Search results for: power plant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9104

Search results for: power plant

7634 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).

Keywords: multiple energy storage system (MESS), energy allocation method, SOC schedule, reliability constraints

Procedia PDF Downloads 353
7633 Peat Resources, Paleo-Environmental Interpretation as well as Their Utilization, Hakaluki Haor, Moulvibazar and Sylhet District, Bangladesh

Authors: Mohammed Masum, Mohammad Omer Faruk Khan, Md. Nazwanul Haque, Anwar Sadat Md. Sayem, Md. Azhar Hossain

Abstract:

The study area is the Hakaluki Haor which is the second largest wet land of Bangladesh. It spans over the districts of Moulvibazar and Sylhet in southeast Bangladesh. The study was focused in the exploration of peat reserve, reconstruction of the paleo-environment as well as the utilization of the peat resources. Peat is found randomly from 0.5 m to 7 m below the surface and 1 m to 11 m thickness at over 40 beels as well as small plain lands of 90 km2 area of Hakaluki Haor. The total reserve of peat is 282 million ton in wet condition and 112 million ton in dry condition. The peat deposits of Hakaluki Haor area is the largest peat reserves of the Bangladesh. Peat bearing Hakaluki Haor is a low-lying wet land which geological term is synclinal depression. It may be a syncline between two anticlines which was filled with sediments as well as various plant materials derived from the hilly region (anticline) on both sides (west and east) of the Haor. The transportation may be triggered by large natural disasters or any tectonic reason. On the other hand vegetation occurred in this depression as aquatic plants which might have been destroyed by large natural disasters or any tectonic reason. As environment dictates the characteristics and the source of sediments, various aspects of the sediment are indicators of the environment. Peat has mainly industrial importance as a fuel for power production, traditionally used for cooking, domestic heating and in brick fields, also used as insulator in many industries, agricultural purposes, retaining moisture in soil, raw material in horticulture and colour industries etc. Power plants of about 100 MW capacities may be established in this region based on peat of Hakaluki Haor which may be continued more than one hundred years.

Keywords: peat, pale environment, Hakaluki Haor, beel, syncline, anticline

Procedia PDF Downloads 406
7632 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion

Authors: J. H. Park, R. H. Hwang, K. B. Yi

Abstract:

Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.

Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method

Procedia PDF Downloads 196
7631 Power Angle Control Strategy of Virtual Synchronous Machine: A Novel Approach to Control Virtual Synchronous Machine

Authors: Shishir Lamichhane, Saurav Dulal, Bibek Gautam, Madan Thapa Magar, Indraman Tamrakar

Abstract:

Renewable energies such as wind turbines and solar photovoltaic have gained significance as a result of global environmental pollution and energy crises. These sources of energy are converted into electrical energy and delivered to end-users through the utility system. As a result of the widespread use of power electronics-based grid-interfacing technologies to accommodate renewable sources of energy, the prevalence of converters has expanded as well. As a result, the power system's rotating inertia is decreasing, endangering the utility grid's stability. The use of Virtual Synchronous Machine (VSM) technology has been proposed to overcome the grid stability problem due to low rotating inertia. The grid-connected inverter used in VSM can be controlled to emulate inertia, which replicates the external features of a synchronous generator. As a result, the rotating inertia is increased to support the power system's stability. A power angle control strategy is proposed in this paper and its model is simulated in MATLAB/Simulink to study the effects of parameter disturbances on the active power and frequency for a VSM. The system consists of a synchronous generator, which is modeled in such a way that the frequency drops to an unacceptable region during transient conditions due to a lack of inertia when VSM is not used. Then, the suggested model incorporating VSM emulates rotating inertia, injecting a controllable amount of energy into the grid during frequency transients to enhance transient stability.

Keywords: damping constant, inertia–constant, ROCOF, transient stability, distributed sources

Procedia PDF Downloads 198
7630 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.

Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint

Procedia PDF Downloads 589
7629 Lesson Learnt from Solar Photovoltaic Power Generation in Thailand with Global Self-Consumption Experience

Authors: Tongpong Sriboon, Prapita Thanarak, Chaitawatch Khunrangabsang

Abstract:

Nowadays, the usage of power generated from photovoltaic system has been promoted significantly in Thailand. The targeted result which is to increase the Solar Power Generation in 2036 to 6000 megawatts (MW) was planned by Alternative Energy Development Plan (AEDP 2015) and Power Development Plan (PDP 2015). The solar rooftop 200 MW was promoted and supported under the Feed-in Tariff scheme (FiT) in two phases; phase I in 2012 and phase II in 2015. However, the number of people interested in supporting the projects reduced due to many reasons which range from the first process to the last that is to sell electricity back to Electricity Authority. This paper will review this situation especially in total electricity generated from solar rooftop system during the day that has been sold back to the grid utility in different capacity FiT rates. With many stakeholders involved, the regulations and criteria were established to maintain the standard of the system. Besides, lots of problems have occurred during the processes including reliability and quality. These problems were shortly followed by other irrevocably issues concerning politics, social, economic etc. In order to effectively develop solar PV power system in Thailand, the problems and solutions were compared to those from six countries including Japan, Australia. America, China, German and Malaysia. This paper particularly focuses on policies and measurement implemented to encourage the rising in solar PV system interest. This review enables one to gain insight into the nature of the changes that have taken place in each and every country mentioned above as well as the underlying reasons behind them. Brief analysis is carried out on identify key challenges and opportunities for solar PV application. This could help create a development path that is suitable with situations to enhance the overall performance of solar PV power generating system in Thailand.

Keywords: solar PV rooftop, PV policy, self-consumption, solar PV power generation

Procedia PDF Downloads 301
7628 Numerical Simulation of the Air Pollutants Dispersion Emitted by CPH Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation of the pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion used by electric thermal power plant using the software ANSYS CFX-CFD. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. We considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations we have measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that we calculated the average concentration, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: air pollutants, computational fluid dynamics, dispersion, simulation

Procedia PDF Downloads 440
7627 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation

Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar

Abstract:

Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.

Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source

Procedia PDF Downloads 116
7626 Bio–efficacy of Selected Plant extracts and Cypermethrin on Growth and Yield of Cowpea (Vigna unguiculata L.).

Authors: Akanji Kayode Ayanwusi., Akanji Elizabeth Nike, Bidmos Fuad Adetunji, Oladapo Olufemi Stephen

Abstract:

This experiment was conducted in Igboora, southwest Nigeria during the year 2022 planting season to determine the bio-efficacy of plant extracts (Jatropha curcas and Petiveria alliacea) and synthetic (Cypermethrin) insecticides against the insect pest of cowpea (Vigna unguiculata L.) and to determine its effect on the growth and yield of cowpea in the study area. Cowpea is one of the most important food and forage legumes in the semi-arid tropics. It is grown in 45 countries worldwide, including parts of Africa, Asia, Southern Europe, the Southern United States, and Central and South America. Cowpea production is considered too risky an enterprise by many growers because of its numerous pest problems. The treatments for the experiment consisted of two aqueous plant extracts (J.curcas and P. alliacea) at 50 /0 w/v and Cypermethrin 400 EC replicated three times including control in a randomized complete block design. Each plot measured 2.0 m by 2.0 m with 1.0 m inter-spaced per adjacent plot. The results from the study showed that different insect pests attack cowpea at different stages of growth. The insects observed were Bemisa tabaci, Callosobruchus maculatus, Megalurothrips sjostedti, and Maruca vitrata. High yields were obtained from plots treated with P. alliacea and synthetic insecticide (cypermethrin). J. curcas also produced optimum yield but lower than P. alliacea also P. alliacea treated plots had the least damaged pods while the untreated plots had the highest damaged pods, the plants extracts exhibited high insecticidal activities in this study, therefore P. alliacea leaves formulated as an insecticide is recommended for the control of insect pests of cowpea in the study area.

Keywords: plant extracts, yield, cypermethrin., cowpea

Procedia PDF Downloads 70
7625 Cutting Propagation Studies in Pennisetum divisum and Tamarix aucheriana as Native Plant Species of Kuwait

Authors: L. Almulla

Abstract:

Native plants are better adapted to the local environment providing a more natural effect on landscape projects; their use will both conserve natural resources and produce sustainable greenery. Continuation of evaluation of additional native plants is essential to increase diversity of plant resources for greenery projects. Therefore, in this project an effort was made to study the mass multiplication of further native plants for greenery applications. Standardization of vegetative propagation methods is essential for conservation and sustainable utilization of native plants in restoration projects. Moreover, these simple propagation methods can be readily adapted by the local nursery sector in Kuwait. In the present study, various treatments were used to mass multiply selected plants using vegetative parts to secure maximum rooting and initial growth. Soft or semi-hardwood cuttings of selected native plants were collected from mother plants and subjected to different treatments. Pennisetum divisum can be vegetatively propagated by cuttings/off-shoots. However, Tamarix aucheriana showed maximum number of rooted cuttings and stronger vigor seedlings with the lowest growth hormone concentration. Standardizing the propagation techniques for the native plant species will add to the rehabilitation and landscape revegetation projects in Kuwait.

Keywords: Kuwait desert, landscape, rooting percentage, vegetative propagation

Procedia PDF Downloads 106
7624 An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency

Authors: Shao-Ku Kao

Abstract:

This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 Ω ~ 1500 Ω for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage.

Keywords: wireless power transfer, active diode, delay compensation, time to voltage converter, PCE

Procedia PDF Downloads 265
7623 Examining the Change of Power Transmission Line in Urban Regeneration with Geographical Information System

Authors: C. Yagci, F. Iscan

Abstract:

In this study, spatial differences of Power Transmission Line (PTL) and effects of the situation before and after the urban regeneration are studied by using Geographical Information System (GIS). In addition, a questionable and analyzable structure is acquired by developed system. In the study area many parcels on the PTL were analyzed. The amount of the parcels, which are affected by the negativity of PTL is clearly seen with the aid of generated maps. Some kind of changes are exhibited in the system, which are created by GIS, for instance before urban regeneration PTL was very close to people’s private properties and huge parts of PTL were among the buildings, however; after urban regeneration electricity lines were changed their locations to the underground. According to the results, GIS can be used as a device in planning and managing of PTL in urban regeneration projects and can be used for analyses. By the help of GIS technology, necessary investigations should be carried out in urban regeneration applications for creating sustainable cities.

Keywords: GIS, power transmission line, technology, urban regeneration

Procedia PDF Downloads 754
7622 The Influence of Environment Characteristics in the Distribution of Vegetation Communities in Rawdhat Salasil, Saudi Arabia

Authors: Suliman Mohammed Alghanem

Abstract:

Ecological and botanical surveys were conducted on Rawdhat Salasil, Al-Qassim region, Saudi Arabia. The survey also includes the study of the plant communities in the study area by sampling the associated species in each community using the List Count Quadrant method to study the density, frequency, and plant cover. The present study has shown an account of the under-mentioned five different communities: Haloxylonpersicum community is a dominant perennial shrub with an important value of 47.88%. This community is represented by 20 associated species. The chemical analysis of the soil of this habitat exhibits more alkalinity with low salinity. Tamarixnilotica communityis a perennial shrub with an important value of 60.48%. This community is represented by 14 associated species. The chemical analysis of the soil of this habitat demonstrates richness in alkalis with high salinity.Salsolaimbricata communityis a perennial herb with an important value of 60.18%. This community is represented by 17 associated species. The chemical analysis of the soil of this habitat exhibits richness in alkalis with low salinity.Panicumturgidum is a perennial herb with an important value of 65.1%. This community is represented by 11 associated species. The chemical analysis of the soil of this habitat exhibits richness in alkalis and the absence of salinity. Pulicariaundulata community is predominantly an annual shrub with an important value of 91.79%. This community is represented by 16 species. The chemical analysis of the soil of this habitat exhibits richness in alkalis, and the absence of salinity.

Keywords: rangelands, plant communities, Rawdhat Salasil, edaphic factors

Procedia PDF Downloads 279
7621 Dielectric Properties of Mineral Oil Blended with Soyabean Oil for Power Transformers: A Laboratory Investigation

Authors: Deepa S N, Srinivasan a D, Veeramanju K T

Abstract:

The power transformer is a critical equipment in the transmission and distribution network that must be managed to ensure uninterrupted power service. The liquid insulation is essential for the proper functioning of the transformer, as it serves as both coolant and insulating medium, which influences the transformer’s durability. Further, the insulating state of a power transformer has a significant impact on its reliability. Mineral oil derived from petroleum crude oil has been employed as liquid dielectrics for decades due to its superior functional characteristics, however as a resource for the same are getting depleted over the years. Research is undertaken across the globe to identify a viable substitute for mineral oil. Further, alternate insulating oils are being investigated for better environmental impact, biodegradability and economics. Several combinations of vegetable oil derived natural esters are being inspected by researchers across the globe in these domains. In this work, mineral oil is blended with soyabean oil with various proportions and dielectric properties such as dielectric breakdown voltage, relative permittivity, dissipation factor, viscosity, flash and fire point have been investigated according to international standards. A quantitative comparison is made among various samples and is observed that the blended oil sample of equal proportion of mineral oil and soyabean oil, MO50+SO50 exhibits superior dielectric properties such as breakdown voltage of 65kV, dissipation factor of 0.0044, relative permittivity of 3.1680 that are closer to the range of values recommended for power transformer applications. Also, Breakdown voltage values of all the investigated oil samples obeyed the Weibull and Normal probability distribution.

Keywords: blended oil, dielectric breakdown, liquid insulation, power transformer

Procedia PDF Downloads 73
7620 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability

Procedia PDF Downloads 535
7619 Comparative Analysis of Chemical Composition of Two Ecotypes of Achillea wilhelmsii in Iran

Authors: L. Amjad, M. Torki, F. Yazdani

Abstract:

The genus Achillea belongs to Asteraceae family. This plant is widely found in different regions of Iran and used for treatment of different diseases. The aim of this study was to evaluate the chemical composition of Achillea wilhelmsii in Iran. The aerial parts of A. wilhelmsii collected from Shahrekord and Mazandaran Province, Iran and they were analyzed by using GC/MS. The 23, 13 compounds were identified in dried aerial parts of A. wilhelmsii from Shahrekord and Mazandaran, respectively. The major components in Shahrekord were: 1,8-Cineole (35.532%), α-pinene (22.885%), Camphor (12.238%), Camphene (8.691%), Piperitol (3.748%), Ethanone (2.274%) and The major components in Mazandaran were: 1,8-Cineole (52.951%), α-pinene (13.985%), Camphor (11.824%), Camphene (8.531%), Terpineol (2.533%), α-Thujone (2.330%). According to the results, difference in essential oil components of Achillea species in different regions may be due to the several factors that leads to change in compositions of plant.

Keywords: achillea wilhelmsii, essential oils, GC/MS

Procedia PDF Downloads 352
7618 An Efficient Design of Static Synchronous Series Compensator Based Fractional Order PID Controller Using Invasive Weed Optimization Algorithm

Authors: Abdelghani Choucha, Lakhdar Chaib, Salem Arif

Abstract:

This paper treated the problem of power system stability with the aid of Static Synchronous Series Compensator (SSSC) installed in the transmission line of single machine infinite bus (SMIB) power system. A fractional order PID (FOPID) controller has been applied as a robust controller for optimal SSSC design to control the power system characteristics. Additionally, the SSSC based FOPID parameters are smoothly tuned using Invasive Weed Optimization algorithm (IWO). To verify the strength of the proposed controller, SSSC based FOPID controller is validated in a wide range of operating condition and compared with the conventional scheme SSSC-POD controller. The main purpose of the proposed process is greatly enhanced the dynamic states of the tested system. Simulation results clearly prove the superiority and performance of the proposed controller design.

Keywords: SSSC-FOPID, SSSC-POD, SMIB power system, invasive weed optimization algorithm

Procedia PDF Downloads 180
7617 Performance Analysis of Transformerless DC-DC Boost Converter

Authors: Nidhi Vijay, A. K. Sharma

Abstract:

Many industrial applications require power from dc source. DC-DC boost converters are now being used all over the world for rapid transit system. Although these provide high efficiency, smooth control, fast response and regeneration, conventional DC-DC boost converters are unable to provide high step up voltage gain due to effect of power switches, rectifier diodes and equivalent series resistance of inductor and capacitor. This paper proposes new transformerless dc-dc converters to achieve high step up voltage gain as compared to the conventional converter without an extremely high duty ratio. Only one power stage is used in this converter. Steady-state analysis of voltage gain is discussed in brief. Finally, a comparative analysis is given in order to verify the results.

Keywords: MATLAB, DC-DC boost converter, voltage gain, voltage stress

Procedia PDF Downloads 417
7616 Application of Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants

Authors: Oscar Vega Camacho, Andrea Vargas Guevara, Ellery Rowina Ariza

Abstract:

This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its wastewater treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.

Keywords: decision making, Markov chain, optimization, wastewater

Procedia PDF Downloads 475
7615 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic

Authors: N. Drir, L. Barazane, M. Loudini

Abstract:

It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.

Keywords: maximum power point tracking, neural networks, photovoltaic, P&O

Procedia PDF Downloads 325
7614 Extremely Low-Frequency Magnetic Field; An Invisible Risk Association between High Power Transmission Lines and Childhood Leukemia and Adult Brain Cancer: Literature Review

Authors: Ali Azeem, Seung-Cheol Hong

Abstract:

This study focuses on the epidemiological association between childhood leukaemia & adult brain cancer to offer strong evidence that extremely low-frequency magnetic field (ELF-MF) produced from power lines caused cancer. It also gives a comprehensive literature review on epidemiological studies of ELF-MF risk associated with HVTL and childhood leukaemia & adult brain cancer. From the literature review, it is concluded that there is a weak association present between ELF-MF and childhood leukaemia. No consistent association was present between brain cancer and ELF-MF. This study is done on Scielo data and PubMed using the terms extremely low-frequency magnetic field (ELF-MF+cancer), adult brain cancer, high power transmission lines, etc., for the past 10 years.

Keywords: childhood leukaemia, high voltage transmission lines, acute lymphoblastic leukaemia, power lines

Procedia PDF Downloads 213
7613 The Effect of Low Power Laser on CK and Some of Markers Delayed Onset Muscle Soreness (DOMS)

Authors: Bahareh Yazdanparast Chaharmahali

Abstract:

The study showed effect of low power laser therapy on knee range of motion (flexion and extension), resting angle of knee joint, knee circumference and rating of delayed onset muscle soreness induced pain, 24 and 48 hours after eccentric training of knee flexor muscle (hamstring muscle). We investigate the effects of pulsed ultrasound on swelling, relaxed, flexion and extension knee angle and pain. 20 volunteers among girl students of college voluntary participated in this research. After eccentric training, subjects were randomly divided into two groups, control and laser therapy. In day 1 and in order to induce delayed onset muscle soreness, subjects eccentrically trained their knee flexor muscles. In day 2, subjects were randomly divided into two groups: control and low power laser therapy. 24 and 48 hours after eccentric training. Variables (knee flexion and extension, srang of motion, resting knee joint angle and knee circumferences) were measured and analyzed. Data are reported as means ± standard error (SE) and repeated measured was used to assess differences within groups. Methods of treatment (low power laser therapy) have significant effects on delayed onset muscle soreness markers. 24 and 48 hours after training a significant difference was observed between mean pains of 2 groups. This difference was significant between low power laser therapy and C groups. The Bonferroni post hock is significant. Low power laser therapy trophy as used in this study did significantly diminish the effects of delayed – onset muscle soreness on swelling, relaxed – knee extension and flexion angle.

Keywords: creatine kinase, DOMS, eccentric training, low power laser

Procedia PDF Downloads 232
7612 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism

Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman

Abstract:

Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.

Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model

Procedia PDF Downloads 65
7611 The Potential Effect of Biochar Application on Microbial Activities and Availability of Mineral Nitrogen in Arable Soil Stressed by Drought

Authors: Helena Dvořáčková, Jakub Elbl, Irina Mikajlo, Antonín Kintl, Jaroslav Hynšt, Olga Urbánková, Jaroslav Záhora

Abstract:

Application of biochar to arable soils represents a new approach to restore soil health and quality. Many studies reported the positive effect of biochar application on soil fertility and development of soil microbial community. Moreover biochar may affect the soil water retention, but this effect has not been sufficiently described yet. Therefore this study deals with the influence of biochar application on: microbial activities in soil, availability of mineral nitrogen in soil for microorganisms, mineral nitrogen retention and plant production. To demonstrate the effect of biochar addition on the above parameters, the pot experiment was realized. As a model crop, Lactuca sativa L. was used and cultivated from December 10th 2014 till March 22th 2015 in climate chamber in thoroughly homogenized arable soil with and without addition of biochar. Five variants of experiment (V1–V5) with different regime of irrigation were prepared. Variants V1–V2 were fertilized by mineral nitrogen, V3–V4 by biochar and V5 was a control. The significant differences were found only in plant production and mineral nitrogen retention. The highest content of mineral nitrogen in soil was detected in V1 and V2, about 250 % in comparison with the other variants. The positive effect of biochar application on soil fertility, mineral nitrogen availability was not found. On the other hand results of plant production indicate the possible positive effect of biochar application on soil water retention.

Keywords: arable soil, biochar, drought, mineral nitrogen

Procedia PDF Downloads 404
7610 Effects of Culture Conditions on the Adhesion of Yeast Candida spp. and Pichia spp. to Stainless Steel with Different Polishing and Their Control

Authors: Ružica Tomičić, Zorica Tomičić, Peter Raspor

Abstract:

An abundant growth of unwanted yeasts in food processing plants can lead to problems in quality and safety with significant financial losses. Candida and Pichia are the genera mainly involved in spoilage of products in the food and beverage industry. These contaminating microorganisms can form biofilms on food contact surfaces, being difficult to eradicate, increasing the probability of microbial survival and further dissemination during food processing. It is well known that biofilms are more resistant to antimicrobial agents compared to planktonic cells and this makes them difficult to eliminate. Among the strategies used to overcome resistance to antifungal drugs and preservatives, the use of natural substances such as plant extracts has shown particular promise, and many natural substances have been found to exhibit antifungal properties. This study aimed to investigated the impact of growth medium (Malt Extract broth (MEB) or Yeast Peptone Dextrose (YPD) broth) and temperatures (7°C, 37°C, 43°C for Candida strains and 7°C, 27°C, 32°C for Pichia strains) on the adhesion of Candida spp. and Pichia spp. to stainless steel (AISI 304) discs with different degrees of surface roughness (Ra = 25.20 – 961.9 nm), a material commonly used in the food industry. We also evaluated the antifungal and antiadhesion activity of plant extracts such as Humulus lupulus, Alpinia katsumadai and Evodia rutaecarpa against C. albicans, C glabrata and P. membranifaciens and investigated whether these plant extracts can interfere with biofilm formation. The adhesion was assessed by the crystal violet staining method, while the broth microdilution method CLSI M27-A3 was used to determine the minimum inhibitory concentration (MIC) of plant extracts. Our results indicated that the nutrient content of the medium significantly influenced the amount of adhered cells of the tested yeasts. The growth medium which resulted in a higher adhesion of C. albicans and C. glabrata was MEB, while for C. parapsilosis and C. krusei was YPD. In the case of P. pijperi and P. membranifaciens, YPD broth was more effective in promoting adhesion than MEB. Regarding the effect of temperature, C. albicans strain adhered to stainless steel surfaces in significantly higher level at a temperature of 43°C, while on the other hand C. glabrata, C. parapsilosis and C. krusei showed a different behavior with significantly higher adhesion at 37°C than at 7°C and 43°C. Further, the adherence ability of Pichia strains was highest at 27°C. Based on the MIC values, all plant extracts exerted significant antifungal effects with MIC values ranged from 100 to 400 μg/mL. It was observed that biofilm of C. glabrata were more resistance to plant extracts as compared to C. albicans. However, extracts of A. katsumadai and E. rutaecarpa promoted the growth and development of the preformed biofilm of P. membranifaciens. Thus, the knowledge of how these microorganisms adhere and which factors affect this phenomenon is of great importance in order to avoid their colonization on food contact surfaces.

Keywords: adhesion, Candida spp., Pichia spp., plant extracts

Procedia PDF Downloads 184
7609 3D Electromagnetic Mapping of the Signal Strength in Long Term Evolution Technology in the Livestock Department of ESPOCH

Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres

Abstract:

This article focuses on the 3D electromagnetic mapping of the intensity of the signal received by a mobile antenna within the open areas of the Department of Livestock of the Escuela Superior Politecnica de Chimborazo (ESPOCH), located in the city of Riobamba, Ecuador. The transmitting antenna belongs to the mobile telephone company ”TUENTI”, and is analyzed in the 2 GHz bands, operating at a frequency of 1940 MHz, using Long Term Evolution (LTE). Power signal strength data in the area were measured empirically using the ”Network Cell Info” application. A total of 170 samples were collected, distributed in 19 concentric circles around the base station. 3 campaigns were carried out at the same time, with similar traffic, and average values were obtained at each point, which varies between -65.33 dBm to -101.67 dBm. Also, the two virtualization software used are Sketchup and Unreal. Finally, the virtualized environment was visualized through virtual reality using Oculus 3D glasses, where the power levels are displayed according to a range of powers.

Keywords: reception power, LTE technology, virtualization, virtual reality, power levels

Procedia PDF Downloads 77
7608 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 430
7607 Effect of Fuel Injection Discharge Curve and Injection Pressure on Upgrading Power and Combustion Parameters in HD Diesel Engine with CFD Simulation

Authors: Saeed Chamehsara, Seyed Mostafa Mirsalim, Mehdi Tajdari

Abstract:

In this study, the effect of fuel injection discharge curve and injection pressure simultaneously for upgrading power of heavy duty diesel engine by simulation of combustion process in AVL-Fire software are discussed. Hence, the fuel injection discharge curve was changed from semi-triangular to rectangular which is usual in common rail fuel injection system. Injection pressure with respect to amount of injected fuel and nozzle hole diameter are changed. Injection pressure is calculated by an experimental equation which is for heavy duty diesel engines with common rail fuel injection system. Upgrading power for 1000 and 2000 bar injection pressure are discussed. For 1000 bar injection pressure with 188 mg injected fuel and 3 mm nozzle hole diameter in compare with first state which is semi-triangular discharge curve with 139 mg injected fuel and 3 mm nozzle hole diameter, upgrading power is about 19% whereas the special change has not been observed in cylinder pressure. On the other hand, both the NOX emission and the Soot emission decreased about 30% and 6% respectively. Compared with first state, for 2000 bar injection pressure that injected fuel and nozzle diameter are 196 mg and 2.6 mm respectively, upgrading power is about 22% whereas cylinder pressure has been fixed and NOX emission and the Soot emissions are decreased 36% and 20%, respectively.

Keywords: CFD simulation, HD diesel engine, upgrading power, injection pressure, fuel injection discharge curve, combustion process

Procedia PDF Downloads 510
7606 On-Farm Research on Organic Fruits Production in the Eastern Thailand

Authors: Sali Chinsathit, Haruthai Kaenla

Abstract:

Organic agriculture has become a major policy theme for agricultural development in Thailand since October 2005. Organic farming is enlisted as an important national agenda, to promote safe food and national export, and many government authorities have initiated projects and activities centered on organic farming promotion. Currently, Thailand has the market share of about 32 million US$ a year by exporting organic products of rice, vegetables, tea, fruits and a few medicinal herbs. There is high potential in organic crop production as there is the tropical environment promoting crop growth and leader farmer in organic farming. However, organic sector is relatively small (0.2%) comparing with conventional agricultural area, since there are many factors affecting farmers’ adoption and success in organic farming. The objective of this project was to get the organic production technology for at least 3 organic crops. The treatment and method were complied with Thai Organic Standard, and were mainly concerned on increase plant biodiversity and soil improvement by using organic fertilizer and bio-extract from fish, egg, plant and fruits. The bio-logical control, plant-extracts, and cultural practices were used to control insect pests and diseases of 3 crops including mangosteen (Garcinia mangostana L.), longkong (Aglaia dookoo Griff.) and banana (Musa (AA group)). The experiments were carried out at research centers of Department of Agriculture and farmers’ farms in Rayong and Chanthaburi provinces from 2009 to 2013. We found that both locations, plant biodiversity by intercropping mangosteen or longkong with banana and soil improvement with composts and bio-extract from fish could increased yield and farmers’ income by 6,835 US$/ha/year. Farmers got knowledge from these technologies to produce organic crops. The organic products were sold both in domestic and international countries. The organic production technologies were also environmental friendly and could be used as an alternative way for farmers in Thailand.

Keywords: banana, longkong, mangosteen, organic farming

Procedia PDF Downloads 349
7605 Treatment of Acid Mine Lake by Ultrasonically Modified Fly Ash at Different Frequencies

Authors: Burcu Ileri, Deniz Sanliyuksel Yucel, Onder Ayyildiz

Abstract:

The oxidation of pyrite in water results in the formation of acid mine drainage, which typically forms extremely acid mine lake (AML) in the depression areas of abandoned Etili open-pit coal mine site, Northwest Turkey. Nine acid mine lakes of various sizes have been located in the Etili coal mine site. Hayirtepe AML is one of the oldest lake having a mean pH value of 2.9 and conductivity of 4550 μS/cm, and containing elevated concentrations of Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn. The water quality of the lake has been deteriorated due to its high chemical composition, in particular, increasing heavy metal pollution. In this study, fly ash (FA), a coal combustion by-product from fluidized bed thermal power plant in the northwestern part of Turkey, was used as an adsorbent for the treatment of Hayirtepe AML. The FA is a relatively abundant and cost effective material, but its use in adsorption processes usually require excessive adsorbent doses. To increase adsorption efficiency and lower the adsorbent dose, we modified the FA by means of ultrasonic treatment (20 kHz and 40 kHz). The images of scanning electron microscopy (SEM) have demonstrated that ultrasonic treatment not only decreased the size of ash particles but also created pits and cracks on their surfaces which in turn led to a significant increase in the BET surface area. Both FA and modified fly ash were later tested for the removal of heavy metals from the AML. The effect of various operating parameters such as ultrasonic power, pH, ash dose, and adsorption contact time were examined to obtain the optimum conditions for the treatment process. The results have demonstrated that removal of heavy metals by ultrasound-modified fly ash requires much shorter treatment times and lower adsorbent doses than those attained by the unmodified fly ash. This research was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK), (Project no: 116Y510).

Keywords: acid mine lake, heavy metal, modified fly ash, ultrasonic treatment

Procedia PDF Downloads 187