Search results for: pre-service training
2483 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 402482 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 2962481 MEAL Project–Modifying Eating Attitudes and Actions through Learning
Authors: E. Oliver, A. Cebolla, A. Dominguez, A. Gonzalez-Segura, E. de la Cruz, S. Albertini, L. Ferrini, K. Kronika, T. Nilsen, R. Baños
Abstract:
The main objective of MEAL is to develop a pedagogical tool aimed to help teachers and nutritionists (students and professionals) to acquire, train, promote and deliver to children basic nutritional education and healthy eating behaviours competencies. MEAL is focused on eating behaviours and not only in nutritional literacy, and will use new technologies like Information and Communication Technologies (ICTs) and serious games (SG) platforms to consolidate the nutritional competences and habits.Keywords: nutritional education, pedagogical ICT platform, serious games, training course
Procedia PDF Downloads 5262480 Improving Productivity in a Glass Production Line through Applying Principles of Total Productive Maintenance (TPM)
Authors: Omar Bataineh
Abstract:
Total productive maintenance (TPM) is a principle-based method that aims to get a high-level production with no breakdowns, no slow running and no defects. Key principles of TPM were applied in this work to improve the performance of the glass production line at United Beverage Company in Kuwait, which is producing bottles of soft drinks. Principles such as 5S as a foundation for TPM implementation, developing a program for equipment management, Cause and Effect Analysis (CEA), quality improvement, training and education of employees were employed. After the completion of TPM implementation, it was possible to increase the Overall Equipment Effectiveness (OEE) from 23% to 40%. Procedia PDF Downloads 3372479 From a Top Sport Event to a Sporting Activity
Authors: Helge Rupprich, Elke Knisel
Abstract:
In a time of mediazation and reduced physical movement, it is important to change passivity (akinesa) into physical activity to improve health. The approach is to encourage children, junior athletes, recreational athletes, and semi-professional athletes to do sports while attending a top sport event. The concept has the slogan: get out off your seat and move! A top sport event of a series of professional beach volleyball tournaments with 330.000 life viewers, 13,70 million cumulative reach viewers and 215,13 million advertising contacts is used as framework for different sports didactic approaches, social integrative approaches and migration valuations. An important aim is to use the big radiant power of the top sport event to extract active participants from the viewers of the top sport event. Even if it is the goal to improve physical activity, it is necessary to differentiate between the didactic approaches. The first approach contains psycho motoric exercises with children (N=158) between two and five years which was used in the project ‘largest sandbox of the city’. The second approach is social integration and promotion of activity of students (N=54) in the form of a student beach volleyball tournament. The third approach is activity in companies. It is based on the idea of health motivation of employees (N=62) in a big beach volleyball tournament. Fourth approach is to improve the sports leisure time activities of recreational athletes (N=292) in different beach volleyball tournaments. Fifthly approach is to build a foreign friendly measure which is implemented in junior athlete training with the French and German junior national team (N=16). Sixthly approach is to give semi professional athletes a tournament to develop their relation to active life. Seventh approach is social integration for disadvantaged people (N=123) in form of training with professional athletes. The top sport beach volleyball tournament had 80 athletes (N=80) and 34.000 viewers. In sum 785 athletes (N=785) did sports in 13 days. Over 34.000 viewers where counted in the first three days of top sport event. The project was evaluated positively by the City of Dresden, Politics of Saxony and the participants and will be continued in Dresden and expanded for the season 2015 in Jena.Keywords: beach volleyball, event, sports didactic, sports project
Procedia PDF Downloads 4952478 Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia
Authors: Theodrose Sisay, Kindie Tesfaye, Mengistu Ketema, Nigussie Dechassa, Mezegebu Getnet
Abstract:
Agriculture is a sector that is very vulnerable to the effects of climate change and contributes to anthropogenic greenhouse gas (GHG) emissions in the atmosphere. By lowering emissions and adjusting to the change, it can also help to reduce climate change. Utilizing Climate-Smart Agriculture (CSA) technology that can sustainably boost productivity, improve resilience, and lower GHG emissions is crucial. This study sought to identify the CSA technologies used by farmers and assess adoption levels and factors that influence them. In order to gather information from 384 smallholder farmers in the Great Rift Valley (GRV) of Ethiopia, a cross-sectional survey was carried out. Data were analysed using percentage, chi-square test, t-test, and multivariate probit model. Results showed that crop diversification, agroforestry, and integrated soil fertility management were the most widely practiced technologies. The results of the Chi-square and t-tests showed that there are differences and significant and positive connections between adopters and non-adopters based on various attributes. The chi-square and t-test results confirmed that households who were older had higher incomes, greater credit access, knowledge of the climate, better training, better education, larger farms, higher incomes, and more frequent interactions with extension specialists had a positive and significant association with CSA technology adopters. The model result showed that age, sex, and education of the head, farmland size, livestock ownership, income, access to credit, climate information, training, and extension contact influenced the selection of CSA technologies. Therefore, effective action must be taken to remove barriers to the adoption of CSA technologies, and taking these adoption factors into account in policy and practice is anticipated to support smallholder farmers in adapting to climate change while lowering emissions.Keywords: climate change, climate-smart agriculture, smallholder farmers, multivariate probit model
Procedia PDF Downloads 1272477 Wetland Community and Their Livelihood Opportunities in the Face of Changing Climatic Condition in Southwest Bangladesh
Authors: Mohsina Aktar, Bishawjit Mallick
Abstract:
Bangladesh faces the multidimensional manifestations of climate change e.g. flood, cyclone, sea level rise, drainage congestion, salinity, etc. This study aimed at to find out the community’s perception of the perceived impact of climate change on their wetland resource based livelihood, to analyze their present livelihood scenario and to find out required institutional setup to strengthen present livelihood scenario. Therefore, this study required both quantitative analysis like quantification of wetland resources, occupation, etc. and also exploratory information like policy and institutional reform. For quantitative information 200 questionnaire survey and in some cases observation survey and for socially shareable qualitative and quantitative issues case study and focus group discussion were conducted. In-Depth interview was conducted for socially non-shareable qualitative issues. The overall findings of this study have been presented maintaining a sequence- perception about climate change effect, livelihood scenario and required institutional support of the wetland community. Flood has been ranked where cyclone effect is comparatively less disastrous in this area. Heavy rainfall comes after the cyclone. Female members responded almost same about the ranking and effects of frequently occurred and devastating effects of climate change. People are much more aware of the impact of climate change. Training of Care in RVCC project helps to increase their knowledge level. If the level of education can be increased, people can fight against calamity and poverty with more confidence. People seem to overcome the problems of water logging and thus besides involving in Hydroponics (33.3%) as prime occupation in monsoon; they are also engaged in other business related activities. January to May is the low-income season for the farmers. But some people don’t want to change their traditional occupation and their age is above 45. The young earning member wants to utilize their lean income period by alternative occupation. People who do not have own land and performing water transportation or other types of occupation are now interested about Hydroponics. People who give their land on rent are now thinking about renting their land in monsoon as through that they can earn a sound amount rather than get nothing. What they require is just seed, training, and capital. Present marketing system faces the problem of communication. So this sector needed to be developed. Involvement of women in income earning activity is very low (5.1%), and 100% women are housewives. They became inferior due to their educational level and dominance of their husband. Only one NGO named BCAS (Bangladesh Center for Advanced Studies) has been found engage training facilities and advocacy for this purpose. Upazilla agricultural extension office like other GO remains inactive to give support the community for extension and improvement of Hydroponics agriculture. If the community gets proper support and inspiration, they can fight against crisis of low-income and climate change, with the Hydroponics cultivation system successfully.Keywords: wetland community, hydroponics, climate change adaptation, livelihood
Procedia PDF Downloads 2742476 Exploring a Cross-Sectional Analysis Defining Social Work Leadership Competencies in Social Work Education and Practice
Authors: Trevor Stephen, Joshua D. Aceves, David Guyer, Jona Jacobson
Abstract:
As a profession, social work has much to offer individuals, groups, and organizations. A multidisciplinary approach to understanding and solving complex challenges and a commitment to developing and training ethical practitioners outlines characteristics of a profession embedded with leadership skills. This presentation will take an overview of the historical context of social work leadership, examine social work as a unique leadership model composed of its qualities and theories that inform effective leadership capability as it relates to our code of ethics. Reflect critically on leadership theories and their foundational comparison. Finally, a look at recommendations and implementation to social work education and practice. Similar to defining leadership, there is no universally accepted definition of social work leadership. However, some distinct traits and characteristics are essential. Recent studies help set the stage for this research proposal because they measure views on effective social work leadership among social work and non-social leaders and followers. However, this research is interested in working backward from that approach and examining social workers' leadership preparedness perspectives based solely on social work training, competencies, values, and ethics. Social workers understand how to change complex structures and challenge resistance to change to improve the well-being of organizations and those they serve. Furthermore, previous studies align with the idea of practitioners assessing their skill and capacity to engage in leadership but not to lead. In addition, this research is significant because it explores aspiring social work leaders' competence to translate social work practice into direct leadership skills. The research question seeks to answer whether social work training and competencies are sufficient to determine whether social workers believe they possess the capacity and skill to engage in leadership practice. Aim 1: Assess whether social workers have the capacity and skills to assume leadership roles. Aim 2: Evaluate how the development of social workers is sufficient in defining leadership. This research intends to reframe the misconception that social workers do not possess the capacity and skills to be effective leaders. On the contrary, social work encompasses a framework dedicated to lifelong development and growth. Social workers must be skilled, competent, ethical, supportive, and empathic. These are all qualities and traits of effective leadership, whereas leaders are in relation with others and embody partnership and collaboration with followers and stakeholders. The proposed study is a cross-sectional quasi-experimental survey design that will include the distribution of a multi-level social work leadership model and assessment tool. The assessment tool aims to help define leadership in social work using a Likert scale model. A cross-sectional research design is appropriate for answering the research questions because the measurement survey will help gather data using a structured tool. Other than the proposed social work leadership measurement tool, there is no other mechanism based on social work theory and designed to measure the capacity and skill of social work leadership.Keywords: leadership competencies, leadership education, multi-level social work leadership model, social work core values, social work leadership, social work leadership education, social work leadership measurement tool
Procedia PDF Downloads 1722475 Effects of Safety Intervention Program towards Behaviors among Rubber Wood Processing Workers Using Theory of Planned Behavior
Authors: Junjira Mahaboon, Anongnard Boonpak, Nattakarn Worrasan, Busma Kama, Mujalin Saikliang, Siripor Dankachatarn
Abstract:
Rubber wood processing is one of the most important industries in southern Thailand. The process has several safety hazards for example unsafe wood cutting machine guarding, wood dust, noise, and heavy lifting. However, workers’ occupational health and safety measures to promote their behaviors are still limited. This quasi-experimental research was to determine factors affecting workers’ safety behaviors using theory of planned behavior after implementing job safety intervention program. The purposes were to (1) determine factors affecting workers’ behaviors and (2) to evaluate effectiveness of the intervention program. The sample of study was 66 workers from a rubber wood processing factory. Factors in the Theory of Planned Behavior model (TPB) were measured before and after the intervention. The factors of TPB included attitude towards behavior, subjective norm, perceived behavioral control, intention, and behavior. Firstly, Job Safety Analysis (JSA) was conducted and Safety Standard Operation Procedures (SSOP) were established. The questionnaire was also used to collect workers’ characteristics and TPB factors. Then, job safety intervention program to promote workers’ behavior according to SSOP were implemented for a four month period. The program included SSOP training, personal protective equipment use, and safety promotional campaign. After that, the TPB factors were again collected. Paired sample t-test and independent t-test were used to analyze the data. The result revealed that attitude towards behavior and intention increased significantly after the intervention at p<0.05. These factors also significantly determined the workers’ safety behavior according to SSOP at p<0.05. However, subjective norm, and perceived behavioral control were not significantly changed nor related to safety behaviors. In conclusion, attitude towards behavior and workers’ intention should be promoted to encourage workers’ safety behaviors. SSOP intervention program e.g. short meeting, safety training, and promotional campaign should be continuously implemented in a routine basis to improve workers’ behavior.Keywords: job safety analysis, rubber wood processing workers, safety standard operation procedure, theory of planned behavior
Procedia PDF Downloads 1932474 Identification of Candidate Congenital Heart Defects Biomarkers by Applying a Random Forest Approach on DNA Methylation Data
Authors: Kan Yu, Khui Hung Lee, Eben Afrifa-Yamoah, Jing Guo, Katrina Harrison, Jack Goldblatt, Nicholas Pachter, Jitian Xiao, Guicheng Brad Zhang
Abstract:
Background and Significance of the Study: Congenital Heart Defects (CHDs) are the most common malformation at birth and one of the leading causes of infant death. Although the exact etiology remains a significant challenge, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of congenital heart defects. At present, no existing DNA methylation biomarkers are used for early detection of CHDs. The existing CHD diagnostic techniques are time-consuming and costly and can only be used to diagnose CHDs after an infant was born. The present study employed a machine learning technique to analyse genome-wide methylation data in children with and without CHDs with the aim to find methylation biomarkers for CHDs. Methods: The Illumina Human Methylation EPIC BeadChip was used to screen the genome‐wide DNA methylation profiles of 24 infants diagnosed with congenital heart defects and 24 healthy infants without congenital heart defects. Primary pre-processing was conducted by using RnBeads and limma packages. The methylation levels of top 600 genes with the lowest p-value were selected and further investigated by using a random forest approach. ROC curves were used to analyse the sensitivity and specificity of each biomarker in both training and test sample sets. The functionalities of selected genes with high sensitivity and specificity were then assessed in molecular processes. Major Findings of the Study: Three genes (MIR663, FGF3, and FAM64A) were identified from both training and validating data by random forests with an average sensitivity and specificity of 85% and 95%. GO analyses for the top 600 genes showed that these putative differentially methylated genes were primarily associated with regulation of lipid metabolic process, protein-containing complex localization, and Notch signalling pathway. The present findings highlight that aberrant DNA methylation may play a significant role in the pathogenesis of congenital heart defects.Keywords: biomarker, congenital heart defects, DNA methylation, random forest
Procedia PDF Downloads 1582473 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 952472 Gender Justice and Empowerment: A Study of Chhara Bootlegger Women of Ahmedabad
Authors: Neeta Khurana, Ritu Sharma
Abstract:
This paper is an impact assessment study of the rehabilitation work done for Chhara women in the rural precincts of Ahmedabad. The Chharas constitute a denotified tribe and live in abject poverty. The women of this community are infamous absconders of law and active bootleggers of locally made liquor. As part of a psychological study with a local NGO, the authors headed a training program aimed at rehabilitating and providing these women alternate modes of employment, thereby driving them away from a life of crime. The paper centers on the idea of women entrepreneurship and women empowerment. It notes the importance of handholding in a conflict situation. Most of the research on Chharas is either focused on victimising them for state-sponsored violence or mostly makes a plea on reconditioning them in the mainstream. Going against this trend, this paper which documents the study argues that making these poor women self-dependent is a panacea for their sluggish development. The alienation caused due to the demonisation of the community has made them abandon traditional modes of employment. This has further led the community astray into making illegal country liquor causing further damage to their reputation. Women are at the centre of this vicious circle facing much repression and ostracisation. The study conducted by the PDPU team was an attempt to change this dogmatic alienation of these poor women. It was found that with consistent support and reformist approach towards law, it is possible to drive these women away from a life of penury repression and crime. The aforementioned study uses empirical tools to verify this claim. Placed at the confluence of the sociology of gender and psychology, this paper is a good way to argue that law enforcement cannot be effective without sensitisation to the ground realities of conflict. The study conducted from which the paper borrows was a scientific survey focused on markers of gender and caste realities of the Chharas. The paper mentions various dynamics involved in the training program that paved the way for the successful employment of the women. In an attempt to explain its uniqueness, the paper also has a section on comparing similar social experiments.Keywords: employment, gender, handholding, rehabilitation
Procedia PDF Downloads 1312471 Game “EZZRA” as an Innovative Solution
Authors: Mane Varosyan, Diana Tumanyan, Agnesa Martirosyan
Abstract:
There are many catastrophic events that end with dire consequences, and to avoid them, people should be well-armed with the necessary information about these situations. During the last years, Serious Games have increasingly gained popularity for training people for different types of emergencies. The major discussed problem is the usage of gamification in education. Moreover, it is mandatory to understand how and what kind of gamified e-learning modules promote engagement. As the theme is emergency, we also find out people’s behavior for creating the final approach. Our proposed solution is an educational video game, “EZZRA”.Keywords: gamification, education, emergency, serious games, game design, virtual reality, digitalisation
Procedia PDF Downloads 752470 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 1442469 Application of Groundwater Level Data Mining in Aquifer Identification
Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen
Abstract:
Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.Keywords: aquifer identification, decision tree, groundwater, Fourier transform
Procedia PDF Downloads 1572468 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study
Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin
Abstract:
Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.Keywords: activities of daily living, hand function, robotic rehabilitation, stroke
Procedia PDF Downloads 1182467 Groundwater Potential Delineation Using Geodetector Based Convolutional Neural Network in the Gunabay Watershed of Ethiopia
Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, Abunu Atlabachew Eshete
Abstract:
Groundwater potential delineation is essential for efficient water resource utilization and long-term development. The scarcity of potable and irrigation water has become a critical issue due to natural and anthropogenic activities in meeting the demands of human survival and productivity. With these constraints, groundwater resources are now being used extensively in Ethiopia. Therefore, an innovative convolutional neural network (CNN) is successfully applied in the Gunabay watershed to delineate groundwater potential based on the selected major influencing factors. Groundwater recharge, lithology, drainage density, lineament density, transmissivity, and geomorphology were selected as major influencing factors during the groundwater potential of the study area. For dataset training, 70% of samples were selected and 30% were used for serving out of the total 128 samples. The spatial distribution of groundwater potential has been classified into five groups: very low (10.72%), low (25.67%), moderate (31.62%), high (19.93%), and very high (12.06%). The area obtains high rainfall but has a very low amount of recharge due to a lack of proper soil and water conservation structures. The major outcome of the study showed that moderate and low potential is dominant. Geodetoctor results revealed that the magnitude influences on groundwater potential have been ranked as transmissivity (0.48), recharge (0.26), lineament density (0.26), lithology (0.13), drainage density (0.12), and geomorphology (0.06). The model results showed that using a convolutional neural network (CNN), groundwater potentiality can be delineated with higher predictive capability and accuracy. CNN-based AUC validation platform showed that 81.58% and 86.84% were accrued from the accuracy of training and testing values, respectively. Based on the findings, the local government can receive technical assistance for groundwater exploration and sustainable water resource development in the Gunabay watershed. Finally, the use of a detector-based deep learning algorithm can provide a new platform for industrial sectors, groundwater experts, scholars, and decision-makers.Keywords: CNN, geodetector, groundwater influencing factors, Groundwater potential, Gunabay watershed
Procedia PDF Downloads 212466 Influence of Spelling Errors on English Language Performance among Learners with Dysgraphia in Public Primary Schools in Embu County, Kenya
Authors: Madrine King'endo
Abstract:
This study dealt with the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools in West Embu, Embu County, Kenya. The study purposed to investigate the influence of spelling errors on the English language performance among the class three pupils with dysgraphia in public primary schools. The objectives of the study were to identify the spelling errors that learners with dysgraphia make when writing English words and classify the spelling errors they make. Further, the study will establish how the spelling errors affect the performance of the language among the study participants, and suggest the remediation strategies that teachers could use to address the errors. The study could provide the stakeholders with relevant information in writing skills that could help in developing a responsive curriculum to accommodate the teaching and learning needs of learners with dysgraphia, and probably ensure training of teachers in teacher training colleges is tailored within the writing needs of the pupils with dysgraphia. The study was carried out in Embu county because the researcher did not find any study in related literature review concerning the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools done in the area. Moreover, besides being relatively populated enough for a sample population of the study, the area was fairly cosmopolitan to allow a generalization of the study findings. The study assumed the sampled schools will had class three pupils with dysgraphia who exhibited written spelling errors. The study was guided by two spelling approaches: the connectionist stimulation of spelling process and orthographic autonomy hypothesis with a view to explain how participants with learning disabilities spell written words. Data were collected through interviews, pupils’ exercise books, and progress records, and a spelling test made by the researcher based on the spelling scope set for class three pupils by the ministry of education in the primary education syllabus. The study relied on random sampling techniques in identifying general and specific participants. Since the study used children in schools as participants, voluntary consent was sought from themselves, their teachers and the school head teachers who were their caretakers in a school setting.Keywords: dysgraphia, writing, language, performance
Procedia PDF Downloads 1542465 Acquisition and Preservation of Traditional Medicinal Knowledge in Rural Areas of KwaZulu Natal, South Africa
Authors: N. Khanyile, P. Dlamini, M. Masenya
Abstract:
Background: Most of the population in Africa is still dependent on indigenous medicinal knowledge for treating and managing ailments. Indigenous traditional knowledge owners/practitioners who own this knowledge are consulted by communities, but their knowledge is not known how they get it. The question of how knowledge is acquired and preserved remains one of the biggest challenges in traditional healing and treatment with herbal medicines. It is regrettable that despite the importance and recognition of indigenous medicinal knowledge globally, the details of acquirement, storing and transmission, and preservation techniques are not known. Hence this study intends to unveil the process of acquirement and transmission, and preservation techniques of indigenous medical knowledge by its owners. Objectives: This study aims to assess the process of acquiring and preservation of traditional medicinal knowledge by traditional medicinal knowledge owners/practitioners in uMhlathuze Municipality, in the province of KwaZulu-Natal, South Africa. The study was guided by four research objectives which were to: identify the types of traditional medicinal knowledge owners who possess this knowledge, establish the approach used by indigenous medicinal knowledge owners/healers for acquiring medicinal knowledge, identify the process of preservation of medicinal knowledge by indigenous medicinal knowledge owners/healers, and determine the challenges encountered in transferring the knowledge. Method: The study adopted a qualitative research approach, and a snowball sampling technique was used to identify the study population. Data was collected through semi-structured interviews with indigenous medicinal knowledge owners. Results: The findings suggested that uMhlathuze municipality had different types of indigenous medicinal knowledge owners who possess valuable knowledge. These are diviners (Izangoma), faith healers (Abathandazi), and herbalists (Izinyanga). The study demonstrated that indigenous medicinal knowledge is acquired in many different ways, including visions, dreams, and vigorous training. The study also revealed the acquired knowledge is preserved or shared with specially chosen children and trainees. Conclusion: The study concluded that this knowledge is gotten through vigorous training, which requires the learner to be attentive and eager to learn. It was recommended that a study of this nature be conducted but at a broader level to enhance an informed conclusion and recommendations.Keywords: preserving, indigenous medicinal knowledge, indigenous knowledge, indigenous medicinal knowledge owners/practitioners, acquiring
Procedia PDF Downloads 872464 Preferred Leadership Behaviour of Coaches by Athletes in Individual and Team Sports in Nigeria
Authors: Ali Isa Danlami
Abstract:
This study examined the coaching leadership behaviours preferred by athletes in individual and team sports in Nigeria that may lead to increased satisfaction and performance. Six leadership behaviours were identified; these are democratic, training and instruction, situational consideration, autocratic, social support and positive feedback. The six leadership behaviours relate to the preference of coaches by athletes that leads to increased performance were the focus of this study. The population of this study is comprised of male and female athletes of states sports councils in Nigeria. An ex-post facto research design was employed for this study. Stratified and purposive sampling techniques were used to select the sampled states according to the six geo-political zones of the country. Two states (North Central (FCT, Nasarawa), North East (Bauchi, Gombe), North West (Kaduna, Sokoto), South East (Anambra, Imo), South west (Ogun, Ondo), South South (Delta, and Rivers) were selected from each stratum. A modified questionnaire was used to collect data for this study, and the data collected were subjected to a reliability test using the Statistical Package for Social Science (SPSS) to analyse the data. A two sample Z-test procedure was used to test the significant differences because of the large number of subjects involved in the different groups. All hypotheses were tested at 0.05 alpha value. The findings of the study concluded that: Athletes in team and individual sports generally preferred coaches who were more disposed towards training and instructions, social support, positive feedback, situational consideration and democratic behaviours. It was also found that athletes in team sports have higher preference for coaches with democratic behaviour. The result revealed that athletes in team and individual sports did not have a preference for coaches disposed towards autocratic behaviour. Based on this, the following recommendations were made: Democratic behaviour by coaches should be encouraged in team and individual sports. Coaches should not be engaged in autocratic behaviours when coaching. These behaviours should be adopted by coaches to increase athletes’ satisfaction and enhancement in performance.Keywords: leadership behaviour, preference, athletes, individual, team, coaches’
Procedia PDF Downloads 1312463 Sexual Health Experiences of Older Men: Health Care Professionals' Perspectives
Authors: Andriana E. Tran, Anna Chur-Hansen
Abstract:
Sexual health is an important aspect of overall wellbeing. This study aimed to explore the sexual health experiences of men aged 50 years and over from the perspective of health care professional participants who were specializing in sexual health care and who consulted with older men. A total of ten interviews were conducted. Eleven themes were identified regarding men’s experiences with sexual health care as reported by participants. 1) Biologically focused: older male clients focus largely on the biological aspect of their sexual health without consideration of other factors which might affect their functioning. 2) Psychological concerns: there is an interaction between mental and sexual health but older male clients do not necessarily see this. 3) Medicalization of sexual functioning: advances in medicine that aid with erectile difficulties which consequently mean that older men tend to favor a medical solution to their sexual concerns. 4) Masculine identity: sexual health concerns are linked to older male clients’ sense of masculinity. 5) Penile functionality: most concerns that older male clients have center on their penile functionality. 6) Relationships: many male clients seek sexual help as they believe it improves relationships. Conversely, having supportive partners may mean older male clients focus less on the physicality of sex. 7) Grief and loss: men experience grief and loss – the loss of their sexual functioning, grief from loss of a long-term partner, and loss of intimacy and privacy when moving from independent living to residential care. 8) Social stigma: older male clients experience stigma around aging sexuality and sex in general. 9) Help-seeking behavior: older male clients will usually seek mechanistic solution for biological sexual concerns, such as medication used for penile dysfunction. 10) Dismissed by health care professionals: many older male clients seek specialist sexual health care without the knowledge of their doctors as they feel dismissed due to lack of expertise, lack of time, and the doctor’s personal attitudes and characteristics. Finally, 11) Lack of resources: there is a distinct lack of resources and training to understand sexuality for healthy older men. These findings may inform future research, professional training, public health campaigns and policies for sexual health in older men.Keywords: ageing, biopsychosocial model, men's health, sexual health
Procedia PDF Downloads 1722462 Cuban's Supply Chains Development Model: Qualitative and Quantitative Impact on Final Consumers
Authors: Teresita Lopez Joy, Jose A. Acevedo Suarez, Martha I. Gomez Acosta, Ana Julia Acevedo Urquiaga
Abstract:
Current trends in business competitiveness indicate the need to manage businesses as supply chains and not in isolation. The use of strategies aimed at maximum satisfaction of customers in a network and based on inter-company cooperation; contribute to obtaining successful joint results. In the Cuban economic context, the development of productive linkages to achieve integrated management of supply chains is considering a key aspect. In order to achieve this jump, it is necessary to develop acting capabilities in the entities that make up the chains through a systematic procedure that allows arriving at a management model in consonance with the environment. The objective of the research focuses on: designing a model and procedure for the development of integrated management of supply chains in economic entities. The results obtained are: the Model and the Procedure for the Development of the Supply Chains Integrated Management (MP-SCIM). The Model is based on the development of logistics in the network actors, the joint work between companies, collaborative planning and the monitoring of a main indicator according to the end customers. The application Procedure starts from the well-founded need for development in a supply chain and focuses on training entrepreneurs as doers. The characterization and diagnosis is done to later define the design of the network and the relationships between the companies. It takes into account the feedback as a method of updating the conditions and way to focus the objectives according to the final customers. The MP-SCIM is the result of systematic work with a supply chain approach in companies that have consolidated as coordinators of their network. The cases of the edible oil chain and explosives for construction sector reflect results of more remarkable advances since they have applied this approach for more than 5 years and maintain it as a general strategy of successful development. The edible oil trading company experienced a jump in sales. In 2006, the company started the analysis in order to define the supply chain, apply diagnosis techniques, define problems and implement solutions. The involvement of the management and the progressive formation of performance capacities in the personnel allowed the application of tools according to the context. The company that coordinates the explosives chain for construction sector shows adequate training with independence and opportunity in the face of different situations and variations of their business environment. The appropriation of tools and techniques for the analysis and implementation of proposals is a characteristic feature of this case. The coordinating entity applies integrated supply chain management to its decisions based on the timely training of the necessary action capabilities for each situation. Other cases of study and application that validate these tools are also detailed in this paper, and they highlight the results of generalization in the quantitative and qualitative improvement according to the final clients. These cases are: teaching literature in universities, agricultural products of local scope and medicine supply chains.Keywords: integrated management, logistic system, supply chain management, tactical-operative planning
Procedia PDF Downloads 1532461 The Effects of the GAA15 (Gaelic Athletic Association 15) on Lower Extremity Injury Incidence and Neuromuscular Functional Outcomes in Collegiate Gaelic Games: A 2 Year Prospective Study
Authors: Brenagh E. Schlingermann, Clare Lodge, Paula Rankin
Abstract:
Background: Gaelic football, hurling and camogie are highly popular field games in Ireland. Research into the epidemiology of injury in Gaelic games revealed that approximately three quarters of the injuries in the games occur in the lower extremity. These injuries can have player, team and institutional impacts due to multiple factors including financial burden and time loss from competition. Research has shown it is possible to record injury data consistently with the GAA through a closed online recording system known as the GAA injury surveillance database. It has been established that determining the incidence of injury is the first step of injury prevention. The goals of this study were to create a dynamic GAA15 injury prevention programme which addressed five key components/goals; avoid positions associated with a high risk of injury, enhance flexibility, enhance strength, optimize plyometrics and address sports specific agilities. These key components are internationally recognized through the Prevent Injury, Enhance performance (PEP) programme which has proven reductions in ACL injuries by 74%. In national Gaelic games the programme is known as the GAA15 which has been devised from the principles of the PEP. No such injury prevention strategies have been published on this cohort in Gaelic games to date. This study will investigate the effects of the GAA15 on injury incidence and neuromuscular function in Gaelic games. Methods: A total of 154 players (mean age 20.32 ± 2.84) were recruited from the GAA teams within the Institute of Technology Carlow (ITC). Preseason and post season testing involved two objective screening tests; Y balance test and Three Hop Test. Practical workshops, with ongoing liaison, were provided to the coaches on the implementation of the GAA15. The programme was performed before every training session and game and the existing GAA injury surveillance database was accessed to monitor player’s injuries by the college sports rehabilitation athletic therapist. Retrospective analysis of the ITC clinic records were performed in conjunction with the database analysis as a means of tracking injuries that may have been missed. The effects of the programme were analysed by comparing the intervention groups Y balance and three hop test scores to an age/gender matched control group. Results: Year 1 results revealed significant increases in neuromuscular function as a result of the GAA15. Y Balance test scores for the intervention group increased in both the posterolateral (p=.005 and p=.001) and posteromedial reach directions (p= .001 and p=.001). A decrease in performance was determined for the three hop test (p=.039). Overall twenty-five injuries were reported during the season resulting in an injury rate of 3.00 injuries/1000hrs of participation; 1.25 injuries/1000hrs training and 4.25 injuries/1000hrs match play. Non-contact injuries accounted for 40% of the injuries sustained. Year 2 results are pending and expected April 2016. Conclusion: It is envisaged that implementation of the GAA15 will continue to reduce the risk of injury and improve neuromuscular function in collegiate Gaelic games athletes.Keywords: GAA15, Gaelic games, injury prevention, neuromuscular training
Procedia PDF Downloads 3392460 Organic Paddy Production as a Coping Strategy to the Adverse Impact of Climate Change
Authors: Thapa M., J.P. Dutta, K.R. Pandey, R.R. Kattel
Abstract:
Nepal is extremely vulnerable to the impact of climate change. To mitigate the climate change effects on agricultural production and productivity a range of adaptive strategies needs to be considered. The study was conducted to assess organic paddy production as a coping strategy to the adverse impact of climate change in Phulbari, VDC of Chitwan district. Altogether, 120 respondents (60 adopters of organic farming and 60 from non adopter) were selected using snowball technique of sampling. Pre- tested interview schedule, direct observation, focus group discussion, key informant interview as well as secondary data were used to collect the required information. Factors determining the adoption of organic farming were found to be age, year of schooling, training, frequency of extension contact, perception about climate change, economically active members and poor. A unit increase in these factors except poor would increase the probability of adoption by 4.1%, 7.5%, 7.8%, 43.1%, 41.8% and 7% respectively. However, for poor, it would decrease the probability of adoption of organic farming by 5.1%. Average organic matter content in the adopters' field was higher (2.7%) than the non-adopters' field (2.5%). The regression result showed that type of farmer, price and area under rice cultivation had positive and significant relationship with income; however dependency ratio had negative relationship. As the year of adoption of organic farming increases, the production of rice decline in the first two years then after goes on increasing but the cost of production goes on decreasing with the year of adoption. The respondents adapted to the changing climate through diversification of crops, use of resistance varieties and following good cropping pattern. Gradually growing consumers' awareness about health, preference towards quality food products are the strong points behind organic farming, whereas lacks of bio-fertilizers, lack of effective extension services, no price differentiation between organic and inorganic products were the weak points. There is need for more training and education to change the attitude of farmers and enhance their confidence about the role of organic farming to cope with climate change impact.Keywords: Organic farming, climate change, sustainable development
Procedia PDF Downloads 4542459 Bring Your Own Devices (BOYD): Risks and Mitigation Strategies
Authors: Mohammed Ketel
Abstract:
This paper discusses the security issues related to Bring Your Own Devices (BYOD) programs, an increasingly popular choice for small and big businesses alike, and explores the benefits, risks, the available controls and solutions to mitigate the inherent security concerns with mobile devices, in general, and BYOD programs specifically. The paper also discusses the approaches that organizations can apply to mitigate the risks, which may include policies, diverse technologies, education, and training.Keywords: BYOD, security, policies, standards, controls, education
Procedia PDF Downloads 2882458 Revolutionizing Legal Drafting: Leveraging Artificial Intelligence for Efficient Legal Work
Authors: Shreya Poddar
Abstract:
Legal drafting and revising are recognized as highly demanding tasks for legal professionals. This paper introduces an approach to automate and refine these processes through the use of advanced Artificial Intelligence (AI). The method employs Large Language Models (LLMs), with a specific focus on 'Chain of Thoughts' (CoT) and knowledge injection via prompt engineering. This approach differs from conventional methods that depend on comprehensive training or fine-tuning of models with extensive legal knowledge bases, which are often expensive and time-consuming. The proposed method incorporates knowledge injection directly into prompts, thereby enabling the AI to generate more accurate and contextually appropriate legal texts. This approach substantially decreases the necessity for thorough model training while preserving high accuracy and relevance in drafting. Additionally, the concept of guardrails is introduced. These are predefined parameters or rules established within the AI system to ensure that the generated content adheres to legal standards and ethical guidelines. The practical implications of this method for legal work are considerable. It has the potential to markedly lessen the time lawyers allocate to document drafting and revision, freeing them to concentrate on more intricate and strategic facets of legal work. Furthermore, this method makes high-quality legal drafting more accessible, possibly reducing costs and expanding the availability of legal services. This paper will elucidate the methodology, providing specific examples and case studies to demonstrate the effectiveness of 'Chain of Thoughts' and knowledge injection in legal drafting. The potential challenges and limitations of this approach will also be discussed, along with future prospects and enhancements that could further advance legal work. The impact of this research on the legal industry is substantial. The adoption of AI-driven methods by legal professionals can lead to enhanced efficiency, precision, and consistency in legal drafting, thereby altering the landscape of legal work. This research adds to the expanding field of AI in law, introducing a method that could significantly alter the nature of legal drafting and practice.Keywords: AI-driven legal drafting, legal automation, futureoflegalwork, largelanguagemodels
Procedia PDF Downloads 642457 Accuracy Analysis of the American Society of Anesthesiologists Classification Using ChatGPT
Authors: Jae Ni Jang, Young Uk Kim
Abstract:
Background: Chat Generative Pre-training Transformer-3 (ChatGPT; San Francisco, California, Open Artificial Intelligence) is an artificial intelligence chatbot based on a large language model designed to generate human-like text. As the usage of ChatGPT is increasing among less knowledgeable patients, medical students, and anesthesia and pain medicine residents or trainees, we aimed to evaluate the accuracy of ChatGPT-3 responses to questions about the American Society of Anesthesiologists (ASA) classification based on patients’ underlying diseases and assess the quality of the generated responses. Methods: A total of 47 questions were submitted to ChatGPT using textual prompts. The questions were designed for ChatGPT-3 to provide answers regarding ASA classification in response to common underlying diseases frequently observed in adult patients. In addition, we created 18 questions regarding the ASA classification for pediatric patients and pregnant women. The accuracy of ChatGPT’s responses was evaluated by cross-referencing with Miller’s Anesthesia, Morgan & Mikhail’s Clinical Anesthesiology, and the American Society of Anesthesiologists’ ASA Physical Status Classification System (2020). Results: Out of the 47 questions pertaining to adults, ChatGPT -3 provided correct answers for only 23, resulting in an accuracy rate of 48.9%. Furthermore, the responses provided by ChatGPT-3 regarding children and pregnant women were mostly inaccurate, as indicated by a 28% accuracy rate (5 out of 18). Conclusions: ChatGPT provided correct responses to questions relevant to the daily clinical routine of anesthesiologists in approximately half of the cases, while the remaining responses contained errors. Therefore, caution is advised when using ChatGPT to retrieve anesthesia-related information. Although ChatGPT may not yet be suitable for clinical settings, we anticipate significant improvements in ChatGPT and other large language models in the near future. Regular assessments of ChatGPT's ASA classification accuracy are essential due to the evolving nature of ChatGPT as an artificial intelligence entity. This is especially important because ChatGPT has a clinically unacceptable rate of error and hallucination, particularly in pediatric patients and pregnant women. The methodology established in this study may be used to continue evaluating ChatGPT.Keywords: American Society of Anesthesiologists, artificial intelligence, Chat Generative Pre-training Transformer-3, ChatGPT
Procedia PDF Downloads 472456 Effectiveness of Research Promotion Organizations in Higher Education and Research (ESR)
Authors: Jonas Sanon
Abstract:
The valorization of research is becoming a transversal instrument linking different sectors (academic, public and industrial). The practice of valorization seems to impact innovation techniques within companies where, there is often the implementation of industrial conventions of training through research (CIFRE), continuous training programs for employees, collaborations and partnerships around joint research and R&D laboratories focused on the needs of companies to improve or develop more efficient innovations. Furthermore, many public initiatives to support innovation and technology transfer have been developed at the international, European and national levels, with significant budget allocations. Thus, in the context of this work, we tried to analyze the way in which research transfer structures are evaluated within the Saclay ecosystem. In fact, the University-Paris-Saclay is one of the best French universities; it is made up of 10 university components, more than 275 laboratories and is in partnership with the largest French research centers This work mainly focused on how evaluations affected research transfer structures, how evaluations were conducted, and what the managers of research transfer structures thought about assessments. Thus, with the aid of the conducted interviews, it appears that the evaluations do not have a significant impact on the qualitative aspect of research and innovation, but is rather present a directive aspect to allow the structures to benefit or not from the financial resources to develop certain research work, sometimes directed and influenced by the market, some researchers might try to accentuate their research and experimentation work on themes that are not necessarily their areas of interest, but just to comply with the calls for proposed thematic projects. The field studies also outline the primary indicators used to assess the effectiveness of valorization structures as "the number of start-ups generated, the license agreements signed, the structure's patent portfolio, and the innovations of items developed from public research.". Finally, after mapping the actors, it became clear that the ecosystem of the University of Paris-Saclay benefits from a richness allowing it to better value its research in relation to the three categories of actors it has (internal, external and transversal), united and linked by a relationship of proximity of sharing and endowed with a real opportunity to innovate openly.Keywords: research valorization, technology transfer, innovation, evaluation, impacts and performances, innovation policy
Procedia PDF Downloads 732455 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest
Procedia PDF Downloads 1212454 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 89