the effectiveness of the actions, the project was completed with the objective reached. There was an average of 60% reduction with the issuance of undue invoices generated after the deactivation and it was possible to extend the project to other companies, which allowed a reduction well above the initially stipulated target.Keywords: quality, process, lean six sigma, organization
Procedia PDF Downloads 1293479 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics
Authors: Bulcha Belay Etana
Abstract:
Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring applicationKeywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven
Procedia PDF Downloads 1403478 Association between TNF-α and Its Receptor TNFRSF1B Polymorphism with Pulmonary Tuberculosis in Tomsk, Russia Federation
Authors: K. A. Gladkova, N. P. Babushkina, E. Y. Bragina
Abstract:
Purpose: Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the major public health problems worldwide. It is clear that the immune response to M. tuberculosis infection is a relationship between inflammatory and anti-inflammatory responses in which Tumour Necrosis Factor-α (TNF-α) plays key roles as a pro-inflammatory cytokine. TNF-α involved in various cell immune responses via binding to its two types of membrane-bound receptors, TNFRSF1A and TNFRSF1B. Importantly, some variants of the TNFRSF1B gene have been considered as possible markers of host susceptibility to TB. However, the possible impact of such TNF-α and its receptor genes polymorphism on TB cases in Tomsk is missing. Thus, the purpose of our study was to investigate polymorphism of TNF-α (rs1800629) and its receptor TNFRSF1B (rs652625 and rs525891) genes in population of Tomsk and to evaluate their possible association with the development of pulmonary TB. Materials and Methods: The population distribution features of genes polymorphisms were investigated and made case-control study based on group of people from Tomsk. Human blood was collected during routine patients examination at Tomsk Regional TB Dispensary. Altogether, 234 TB-positive patients (80 women, 154 men, average age is 28 years old) and 205 health-controls (153 women, 52 men, average age is 47 years old) were investigated. DNA was extracted from blood plasma by phenol-chloroform method. Genotyping was carried out by a single-nucleotide-specific real-time PCR assay. Results: First, interpopulational comparison was carried out between healthy individuals from Tomsk and available data from the 1000 Genomes project. It was found that polymorphism rs1800629 region demonstrated that Tomsk population was significantly different from Japanese (P = 0.0007), but it was similar with the following Europeans subpopulations: Italians (P = 0.052), Finns (P = 0.124) and British (P = 0.910). Polymorphism rs525891 clear demonstrated that group from Tomsk was significantly different from population of South Africa (P = 0.019). However, rs652625 demonstrated significant differences from Asian population: Chinese (P = 0.03) and Japanese (P = 0.004). Next, we have compared healthy individuals versus patients with TB. It was detected that no association between rs1800629, rs652625 polymorphisms, and positive TB cases. Importantly, AT genotype of polymorphism rs525891 was significantly associated with resistance to TB (odds ratio (OR) = 0.61; 95% confidence interval (CI): 0.41-0.9; P < 0.05). Conclusion: To the best of our knowledge, the polymorphism of TNFRSF1B (rs525891) was associated with TB, while genotype AT is protective [OR = 0.61] in Tomsk population. In contrast, no significant correlation was detected between polymorphism TNF-α (rs1800629) and TNFRSF1B (rs652625) genes and alveolar TB cases among population of Tomsk. In conclusion, our data expands the molecular particularities associated with TB. The study was supported by the grant of the Russia for Basic Research #15-04-05852.Keywords: polymorphism, tuberculosis, TNF-α, TNFRSF1B gene
Procedia PDF Downloads 1803477 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 150