Search results for: protein stability prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7692

Search results for: protein stability prediction

6222 An UHPLC (Ultra High Performance Liquid Chromatography) Method for the Simultaneous Determination of Norfloxacin, Metronidazole, and Tinidazole Using Monolithic Column-Stability Indicating Application

Authors: Asmaa Mandour, Ramzia El-Bagary, Asmaa El-Zaher, Ehab Elkady

Abstract:

Background: An UHPLC (ultra high performance liquid chromatography) method for the simultaneous determination of norfloxacin (NOR), metronidazole (MET) and tinidazole (TNZ) using monolithic column is presented. Purpose: The method is considered an environmentally friendly method with relatively low organic composition of the mobile phase. Methods: The chromatographic separation was performed using Phenomenex® Onyex Monolithic C18 (50mmx 20mm) column. An elution program of mobile phase consisted of 0.5% aqueous phosphoric acid : methanol (85:15, v/v). Where elution of all drugs was completed within 3.5 min with 1µL injection volume. The UHPLC method was applied for the stability indication of NOR in the presence of its acid degradation product ND. Results: Retention times were 0.69, 1.19 and 3.23 min for MET, TNZ and NOR, respectively. While ND retention time was 1.06 min. Linearity, accuracy, and precision were acceptable over the concentration range of 5-50µg mL-1for all drugs. Conclusions: The method is simple, sensitive and suitable for the routine quality control and dosage form assay of the three drugs and can also be used for the stability indication of NOR in the presence of its acid degradation product.

Keywords: antibacterial, monolithic cilumn, simultaneous determination, UHPLC

Procedia PDF Downloads 253
6221 Clinical Prediction Score for Ruptured Appendicitis In ED

Authors: Thidathit Prachanukool, Chaiyaporn Yuksen, Welawat Tienpratarn, Sorravit Savatmongkorngul, Panvilai Tangkulpanich, Chetsadakon Jenpanitpong, Yuranan Phootothum, Malivan Phontabtim, Promphet Nuanprom

Abstract:

Background: Ruptured appendicitis has a high morbidity and mortality and requires immediate surgery. The Alvarado Score is used as a tool to predict the risk of acute appendicitis, but there is no such score for predicting rupture. This study aimed to developed the prediction score to determine the likelihood of ruptured appendicitis in an Asian population. Methods: This study was diagnostic, retrospectively cross-sectional and exploratory model at the Emergency Medicine Department in Ramathibodi Hospital between March 2016 and March 2018. The inclusion criteria were age >15 years and an available pathology report after appendectomy. Clinical factors included gender, age>60 years, right lower quadrant pain, migratory pain, nausea and/or vomiting, diarrhea, anorexia, fever>37.3°C, rebound tenderness, guarding, white blood cell count, polymorphonuclear white blood cells (PMN)>75%, and the pain duration before presentation. The predictive model and prediction score for ruptured appendicitis was developed by multivariable logistic regression analysis. Result: During the study period, 480 patients met the inclusion criteria; of these, 77 (16%) had ruptured appendicitis. Five independent factors were predictive of rupture, age>60 years, fever>37.3°C, guarding, PMN>75%, and duration of pain>24 hours to presentation. A score > 6 increased the likelihood ratio of ruptured appendicitis by 3.88 times. Conclusion: Using the Ramathibodi Welawat Ruptured Appendicitis Score. (RAMA WeRA Score) developed in this study, a score of > 6 was associated with ruptured appendicitis.

Keywords: predictive model, risk score, ruptured appendicitis, emergency room

Procedia PDF Downloads 165
6220 Instability by Weak Precession of the Flow in a Rapidly Rotating Sphere

Authors: S. Kida

Abstract:

We consider the flow of an incompressible viscous fluid in a precessing sphere whose spin and precession axes are orthogonal to each other. The flow is characterized by two non-dimensional parameters, the Reynolds number Re and the Poincare number Po. For which values of (Re, Po) will the flow approach a steady state from an arbitrary initial condition? To answer it we are searching the instability boundary of the steady states in the whole (Re, Po) plane. Here, we focus the rapidly rotating and weakly precessing limit, i.e., Re >> 1 and Po << 1. The steady flow was obtained by the asymptotic expansion for small ε=Po Re¹/² << 1. The flow exhibits nearly a solid-body rotation in the whole sphere except for a thin boundary layer which develops over the sphere surface. The thickness of this boundary layer is of O(δ), where δ=Re⁻¹/², except where two circular critical bands of thickness of O(δ⁴/⁵) and of width of O(δ²/⁵) which are located away from the spin axis by about 60°. We perform the linear stability analysis of the steady flow. We assume that the disturbances are localized in the critical bands and make an expansion analysis in terms of ε to derive the eigenvalue problem for the growth rate of the disturbance, which is solved numerically. As the solution, we obtain an asymptote of the stability boundary as Po=28.36Re⁻⁰.⁸. This agrees excellently with the corresponding laboratory experiments and numerical simulations. One of the most popular instability mechanisms so far is the parametric instability, which turns out, however, not to give the correct stability boundary. The present instability is different from the parametric instability.

Keywords: boundary layer, critical band, instability, precessing sphere

Procedia PDF Downloads 154
6219 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 161
6218 Thermophysical Properties and Kinetic Study of Dioscorea bulbifera

Authors: Emmanuel Chinagorom Nwadike, Joseph Tagbo Nwabanne, Matthew Ndubuisi Abonyi, Onyemazu Andrew Azaka

Abstract:

This research focused on the modeling of the convective drying of aerial yam using finite element methods. The thermo-gravimetric analyzer was used to determine the thermal stability of the sample. An aerial yam sample of size 30 x 20 x 4 mm was cut with a mold designed for the purpose and dried in a convective dryer set at 4m/s fan speed and temperatures of 68.58 and 60.56°C. The volume shrinkage of the resultant dried sample was determined by immersing the sample in a toluene solution. The finite element analysis was done with PDE tools in Matlab 2015. Seven kinetic models were employed to model the drying process. The result obtained revealed three regions in the thermogravimetric analysis (TGA) profile of aerial yam. The maximum thermal degradation rates of the sample occurred at 432.7°C. The effective thermal diffusivity of the sample increased as the temperature increased from 60.56°C to 68.58°C. The finite element prediction of moisture content of aerial yam at an air temperature of 68.58°C and 60.56°C shows R² of 0.9663 and 0.9155, respectively. There was a good agreement between the finite element predicted moisture content and the measured moisture content, which is indicative of a highly reliable finite element model developed. The result also shows that the best kinetic model for the aerial yam under the given drying conditions was the Logarithmic model with a correlation coefficient of 0.9991.

Keywords: aerial yam, finite element, convective, effective, diffusivity

Procedia PDF Downloads 153
6217 Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism).

Keywords: mathematical modeling, ordinary differential equations, endocrine system, delay differential equation

Procedia PDF Downloads 336
6216 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 77
6215 A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein

Authors: William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian. A. Tanner

Abstract:

C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public.

Keywords: structure-switching, C-reactive protein, electrochemical, biosensor, aptasensor.

Procedia PDF Downloads 70
6214 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 69
6213 The Effect of Fermented Organic Feed into Nutritive Contents of Kampong Chicken Meat

Authors: Wahyu Widodo, Imbang Dwi Rahayu, Adi Sutanto

Abstract:

The purpose of this research was to analyze the effect of the fermented organic feed to dry matter, ash, organic matter, protein, fat and crude fiber contents of kampong chicken meat. The research had conducted at January until June, 2016. One hundreds chickens were used in this research. Experimental method and completely randomized design were used to support this research. We had 4 treatment namely P0: organic feed without fermentation, P1: Organic feed with fermented rice bran, P2: Organic feed with fermented corn, P3: Organic feed with fermented rice bran and corn with 5 replication. The conclusion was the treatment had not a significant effect in the dry matter, ash, organic matter and protein contents of chicken meat. On the other hand, it had a significant effect in the fat and crude fiber contents of chicken meat.

Keywords: corn, fermented organic feed, nutritive contents, rice bran

Procedia PDF Downloads 314
6212 Lipid Nanoparticles for Spironolactone Delivery: Physicochemical Characteristics, Stability and Invitro Release

Authors: H. R. Kelidari, M. Saeedi, J. Akbari, K. Morteza-Semnani, H. Valizadeh

Abstract:

Spironolactoe (SP) a synthetic steroid diuretic is a poorly water-soluble drug with a low and variable oral bioavailability. Regarding to the good solubility of SP in lipid materials, SP loaded Solid lipid nanoparticles (SP-SLNs) and nanostructured lipid carrier (SP-SLNs) were thus prepared in this work for accelerating dissolution of this drug. The SP loaded NLC with stearic acid (SA) as solid lipid and different Oleic Acid (OA) as liquid lipid content and SLN without OA were prepared by probe ultrasonication method. With increasing the percentage of OA from 0 to 30 wt% in SLN/NLC, the average size and zeta potential of nanoparticles felled down and entrapment efficiency (EE %) rose dramatically. The obtained micrograph particles showed pronounced spherical shape. Differential Scanning Calorimeter (DSC) measurements indicated that the presence of OA reduced the melting temperature and melting enthalpy of solid lipid in NLC structure. The results reflected good long-term stability of the nanoparticles and the measurements show that the particle size remains lower in NLC compare to SLN formulations, 6 months after production. Dissolution of SP-SLN and SP-NLC was about 5.1 and 7.2 times faster than raw drugs in 120 min respectively. These results indicated that the SP loaded NLC containing 70:30 solid lipid to liquid lipid ratio is a suitable carrier of SP with improved drug EE and steady drug release properties.

Keywords: drug release, lipid nanoparticles, spironolactone, stability

Procedia PDF Downloads 331
6211 Challenges of Effective Management in Tetiary Institutions in Nigeria

Authors: Simon Oga Egboja, Agi Sunday

Abstract:

The government of Nigeria have invested so much in our tertiary education but the desire qualitative goals and objectives are yet to be achieved because management at all level are not efficient and effective in implementing the desired educational policies and programmes due to some management challenges. This paper investigates some of the major challenges to effective management of tertiary institution in Nigeria some variable that are important to effective management includes political stability, adequate funding, establishment of information system, recruitment and appointment of qualified teachers and condition of service.

Keywords: effective management includes political stability, adequate funding, establishment of information system, recruitment and appointment of qualified teachers

Procedia PDF Downloads 305
6210 Factors Associated with Weight Loss Maintenance after an Intervention Program

Authors: Filipa Cortez, Vanessa Pereira

Abstract:

Introduction: The main challenge of obesity treatment is long-term weight loss maintenance. The 3 phases method is a weight loss program that combines a low carb and moderately high-protein diet, food supplements and a weekly one-to-one consultation with a certified nutritionist. Sustained weight control is the ultimate goal of phase 3. Success criterion was the minimum loss of 10% of initial weight and its maintenance after 12 months. Objective: The aim of this study was to identify factors associated with successful weight loss maintenance after 12 months at the end of 3 phases method. Methods: The study included 199 subjects that achieved their weight loss goal (phase 3). Weight and body mass index (BMI) were obtained at the baseline and every week until the end of the program. Therapeutic adherence was measured weekly on a Likert scale from 1 to 5. Subjects were considered in compliance with nutritional recommendation and supplementation when their classification was ≥ 4. After 12 months of the method, the current weight and number of previous weight-loss attempts were collected by telephone interview. The statistical significance was assumed at p-values < 0.05. Statistical analyses were performed using SPSS TM software v.21. Results: 65.3% of subjects met the success criterion. The factors which displayed a significant weight loss maintenance prediction were: greater initial percentage weight loss (OR=1.44) during the weight loss intervention and a higher number of consultations in phase 3 (OR=1.10). Conclusion: These findings suggest that the percentage weight loss during the weight loss intervention and the number of consultations in phase 3 may facilitate maintenance of weight loss after the 3 phases method.

Keywords: obesity, weight maintenance, low-carbohydrate diet, dietary supplements

Procedia PDF Downloads 150
6209 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40
6208 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 156
6207 The Effect of Acute Aerobic Exercise after Consumption of Four Different Diets on Serum Levels Irisin, Insulin and Glucose in Overweight Men

Authors: Majid Mardaniyan Ghahfarokhi, Abdolhamid Habibi, Majid Mohammad Shahi

Abstract:

The combination of exercise and diet as the most important strategy to reduce weight and control obesity-related factors, including Irisin, Insulin, and Glucose was raised. The aim of this study was to investigate the effect of aerobic exercise combined with four different diets on serum levels of Irisin, Insulin, and Glucose in overweight men. Methods: In this quasi-experimental study, 8 overweight men (BMI 29.23±0.47) with average age of (23±1.6) voluntarily participated in 4 sessions by one-week interval. The study was done in exercise physiology lab. In each session, subjects performed a 30 minutes treadmill test with 60-70% of maximum heart rate, after consuming a high carbohydrate, high-fat, high-protein and normal diet. For biochemical measurement, three blood samples were taken in fasting state, two hours after meals and after exercise Results: Statistical analysis of data showed that the serum levels of Irisin after consumption all four diets had been reduced which this reduce as a result of high-fat diet that were significantly (p ≤ 0/038). Serum concentration of Insulin and Glucose increased after consuming four diets. However, increase in serum Insulin and Glucose was significant only after consuming high-carbohydrate diet (Respectively p ≤ 0/001, p ≤ 0/042). In addition, during exercise after consuming all four regular diet, high carbohydrate, high-protein and high-fat, Irisin significant increased significantly (Respectively p ≤ 0/021, p ≤ 0/049, p ≤ 0/001, P ≤ 0/003), Insulin decreased significantly (Respectively p ≤ 0/002, p ≤ 0/001, p ≤ 0/001, p ≤ 0/002) and Glucose were significantly reduced (Respectively p ≤ 0/001, p ≤ 0/001, P ≤ 0/001, p ≤ 0/002). After aerobic activity following the consumption of a high protein diet the highest increase in irisin levels, and after aerobic exercise following consumption of high carbohydrate diet the greatest decrease in insulin and glucose levels were observed. Conclusion: It seems that diet alone and exercises following different consumption diets can have a significant effect on Irisin, Insulin, and Glucose serum levels in overweight young men.

Keywords: acute aerobic exercise, diet, irisin, overweight

Procedia PDF Downloads 259
6206 An MrPPG Method for Face Anti-Spoofing

Authors: Lan Zhang, Cailing Zhang

Abstract:

In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.

Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG

Procedia PDF Downloads 178
6205 Stability of a Self-Excited Machine Due to the Mechanical Coupling

Authors: M. Soltan Rezaee, M. R. Ghazavi, A. Najafi, W.-H. Liao

Abstract:

Generally, different rods in shaft systems can be misaligned based on the mechanical system usages. These rods can be linked together via U-coupling easily. The system is self-stimulated and may cause instabilities due to the inherent behavior of the coupling. In this study, each rod includes an elastic shaft with an angular stiffness and structural damping. Moreover, the mass of shafts is considered via attached solid disks. The impact of the system architecture and shaft mass on the instability of such mechanism are studied. Stability charts are plotted via a method based on Floquet theory. Eventually, the unstable points have been found and analyzed in detail. The results show that stabilizing the driveline is feasible by changing the system characteristics which include shaft mass and architecture.

Keywords: coupling, mechanical systems, oscillations, rotating shafts

Procedia PDF Downloads 180
6204 Characterization of (GRAS37) Gibberellin Acid Insensitive (GAI), Repressor (RGA), and Scarecrow (SCR) Gene by Using Bioinformatics Tools

Authors: Yusra Tariq

Abstract:

The Grass 37 gene is presently known in tomatoes, which are the source of healthy substances such as ascorbic acid, polyphenols, carotenoids and nutrients. It has a significant impact on the growth and development of humans. The GRASS 37 gene is a plant Transcription factor group assuming significant parts in various reactions of different Abiotic stresses such as (drought, salinity, thermal stresses, temperature, and bright waves) which could highly affect the growth. Tomatoes are very sensitive to temperature, and their growth or production occurs optimally in a temperature range from 21 C to 29.5 C during the daytime and from 18.5 C to 21 C during the night. This protein acts as a positive regulator of salt stress response and abscisic acid signaling. This study summarizes the structure characterized by molecular formula and protein-binding domains by different bioinformatics tools such as Expasy translate tool, Expasy Portparam, Swiss Prot and Inter Pro Scan, Clustal W tool regulatory procedure of GRASS gene components, also their reactions to both biotic and Abiotic stresses.

Keywords: GRAS37, gene, bioinformatics, tool

Procedia PDF Downloads 53
6203 Overall Stability of Welded Q460GJ Steel Box Columns: Experimental Study and Numerical Simulations

Authors: Zhou Xiong, Kang Shao Bo, Yang Bo

Abstract:

To date, high-performance structural steel has been widely used for columns in construction practices due to its significant advantages over conventional steel. However, the same design approach with conventional steel columns is still adopted in the design of high-performance steel columns. As a result, its superior properties cannot be fully considered in design. This paper conducts a test and finite element analysis on the overall stability behaviour of welded Q460GJ steel box columns. In the test, four steel columns with different slenderness and width-to-thickness ratio were compressed under an axial compression testing machine. And finite element models were established in which material nonlinearity and residual stress distributions of test columns were included. Then, comparisons were made between test results and finite element result, it showed that finite element analysis results are agree well with the test result. It means that the test and finite element model are reliable. Then, we compared the test result with the design value calculated by current code, the result showed that Q460GJ steel box columns have the higher overall buckling capacity than the design value. It is necessary to update the design curves for Q460GJ steel columns so that the overall stability capacity of Q460GJ box columns can be designed appropriately.

Keywords: axial compression, box columns, global buckling, numerical simulations, Q460GJ steel

Procedia PDF Downloads 403
6202 Investigation on Remote Sense Surface Latent Heat Temperature Associated with Pre-Seismic Activities in Indian Region

Authors: Vijay S. Katta, Vinod Kushwah, Rudraksh Tiwari, Mulayam Singh Gaur, Priti Dimri, Ashok Kumar Sharma

Abstract:

The formation process of seismic activities because of abrupt slip on faults, tectonic plate moments due to accumulated stress in the Earth’s crust. The prediction of seismic activity is a very challenging task. We have studied the changes in surface latent heat temperatures which are observed prior to significant earthquakes have been investigated and could be considered for short term earthquake prediction. We analyzed the surface latent heat temperature (SLHT) variation for inland earthquakes occurred in Chamba, Himachal Pradesh (32.5 N, 76.1E, M-4.5, depth-5km) nearby the main boundary fault region, the data of SLHT have been taken from National Center for Environmental Prediction (NCEP). In this analysis, we have calculated daily variations with surface latent heat temperature (0C) in the range area 1⁰x1⁰ (~120/KM²) with the pixel covering epicenter of earthquake at the center for a three months period prior to and after the seismic activities. The mean value during that period has been considered in order to take account of the seasonal effect. The monthly mean has been subtracted from daily value to study anomalous behavior (∆SLHT) of SLHT during the earthquakes. The results found that the SLHTs adjacent the epicenters all are anomalous high value 3-5 days before the seismic activities. The abundant surface water and groundwater in the epicenter and its adjacent region can provide the necessary condition for the change of SLHT. To further confirm the reliability of SLHT anomaly, it is necessary to explore its physical mechanism in depth by more earthquakes cases.

Keywords: surface latent heat temperature, satellite data, earthquake, magnetic storm

Procedia PDF Downloads 134
6201 Enhancing Power System Resilience: An Adaptive Under-Frequency Load Shedding Scheme Incorporating PV Generation and Fast Charging Stations

Authors: Sami M. Alshareef

Abstract:

In the rapidly evolving energy landscape, the integration of renewable energy sources and the electrification of transportation are essential steps toward achieving sustainability goals. However, these advancements introduce new challenges, particularly in maintaining frequency stability due to variable photovoltaic (PV) generation and the growing demand for fast charging stations. The variability of photovoltaic (PV) generation due to weather conditions can disrupt the balance between generation and load, resulting in frequency deviations. To ensure the stability of power systems, it is imperative to develop effective under frequency load-shedding schemes. This research proposal presents an adaptive under-frequency load shedding scheme based on the power swing equation, designed explicitly for the IEEE-9 Bus Test System, that includes PV generation and fast charging stations. This research aims to address these challenges by developing an advanced scheme that dynamically disconnects fast charging stations based on power imbalances. The scheme prioritizes the disconnection of stations near affected areas to expedite system frequency stabilization. To achieve these goals, the research project will leverage the power swing equation, a widely recognized model for analyzing system dynamics during under-frequency events. By utilizing this equation, the proposed scheme will adaptively adjust the load-shedding process in real-time to maintain frequency stability and prevent power blackouts. The research findings will support the transition towards sustainable energy systems by ensuring a reliable and uninterrupted electricity supply while enhancing the resilience and stability of power systems during under-frequency events.

Keywords: load shedding, fast charging stations, pv generation, power system resilience

Procedia PDF Downloads 81
6200 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks

Authors: M. Heydari Vini

Abstract:

There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.

Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips

Procedia PDF Downloads 505
6199 Manipulating The PAAR Proteins of Acinetobacter Baumannii

Authors: Irene Alevizos, Jessica Lewis, Marina Harper, John Boyce

Abstract:

Acinetobacter baumannii causes a range of severe nosocomial-acquired infections, and many strains are multi-drug resistant. A. baumannii possesses survival mechanisms allowing it to thrive in competitive polymicrobial environments, including a Type VI Secretion System (T6SS) that injects effector proteins into other bacteria to give a competitive advantage. The effects of T6SS firing are broad and depend entirely on the effector that is delivered. Effects can include toxicity against prokaryotic or eukaryotic cells and the acquisition of essential nutrients. The T6SS of some species can deliver ‘specialised effectors’ that are fused directly to T6SS components, such as PAAR proteins. PAAR proteins are predicted to form the piercing tip of the T6SS and are essential for T6SS function. Although no specialised effectors have been identified in A. baumannii, many strains encode multiple PAAR proteins. Analysis of PAAR proteins across the species identified 12 families of PAAR proteins with distinct C-terminal extensions. A. baumannii AB307-0294 encodes two PAAR proteins, one of which has a C-terminal extension. Mutation of one or both of the PAAR-encoding genes in this strain showed that expression of either PAAR protein was sufficient for T6SS function. We employed a heterologous expression approach and determined that PAAR proteins from different A. baumannii strains, as well as the closely related A. baylyi species, could complement the A. baumannii ∆paar mutant and restore T6SS function. Furthermore, we showed that PAAR fusions could be used to deliver artificially cloned protein fragments by generating Histidine- and Streptavidin- tagged PAAR specialised effectors, which restored T6SS activity. This provides evidence that the fusion of protein fragments onto PAAR proteins in A. baumannii is compatible with a functional T6SS. Successful delivery by this mechanism extends the scope of what the T6SS can deliver, including user designed proteins.

Keywords: A. baumannii, effectors, PAAR, T6SS

Procedia PDF Downloads 97
6198 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 190
6197 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field

Authors: Nastaran Moosavi, Mohammad Mokhtari

Abstract:

Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.

Keywords: density, p-impedance, s-impedance, post-stack seismic inversion, pre-stack seismic inversion

Procedia PDF Downloads 323
6196 Studies on Biojetfuel Obtained from Vegetable Oil: Process Characteristics, Engine Performance and Their Comparison with Mineral Jetfuel

Authors: F. Murilo T. Luna, Vanessa F. Oliveira, Alysson Rocha, Expedito J. S. Parente, Andre V. Bueno, Matheus C. M. Farias, Celio L. Cavalcante Jr.

Abstract:

Aviation jetfuel used in aircraft gas-turbine engines is customarily obtained from the kerosene distillation fraction of petroleum (150-275°C). Mineral jetfuel consists of a hydrocarbon mixture containing paraffins, naphthenes and aromatics, with low olefins content. In order to ensure their safety, several stringent requirements must be met by jetfuels, such as: high energy density, low risk of explosion, physicochemical stability and low pour point. In this context, aviation fuels eventually obtained from biofeedstocks (which have been coined as ‘biojetfuel’), must be used as ‘drop in’, since adaptations in aircraft engines are not desirable, to avoid problems with their operation reliability. Thus, potential aviation biofuels must present the same composition and physicochemical properties of conventional jetfuel. Among the potential feedtstocks for aviation biofuel, the babaçu oil, extracted from a palm tree extensively found in some regions of Brazil, contains expressive quantities of short chain saturated fatty acids and may be an interesting choice for biojetfuel production. In this study, biojetfuel was synthesized through homogeneous transesterification of babaçu oil using methanol and its properties were compared with petroleum-based jetfuel through measurements of oxidative stability, physicochemical properties and low temperature properties. The transesterification reactions were carried out using methanol and after decantation/wash procedures, the methyl esters were purified by molecular distillation under high vacuum at different temperatures. The results indicate significant improvement in oxidative stability and pour point of the products when compared to the fresh oil. After optimization of operational conditions, potential biojetfuel samples were obtained, consisting mainly of C8 esters, showing low pour point and high oxidative stability. Jet engine tests are being conducted in an automated test bed equipped with pollutant emissions analysers to study the operational performance of the biojetfuel that was obtained and compare with a mineral commercial jetfuel.

Keywords: biojetfuel, babaçu oil, oxidative stability, engine tests

Procedia PDF Downloads 259
6195 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics

Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty

Abstract:

Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.

Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC

Procedia PDF Downloads 222
6194 Computer Aided Screening of Secreted Frizzled-Related Protein 4 (SFRP4): A Potential Control for Diabetes Mellitus

Authors: Shazia Anwer Bukhari, Waseem Akhtar Shamshari, Mahmood-Ur-Rahman, Muhammad Zia-Ul-Haq, Hawa Z. E. Jaafar

Abstract:

Diabetes mellitus is a life threatening disease and scientists are doing their best to find a cost effective and permanent treatment of this malady. The recent trend is to control the disease by target base inhibiting of enzymes or proteins. Secreted frizzled-related protein 4 (SFRP4) is found to cause five times more risk of diabetes when expressed above average levels. This study was therefore designed to analyze the SFRP4 and to find its potential inhibitors. SFRP4 was analyzed by bio-informatics tools of sequence tool and structure tool. A total of three potential inhibitors of SFRP4 were found, namely cyclothiazide, clopamide and perindopril. These inhibitors showed significant interactions with SFRP4 as compared to other inhibitors as well as control (acetohexamide). The findings suggest the possible treatment of diabetes mellitus type 2 by inhibiting the SFRP4 using the inhibitors cyclothiazide, clopamide and perindopril.

Keywords: bioscreening, clopamide, cyclothiazide, diabetes mellitus, perindopril, SFRP4

Procedia PDF Downloads 448
6193 Analytical Solutions for Tunnel Collapse Mechanisms in Circular Cross-Section Tunnels under Seepage and Seismic Forces

Authors: Zhenyu Yang, Qiunan Chen, Xiaocheng Huang

Abstract:

Reliable prediction of tunnel collapse remains a prominent challenge in the field of civil engineering. In this study, leveraging the nonlinear Hoek-Brown failure criterion and the upper-bound theorem, an analytical solution for the collapse surface of shallowly buried circular tunnels was derived, taking into account the coupled effects of surface loads and pore water pressures. Initially, surface loads and pore water pressures were introduced as external force factors, equating the energy dissipation rate to the external force, yielding our objective function. Subsequently, the variational method was employed for optimization, and the outcomes were juxtaposed with previous research findings. Furthermore, we utilized the deduced equation set to systematically analyze the influence of various rock mass parameters on collapse shape and extent. To validate our analytical solutions, a comparison with prior studies was executed. The corroboration underscored the efficacy of our proposed methodology, offering invaluable insights for collapse risk assessment in practical engineering applications.

Keywords: tunnel roof stability, analytical solution, hoek–brown failure criterion, limit analysis

Procedia PDF Downloads 84