Search results for: structure identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10407

Search results for: structure identification

8937 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major

Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd

Abstract:

Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.

Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania

Procedia PDF Downloads 448
8936 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake

Authors: Peng Li, Er-xiang Song

Abstract:

Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.

Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect

Procedia PDF Downloads 437
8935 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus

Authors: Yesim Tumsek, Erkan Celebi

Abstract:

In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.

Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus

Procedia PDF Downloads 269
8934 Multi Campus Universities: Exploring Structures and Administrative Relationships:; A Comparative Study of Eight Universities in UK and Five in Pakistan

Authors: Laila Akbarali

Abstract:

In the small scale study, an attempt is made to explore the structure and administrative relationships adopted by Multi Campus Universities [MCU] in UK and Pakistan and how these universities deal with some selected issues with respect to student related functions. For this study, literature on multi-site, divisionalized and other complex organizations related to business and Industry was consulted and an attempt was made to empirically test the normative models in the literature with respect to centralized , deconcentrated and decentralized structures. A questionnaire was used to gather data for this study. Purposive sampling was used. The findings of this study are somewhat different for UK and Pakistan. Contrary to a substantial body of organization theory, the results show that deconcentrated and decentralized universities in the UK are prone to delays in decision making and tend not to sensitive to local needs. In Pakistan on the other hand, deconcentrated and decentralized universities are more sensitive to local needs and there are less delays in decision making. The findings suggest that distance and reporting relationships could perhaps be responsible for the contradiction. The results also suggest that there is better coordination when the subsidiary campus sub-registrar reports to the registrar. The findings also highlight, that in both contexts, leadership at the campus level remains an issue. The results suggest that there may be factors other than structure that allow universities to keep their identity intact. The study highlights that MCU are inclined to use Information Technology and develop broad policies within which they allow their campuses to operate.

Keywords: administrative relationships, Multi-Campus, organization structure, registrar

Procedia PDF Downloads 324
8933 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: equal channel angular extrusion, severe plastic deformation, copper, mechanical properties

Procedia PDF Downloads 189
8932 DNA and DNA-Complexes Modified with Electromagnetic Radiation

Authors: Ewelina Nowak, Anna Wisla-Swider, Krzysztof Danel

Abstract:

Aqueous suspensions of DNA were illuminated with linearly polarized visible light and ultraviolet for 5, 15, 20 and 40 h. In order to check the nature of modification, DNA interactions were characterized by FTIR spectroscopy. For each illuminated sample, weight average molecular weight and hydrodynamic radius were measured by high pressure size exclusion chromatography. Resulting optical changes for illuminated DNA were investigated using UV-Vis spectra and photoluminescent. Optical properties show potential application in sensors based on modified DNA. Then selected DNA-surfactant complexes were illuminated with electromagnetic radiation for 5h. Molecular structure, optical characteristic were examinated for obtained complexes. Illumination led to changes of complexes physicochemical properties as compared with native DNA. Observed changes were induced by rearrangement of the molecular structure of DNA chains.

Keywords: biopolymers, deoxyribonucleic acid, ionic liquids, linearly polarized visible light, ultraviolet

Procedia PDF Downloads 210
8931 Structural, Electrochemical and Electrocatalysis Studies of a New 2D Metal-Organic Coordination Polymer of Ni (II) Constructed by Naphthalene-1,4-Dicarboxylic Acid; Oxidation and Determination of Fructose

Authors: Zohreh Derikvand

Abstract:

One new 2D metal-organic coordination polymer of Ni(II) namely [Ni2(ndc)2(DMSO)4(H2O)]n, where ndc = naphthalene-1,4-dicarboxylic acid and DMSO= dimethyl sulfoxide has been synthesized and characterized by elemental analysis, spectral (IR, UV-Vis), thermal (TG/DTG) analysis and single crystal X-ray diffraction. Compound 1 possesses a 2D layer structure constructed from dinuclear nickel(II) building blocks in which two crystallographically independent Ni2+ ions are bridged by ndc2– ligands and water molecule. The ndc2– ligands adopt μ3 bridging modes, linking the metal centers into a two-dimensional coordination framework. The two independent NiII cations are surrounded by dimethyl sulfoxide and naphthalene-1,4-dicarboxylate molecules in distorted octahedron geometry. In the crystal structures of 1 there are non-classical hydrogen bonding arrangements and C-H–π stacking interactions. Electrochemical behavior of [Ni2(ndc)2(DMSO)4(H2O)]n, (Ni-NDA) on the surface of carbon nanotube (CNTs) glassy carbon electrode (GCE) was described. The surface structure and composition of the sensor were characterized by scanning electron microscopy (SEM). Oxidation of fructose on the surface of modified electrode was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) and the results showed that the Ni-NDA/CNTs film displays excellent electrochemical catalytic activities towards fructose oxidation.

Keywords: naphthalene-1, 4-dicarboxylic acid, crystal structure, coordination polymer, electrocatalysis, impedance spectroscopy

Procedia PDF Downloads 332
8930 Human Factors Integration of Chemical, Biological, Radiological and Nuclear Response: Systems and Technologies

Authors: Graham Hancox, Saydia Razak, Sue Hignett, Jo Barnes, Jyri Silmari, Florian Kading

Abstract:

In the event of a Chemical, Biological, Radiological and Nuclear (CBRN) incident rapidly gaining, situational awareness is of paramount importance and advanced technologies have an important role to play in improving detection, identification, monitoring (DIM) and patient tracking. Understanding how these advanced technologies can fit into current response systems is essential to ensure they are optimally designed, usable and meet end-users’ needs. For this reason, Human Factors (Ergonomics) methods have been used within an EU Horizon 2020 project (TOXI-Triage) to firstly describe (map) the hierarchical structure in a CBRN response with adapted Accident Map (AcciMap) methodology. Secondly, Hierarchical Task Analysis (HTA) has been used to describe and review the sequence of steps (sub-tasks) in a CBRN scenario response as a task system. HTA methodology was then used to map one advanced technology, ‘Tag and Trace’, which tags an element (people, sample and equipment) with a Near Field Communication (NFC) chip in the Hot Zone to allow tracing of (monitoring), for example casualty progress through the response. This HTA mapping of the Tag and Trace system showed how the provider envisaged the technology being used, allowing for review and fit with the current CBRN response systems. These methodologies have been found to be very effective in promoting and supporting a dialogue between end-users and technology providers. The Human Factors methods have given clear diagrammatic (visual) representations of how providers see their technology being used and how end users would actually use it in the field; allowing for a more user centered approach to the design process. For CBRN events usability is critical as sub-optimum design of technology could add to a responders’ workload in what is already a chaotic, ambiguous and safety critical environment.

Keywords: AcciMap, CBRN, ergonomics, hierarchical task analysis, human factors

Procedia PDF Downloads 222
8929 Barrier Characteristics of Molecular Semiconductor-Based Organic/Inorganic Au/C₄₂H₂₈/n-InP Hybrid Junctions

Authors: Bahattin Abay

Abstract:

Thin film of polycyclic aromatic hydrocarbon rubrene, C₄₂H₂₈ (5,6,11,12-tetraphenyltetracene), has been surfaced on Moderately Doped (MD) n-InP substrate as an interfacial layer by means of spin coating technique for the electronic modification of Au/MD n-InP structure. Ex situ annealing has been carried out at 150 °C for three minutes under a brisk flow of nitrogen for the better adhesion of the deposited film with the substrate surface. Room temperature electrical characterization has been performed on the C₄₂H₂₈/MD n-InP hybrid junctions by current-voltage (I-V) and capacitance-voltage (C-V) measurement in the dark. It has been seen that the C₄₂H₂₈/MD n-InP structure demonstrated extraordinary rectifying behavior. An effective barrier height (BH) as high as 0.743 eV, along with an ideality factor very close to unity (n=1.203), has been achieved for C₄₂H₂₈/n-InP organic/inorganic device. A thin C₄₂H₂₈ interfacial layer between Au and MD n-InP also reduce the reverse leakage current by almost four orders of magnitude and enhance the BH about 0.278 eV. This good performance of the device is ascribed to the passivation effect of organic interfacial layer between Au and n-InP. By using C-V measurement, in addition, the value of BH of the C₄₂H₂₈/n-InP organic/inorganic hybrid junctions have been obtained as 0.796 eV. It has been seen that both of the BH value (0.743 and 0.796 eV) for the organic/inorganic hybrid junction obtained I-V and C-V measurement, respectively are significantly larger than that of the conventional Au/n-InP structure (0.465 and 0.503 eV). It was also seen that the device had good sensitivity to the light under 100 mW/cm² illumination conditions. The obtained results indicated that modification of the interfacial potential barrier for Metal/n-InP junctions might be attained using polycyclic aromatic hydrocarbon thin interlayer C₄₂H₂₈.

Keywords: I-V and C-V measurements, heterojunction, n-InP, rubrene, surface passivation

Procedia PDF Downloads 162
8928 Comparative Study on Performance of Air-Cooled Condenser (ACC) Steel Platform Structures using SCBF Frames, Spatial Structures and CFST Frames

Authors: Hassan Gomar, Shahin Bagheri, Nader Keyvan, Mozhdeh Shirinzadeh

Abstract:

Air-Cooled Condenser (ACC) platform structures are the most complicated and principal structures in power plants and other industrial parts which need to condense the low-pressure steam in the cycle. Providing large spans for this structure has great merit as there would be more space for other subordinate buildings and pertinent equipment. Moreover, applying methods to reduce the overall cost of construction while maintaining its strength against severe seismic loading is of high significance. Tabular spatial structures and composite frames have been widely used in recent years to satisfy the need for higher strength at a reasonable price. In this research program, three different structural systems have been regarded for ACC steel platform using Special Concentrate Braced Frames (SCBF), which is the most common system (first scheme), modular spatial frames (second scheme) and finally, a modified method applying Concrete Filled Steel Tabular (CFST) columns (third scheme). The finite element method using Sap2000 and Etabs software was conducted to investigate the behavior of the structures and make a precise comparison between the models. According to the results, the total weight of the steel structure in the second scheme decreases by 13% compared to the first scheme and applying CFST columns in the third scheme causes a 3% reduction in the total weight of the structure in comparison with the second scheme while all the lateral displacements and P-M interaction ratios are in the admissible limit.

Keywords: ACC, SCBF frames, spatial structures, CFST frames

Procedia PDF Downloads 197
8927 Reentrant Spin-Glass State Formation in Polycrystalline Er₂NiSi₃

Authors: Santanu Pakhira, Chandan Mazumdar, R. Ranganathan, Maxim Avdeev

Abstract:

Magnetically frustrated systems are of great interest and one of the most adorable topics for the researcher of condensed matter physics, due to their various interesting properties, viz. ground state degeneracy, finite entropy at zero temperature, lowering of ordering temperature, etc. Ternary intermetallics with the composition RE₂TX₃ (RE = rare-earth element, T= d electron transition metal and X= p electron element) crystallize in hexagonal AlB₂ type crystal structure (space group P6/mmm). In a hexagonal crystal structure with the antiferromagnetic interaction between the moments, the center moment is geometrically frustrated. Magnetic frustration along with disorder arrangements of non-magnetic ions are the building blocks for metastable spin-glass ground state formation for most of the compounds of this stoichiometry. The newly synthesized compound Er₂NiSi₃ compound forms in single phase in AlB₂ type structure with space group P6/mmm. The compound orders antiferromagnetically below 5.4 K and spin freezing of the frustrated magnetic moments occurs below 3 K for the compound. The compound shows magnetic relaxation behavior and magnetic memory effect below its freezing temperature. Neutron diffraction patterns for temperatures below the spin freezing temperature have been analyzed using FULLPROF software package. Diffuse magnetic scattering at low temperatures yields spin glass state formation for the compound.

Keywords: antiferromagnetism, magnetic frustration, spin-glass, neutron diffraction

Procedia PDF Downloads 263
8926 Impact of Temperature Variation on Magnetic Properties of N Doped Spinal Nickel Ferrite with Graphene

Authors: Maryam Kiani, Abdul Basit Kiani

Abstract:

Simple hydrothermal method to synthesize new nanocomposites consisting of nitrogen-doped graphene and NiFe₂O₄. By analyzing the X-Ray Powder Diffraction (XRD) images, we confirmed that the NiFe₂O₄ phase is pure and has a Face Centered Cubic (FCC) structure. The average size of the NiFe₂O₄ nanoparticles is approximately 40±2 nm. Additionally, we used X-ray photoelectron spectroscopy (XPS) to study the surface chemical composition and cation oxidation states of both the NiFe₂O₄ nanoparticles and the nitrogen-doped graphene/NiFe₂O₄ nanocomposites. A magnetic interaction between nitrogen doped graphene/NiFe₂O₄ was studied. Increases in hydrothermal synthesis temperature lead to the improved crystalline structure of NiFe₂O₄ nanoparticles, which improves the magnetic properties.

Keywords: nickel ferrite spinal, nitrogen doped graphene, magnetic nanocomposite, hydrothermal synthesis

Procedia PDF Downloads 132
8925 Usability Evaluation of Rice Doctor as a Diagnostic Tool for Agricultural Extension Workers in Selected Areas in the Philippines

Authors: Jerome Cayton Barradas, Rowely Parico, Lauro Atienza, Poornima Shankar

Abstract:

The effective agricultural extension is essential in facilitating improvements in various agricultural areas. One way of doing this is through Information and communication technologies (ICTs) like Rice Doctor (RD), an app-based diagnostic tool that provides accurate and timely diagnosis and management recommendations for more than 80 crop problems. This study aims to evaluate the RD usability by determining the effectiveness, efficiency, and user satisfaction of RD in making an accurate and timely diagnosis. It also aims to identify other factors that affect RD usability. This will be done by comparing RD with two other diagnostic methods: visual identification-based diagnosis and reference-guided diagnosis. The study was implemented in three rice-producing areas and has involved 96 extension workers. Respondents accomplished a self-administered survey and participated in group discussions. Data collected was then subjected to qualitative and quantitative analysis. Most of the respondents were satisfied with RD and believed that references are needed in assuring the accuracy of diagnosis. The majority found it efficient and easy to use. Some found it confusing and complicated, but this is because of their unfamiliarity with RD. Most users were also able to achieve accurate diagnosis proving effectiveness. Lastly, although users have reservations, they are satisfied and open to using RD. The study also found out the importance of visual identification skills in using RD and the need for capacity development and improvement of access to RD devices. From these results, the following are recommended to improve RD usability: review and upgrade diagnostic keys, expand further RD content, initiate capacity development for AEWs, and prepare and implement an RD communication plan.

Keywords: agricultural extension, crop protection, information and communication technologies, rice doctor

Procedia PDF Downloads 254
8924 Developing a Cultural Policy Framework for Small Towns and Cities

Authors: Raymond Ndhlovu, Jen Snowball

Abstract:

It has long been known that the Cultural and Creative Industries (CCIs) have the potential to aid in physical, social and economic renewal and regeneration of towns and cities, hence their importance when dealing with regional development. The CCIs can act as a catalyst for activity and investment in an area because the ‘consumption’ of cultural activities will lead to the activities and use of other non-cultural activities, for example, hospitality development including restaurants and bars, as well as public transport. ‘Consumption’ of cultural activities also leads to employment creation, and diversification. However, CCIs tend to be clustered, especially around large cities. There is, moreover, a case for development of CCIs around smaller towns and cities, because they do not rely on high technology inputs, and long supply chains, and, their direct link to rural and isolated places makes them vital in regional development. However, there is currently little research on how to craft cultural policy for regions with smaller towns and cities. Using the Sarah Baartman District (SBDM) in South Africa as an example, this paper describes the process of developing cultural policy for a region that has potential, and existing, cultural clusters, but currently no one, coherent policy relating to CCI development. The SBDM was chosen as a case study because it has no large cities, but has some CCI clusters, and has identified them as potential drivers of local economic development. The process of developing cultural policy is discussed in stages: Identification of what resources are present; including human resources, soft and hard infrastructure; Identification of clusters; Analysis of CCI labour markets and ownership patterns; Opportunities and challenges from the point of view of CCIs and other key stakeholders; Alignment of regional policy aims with provincial and national policy objectives; and finally, design and implementation of a regional cultural policy.

Keywords: cultural and creative industries, economic impact, intrinsic value, regional development

Procedia PDF Downloads 233
8923 Simplified Analysis Procedure for Seismic Evaluation of Tall Building at Structure and Component Level

Authors: Tahir Mehmood, Pennung Warnitchai

Abstract:

Simplified static analysis procedures such Nonlinear Static Procedure (NSP) are gaining popularity for the seismic evaluation of buildings. However, these simplified procedures accounts only for the seismic responses of the fundamental vibration mode of the structure. Some other procedures which can take into account the higher modes of vibration, lack in accuracy to determine the component responses. Hence, such procedures are not suitable for evaluating the structures where many vibration modes may participate significantly or where component responses are needed to be evaluated. Moreover, these procedures were found to either computationally expensive or tedious to obtain individual component responses. In this paper, a simplified but accurate procedure is studied. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. In this procedure, the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The responses of four tall buildings are computed by this simplified UMRHA procedure and compared with those obtained from the NLRHA procedure. The comparison shows that the UMRHA procedure is able to accurately compute the global responses, i.e., story shears and story overturning moments, floor accelerations and inter-story drifts as well as the component level responses of these tall buildings with heights varying from 20 to 44 stories. The required computational effort is also extremely low compared to that of the Nonlinear Response History Analysis (NLRHA) procedure.

Keywords: higher mode effects, seismic evaluation procedure, tall buildings, component responses

Procedia PDF Downloads 342
8922 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM

Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei

Abstract:

In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.

Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank

Procedia PDF Downloads 185
8921 Identification of Risks Associated with Process Automation Systems

Authors: J. K. Visser, H. T. Malan

Abstract:

A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.

Keywords: distributed control system, identification of risks, information technology, process automation system

Procedia PDF Downloads 139
8920 A Fresh Approach to Learn Evidence-Based Practice, a Prospective Interventional Study

Authors: Ebtehal Qulisy, Geoffrey Dougherty, Kholoud Hothan, Mylene Dandavino

Abstract:

Background: For more than 200 years, journal clubs (JCs) have been used to teach the fundamentals of critical appraisal and evidence-based practice (EBP). However, JCs curricula face important challenges, including poor sustainability, insufficient time to prepare for and conduct the activities, and lack of trainee skills and self-efficacy with critical appraisal. Andragogy principles and modern technology could help EBP be taught in more relevant, modern, and interactive ways. Method: We propose a fresh educational activity to teach EBP. Educational sessions are designed to encourage collaborative and experiential learning and do not require advanced preparation by the participants. Each session lasts 60 minutes and is adaptable to in-person, virtual, or hybrid contexts. Sessions are structured around a worksheet and include three educational objectives: “1. Identify a Clinical Conundrum”, “2. Compare and Contrast Current Guidelines”, and “3. Choose a Recent Journal Article”. Sessions begin with a short presentation by a facilitator of a clinical scenario highlighting a “grey-zone” in pediatrics. Trainees are placed in groups of two to four (based on the participants’ number) of varied training levels. The first task requires the identification of a clinical conundrum (a situation where there is no clear answer but only a reasonable solution) related to the scenario. For the second task, trainees must identify two or three clinical guidelines. The last task requires trainees to find a journal article published in the last year that reports an update regarding the scenario’s topic. Participants are allowed to use their electronic devices throughout the session. Our university provides full-text access to major journals, which facilitated this exercise. Results: Participants were a convenience sample of trainees in the inpatient services at the Montréal Children’s Hospital, McGill University. Sessions were conducted as a part of an existing weekly academic activity and facilitated by pediatricians with experience in critical appraisal. There were 28 participants in 4 sessions held during Spring 2022. Time was allocated at the end of each session to collect participants’ feedback via a self-administered online survey. There were 22 responses, were 41%(n=9) pediatric residents, 22.7%(n=5) family medicine residents, 31.8%(n=7) medical students, and 4.5%(n=1) nurse practitioner. Four respondents participated in more than one session. The “Satisfied” rates were 94.7% for session format, 100% for topic selection, 89.5% for time allocation, and 84.3% for worksheet structure. 60% of participants felt that including the sessions during the clinical ward rotation was “Feasible.” As per self-efficacy, participants reported being “Confident” for the tasks as follows: 89.5% for the ability to identify a relevant conundrum, 94.8% for the compare and contrast task, and 84.2% for the identification of a published update. The perceived effectiveness to learn EBP was reported as “Agreed” by all participants. All participants would recommend this session for further teaching. Conclusion: We developed a modern approach to teach EBP, enjoyed by all levels of participants, who also felt it was a useful learning experience. Our approach addresses known JCs challenges by being relevant to clinical care, fostering active engagement but not requiring any preparation, using available technology, and being adaptable to hybrid contexts.

Keywords: medical education, journal clubs, post-graduate teaching, andragogy, experiential learning, evidence-based practice

Procedia PDF Downloads 116
8919 Cancellation of Transducer Effects from Frequency Response Functions: Experimental Case Study on the Steel Plate

Authors: P. Zamani, A. Taleshi Anbouhi, M. R. Ashory, S. Mohajerzadeh, M. M. Khatibi

Abstract:

Modal analysis is a developing science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this paper, eliminating the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect by using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results.

Keywords: accelerometer mass, frequency response function, modal analysis, sensitivity analysis

Procedia PDF Downloads 446
8918 The Effect of Framework Structure on N2O Formation over Cu-Based Zeolites during NH3-SCR Reactions

Authors: Ghodsieh Isapour Toutizad, Aiyong Wang, Joonsoo Han, Derek Creaser, Louise Olsson, Magnus Skoglundh, Hanna HaRelind

Abstract:

Nitrous oxide (N2O), which is generally formed as a byproduct of industrial chemical processes and fossil fuel combustion, has attracted considerable attention due to its destructive role in global warming and ozone layer depletion. From various developed technologies used for lean NOx reduction, the selective catalytic reduction (SCR) of NOx with ammonia is presently the most applied method. Therefore, the development of catalysts for efficient lean NOx reduction without forming N2O in the process, or only forming it to a very small extent from the exhaust gases is of crucial significance. One type of catalysts that nowadays are used for this aim are zeolite-based catalysts. It is owing to their remarkable catalytic performance under practical reaction conditions such as high thermal stability and high N2 selectivity. Among all zeolites, copper ion-exchanged zeolites, with CHA, MFI, and BEA framework structure (like SSZ-13, ZSM-5 and Beta, respectively), represent higher hydrothermal stability, high activity and N2 selectivity. This work aims at investigating the effect of the zeolite framework structure on the formation of N2O during NH3-SCR reaction conditions over three Cu-based zeolites ranging from small-pore to large-pore framework structure. In the zeolite framework, Cu exists in two cationic forms, that can catalyze the SCR reaction by activating NO to form NO+ and/or surface nitrate species. The nitrate species can thereafter react with NH3 to form another intermediate, ammonium nitrate, which seems to be one source for N2O formation at low temperatures. The results from in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicate that during the NO oxidation step, mainly NO+ and nitrate species are formed on the surface of the catalysts. The intensity of the absorption peak attributed to NO+ species is higher for the Cu-CHA sample compared to the other two samples, indicating a higher stability of this species in small cages. Furthermore, upon the addition of NH3, through the standard SCR reaction conditions, absorption peaks assigned to N-H stretching and bending vibrations are building up. At the same time, negative peaks are evolving in the O-H stretching region, indicating blocking/replacement of surface OH-groups by NH3 and NH4+. By removing NH3 and adding NO2 to the inlet gas composition, the peaks in the N-H stretching and bending vibration regions show a decreasing trend in intensity, with the decrease being more pronounced for increasing pore size. It can probably be owing to the higher accumulation of ammonia species in the small-pore size zeolite compared to the other two samples. Furthermore, it is worth noting that the ammonia surface species are strongly bonded to the CHA zeolite structure, which makes it more difficult to react with NO2. To conclude, the framework structure of the zeolite seems to play an important role in the formation and reactivity of surface species relevant for the SCR process. Here we intend to discuss the connection between the zeolite structure, the surface species, and the formation of N2O during ammonia-SCR.

Keywords: fast SCR, nitrous oxide, NOx, standard SCR, zeolites

Procedia PDF Downloads 236
8917 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls

Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac

Abstract:

No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.

Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations

Procedia PDF Downloads 319
8916 Identifying Lead Poisoning Risk Factors among Non-Pregnant Adults in New York City through Motivational Interviewing Techniques

Authors: Nevila Bardhi, Joanna Magda, Kolapo Alex-Oni, Slavenka Sedlar, Paromita Hore

Abstract:

The New York City Department of Health and Mental Hygiene (NYC DOHMH) receives blood lead test results for NYC residents and conducts lead poisoning case investigations for individuals with elevated blood lead levels exposed to lead occupationally and non-occupationally. To (1) improve participant engagement, (2) aid the identification of potential lead sources, and (3) better tailor recommendations to reduce lead exposure, Motivational Interviewing (MI) techniques were incorporated during risk assessment interviews of non-pregnant adults by DOHMH’s Adult Lead Poisoning Prevention (ALP) Program. MI is an evidence-based counselling method used in clinical settings that have been effective in promoting behavior change by resolving ambivalence and enhancing motivation in treating both physiological and psychological health conditions. The incorporation of MI techniques in the ALP risk assessment interview was effective in improving the identification of lead sources for non-pregnant adult cases, thus, allowing for the opportunity to better tailor lead poisoning prevention recommendations. The embedding of MI cues in the ALP risk assessment interview also significantly increased engagement in the interview process, resulting in approximately 50 more interviews conducted per year and a decrease in interview refusals during case investigations. Additionally, the pre-MI interview completion rate was 57%, while the post-MI Interview completion rate was 68%. We recommend MI techniques to be used by other lead poisoning prevention programs during lead poisoning investigations in similar diverse populations.

Keywords: lead poisoning prevention, motivational interviewing, behavior change, lead poisoning risk factors, self-efficacy

Procedia PDF Downloads 89
8915 Process for Analyzing Information Security Risks Associated with the Incorporation of Online Dispute Resolution Systems in the Context of Conciliation in Colombia

Authors: Jefferson Camacho Mejia, Jenny Paola Forero Pachon, Luis Carlos Gomez Florez

Abstract:

The innumerable possibilities offered by the use of Information Technology (IT) in the development of different socio-economic activities has made a change in the social paradigm and the emergence of the so-called information and knowledge society. The Colombian government, aware of this reality, has been promoting the use of IT as part of the E-government strategy adopted in the country. However, it is well known that the use of IT implies the existence of certain threats that put the security of information in the digital environment at risk. One of the priorities of the Colombian government is to improve access to alternative justice through IT, in particular, access to Alternative Dispute Resolution (ADR): conciliation, arbitration and friendly composition; by means of which it is sought that the citizens directly resolve their differences. To this end, a trend has been identified in the use of Online Dispute Resolution (ODR) systems, which extend the benefits of ADR to the digital environment through the use of IT. This article presents a process for the analysis of information security risks associated with the incorporation of ODR systems in the context of conciliation in Colombia, based on four fundamental stages identified in the literature: (I) Identification of assets, (II) Identification of threats and vulnerabilities (III) Estimation of the impact and 4) Estimation of risk levels. The methodological design adopted for this research was the grounded theory, since it involves interactions that are applied to a specific context and from the perspective of diverse participants. As a result of this investigation, the activities to be followed are defined to carry out an analysis of information security risks, in the context of the conciliation in Colombia supported by ODR systems, thus contributing to the estimation of the risks to make possible its subsequent treatment.

Keywords: alternative dispute resolution, conciliation, information security, online dispute resolution systems, process, risk analysis

Procedia PDF Downloads 239
8914 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener

Authors: Wenhao Li, Shijun Guo

Abstract:

Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.

Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring

Procedia PDF Downloads 163
8913 A New Approach for PE100 Characterization; An in-Reactor HDPE Alloy with Semi Hard and Soft Segments

Authors: Sasan Talebnezhad, Parviz Hamidia

Abstract:

GPC and RMS analysis showed no distinct difference between PE 100 On, Off, and Reference grade. But FTIR spectra and multiple endothermic peaks obtained from SSA analysis, attributed to heterogeneity of ethylene sequence length, lamellar thickness and also the non-uniformity of short chain branching, showed sharp discrepancy and proposed a blend structure of high-density polyethylenes in PE 100 grade. Catalysis along with process parameters dictates poly blend PE 100 structure. This in-reactor blend is a mixture of compatible co-crystallized phases with different crystalinity, forming a physical semi hard and soft segment network responsible for improved impact properties in PE 100 pipe grade. We propose a new approach for PE100 evaluation that is more efficient than normal microstructure characterization.

Keywords: HDPE, pipe grade, in-reactor blend, hard and soft segments

Procedia PDF Downloads 447
8912 Methods for Solving Identification Problems

Authors: Fadi Awawdeh

Abstract:

In this work, we highlight the key concepts in using semigroup theory as a methodology used to construct efficient formulas for solving inverse problems. The proposed method depends on some results concerning integral equations. The experimental results show the potential and limitations of the method and imply directions for future work.

Keywords: identification problems, semigroup theory, methods for inverse problems, scientific computing

Procedia PDF Downloads 481
8911 Robson System Analysis in Kyiv Perinatal Centre

Authors: Victoria Bila, Iryna Ventskivska, Oleksandra Zahorodnia

Abstract:

The goal of the study: To study the distribution of patients of the Kiyv Perinatal Center according to the Robson system and compare it with world data. Materials and methods: a comparison of the distribution of patients of Kiyv Perinatal center according to the Robson system for 2 periods - the first quarter of 2019 and 2020. For each group, 3 indicators were analyzed - the share of this group in the overall structure of patients of the Perinatal Center for the reporting period, the frequency of abdominal delivery in this group, as well as the contribution of this group to the total number of abdominal delivery. Obtained data were compared with those of the WHO in the guidelines for the implementation of the Robson system in 2017. Results and its discussion: The distribution of patients of the Perinatal Center into groups in the Robson classification is not much different from that recommended by the author. So, among all women, patients of group 1 dominate; this indicator does not change in dynamics. A slight increase in the share of group 2 (6.7% in 2019 and 9.3% - 2020) was due to an increase in the number of labor induction. At the same time, the number of patients of groups 1 and 2 in the Perinatal Center is greater than in the world population, which is determined by the hospitalization of primiparous women with reproductive losses in the past. The Perinatal Center is distinguished from the world population and the proportion of women of group 5 - it was 5.4%, in the world - 7.6%. The frequency of caesarean section in the Perinatal Center is within limits typical for most countries (20.5-20.8%). Moreover, the dominant groups in the structure of caesarean sections are group 5 (21-23.3%) and group 2 (21.9-22.9%), which are the reserve for reducing the number of abdominal delivery. In group 2, certain results have already been achieved in this matter - the frequency of cesarean section in 2019 here amounted to 67.8%, in the first quarter of 2020 - 51.6%. This happened due to a change in the leading method of induction of labor. Thus, the Robson system is a convenient and affordable tool for assessing the structure of caesarean sections. The analysis showed that, in general, the structure of caesarean sections in the Perinatal Center is close to world data, and the identified deviations have explanations related to the specialization of the Center.

Keywords: cesarian section, Robson system, Kyiv Perinatal Center, labor induction

Procedia PDF Downloads 137
8910 Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array

Authors: Badar Muneer, Waseem Shabir, Faisal Karim Shaikh

Abstract:

Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA.

Keywords: feeding network, laminated waveguide, PIFA, transverse slots

Procedia PDF Downloads 311
8909 Cas9-Assisted Direct Cloning and Refactoring of a Silent Biosynthetic Gene Cluster

Authors: Peng Hou

Abstract:

Natural products produced from marine bacteria serve as an immense reservoir for anti-infective drugs and therapeutic agents. Nowadays, heterologous expression of gene clusters of interests has been widely adopted as an effective strategy for natural product discovery. Briefly, the heterologous expression flowchart would be: biosynthetic gene cluster identification, pathway construction and expression, and product detection. However, gene cluster capture using traditional Transformation-associated recombination (TAR) protocol is low-efficient (0.5% positive colony rate). To make things worse, most of these putative new natural products are only predicted by bioinformatics analysis such as antiSMASH, and their corresponding natural products biosynthetic pathways are either not expressed or expressed at very low levels under laboratory conditions. Those setbacks have inspired us to focus on seeking new technologies to efficiently edit and refractor of biosynthetic gene clusters. Recently, two cutting-edge techniques have attracted our attention - the CRISPR-Cas9 and Gibson Assembly. By now, we have tried to pretreat Brevibacillus laterosporus strain genomic DNA with CRISPR-Cas9 nucleases that specifically generated breaks near the gene cluster of interest. This trial resulted in an increase in the efficiency of gene cluster capture (9%). Moreover, using Gibson Assembly by adding/deleting certain operon and tailoring enzymes regardless of end compatibility, the silent construct (~80kb) has been successfully refactored into an active one, yielded a series of analogs expected. With the appearances of the novel molecular tools, we are confident to believe that development of a high throughput mature pipeline for DNA assembly, transformation, product isolation and identification would no longer be a daydream for marine natural product discovery.

Keywords: biosynthesis, CRISPR-Cas9, DNA assembly, refactor, TAR cloning

Procedia PDF Downloads 282
8908 Aftershock Collapse Capacity Assessment of Mid-Rise Steel Moment Frames Subjected to As-Recorded Mainshock-Aftershock

Authors: Mohammadmehdi Torfehnejada, Serhan Senso

Abstract:

Aftershock collapse capacity of Special Steel Moment Frames (SSMFs) is evaluated under aftershock earthquakes by considering building heights 8 and 12 stories. The assessment evaluates the residual collapse capacity under aftershock excitation when various levels of damage have been induced by the mainshock. For this purpose, incremental dynamic analysis (IDA) under aftershock follows the mainshock imposing the intended damage level. The study results indicate that aftershock collapse capacity of this structure may decrease remarkably when the structure is subjected to large mainshock damage. The capacity reduction under aftershock is finally related to the mainshock damage level through regression equations.

Keywords: aftershock collapse capacity, special steel moment frames, mainshock-aftershock sequences, incremental dynamic analysis, mainshock damage

Procedia PDF Downloads 152