Search results for: integer factorization problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7291

Search results for: integer factorization problem

5821 Educators’ Adherence to Learning Theories and Their Perceptions on the Advantages and Disadvantages of E-Learning

Authors: Samson T. Obafemi, Seraphin D. Eyono-Obono

Abstract:

Information and Communication Technologies (ICTs) are pervasive nowadays, including in education where they are expected to improve the performance of learners. However, the hope placed in ICTs to find viable solutions to the problem of poor academic performance in schools in the developing world has not yet yielded the expected benefits. This problem serves as a motivation to this study whose aim is to examine the perceptions of educators on the advantages and disadvantages of e-learning. This aim will be subdivided into two types of research objectives. Objectives on the identification and design of theories and models will be achieved using content analysis and literature review. However, the objective on the empirical testing of such theories and models will be achieved through the survey of educators from different schools in the Pinetown District of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after assessing the validity and the reliability of the data. The main hypothesis driving this study is that there is a relationship between the demographics of educators’ and their adherence to learning theories on one side, and their perceptions on the advantages and disadvantages of e-learning on the other side, as argued by existing research; but this research views these learning theories under three perspectives: educators’ adherence to self-regulated learning, to constructivism, and to progressivism. This hypothesis was fully confirmed by the empirical study except for the demographic factor where teachers’ level of education was found to be the only demographic factor affecting the perceptions of educators on the advantages and disadvantages of e-learning.

Keywords: academic performance, e-learning, learning theories, teaching and learning

Procedia PDF Downloads 272
5820 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots

Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov

Abstract:

This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.

Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem

Procedia PDF Downloads 166
5819 Employing a System of Systems Approach in the Maritime RobotX Challenge: Incorporating Information Technology Students in the Development of an Autonomous Catamaran

Authors: Adam Jenkins

Abstract:

The Maritime RobotX Challenge provides a platform for postgraduate students conducting research in autonomous robotic systems to participate in an international competition. Although targeted to postgraduate students, the problem domain lends itself to a wide range of different levels of student expertise. In 2022, undergraduate Information Technology students from the University of South Australia undertook the challenge, utilizing a System of the Systems approach to the project's architecture. Each student group produced an independent solution to an identified task, which was then implemented on a Single Board Computer (SBC). A Central Control System then engaged each solution when appropriate, allowing the encapsulated SBC systems to manage each task as it was encountered. This approach facilitated collaboration among the multiple independent student teams over an 18-month period, and the fundamental system-agnostic architecture allowed for both the variance in student solutions and the limitations caused by the global electronics shortage. By adopting this approach, Information Technology teams were able to work independently yet produce an effective solution, leveraging their expertise to develop and construct an autonomous catamaran capable of meeting the competition's demanding requirements while producing a high level of engagement. The System of Systems approach is recommended to other universities interested in competing at this level and engaging students in a real-world problem.

Keywords: case study, robotics, education, programming, system of systems, multi-disciplinary collaboration

Procedia PDF Downloads 75
5818 Online Think–Pair–Share in a Third-Age Information and Communication Technology Course

Authors: Daniele Traversaro

Abstract:

Problem: Senior citizens have been facing a challenging reality as a result of strict public health measures designed to protect people from the COVID-19 outbreak. These include the risk of social isolation due to the inability of the elderly to integrate with technology. Never before have information and communication technology (ICT) skills become essential for their everyday life. Although third-age ICT education and lifelong learning are widely supported by universities and governments, there is a lack of literature on which teaching strategy/methodology to adopt in an entirely online ICT course aimed at third-age learners. This contribution aims to present an application of the Think-Pair-Share (TPS) learning method in an ICT third-age virtual classroom with an intergenerational approach to conducting online group labs and review activities. This collaborative strategy can help increase student engagement, promote active learning and online social interaction. Research Question: Is collaborative learning applicable and effective, in terms of student engagement and learning outcomes, for an entirely online third-age ICT introductory course? Methods: In the TPS strategy, a problem is posed by the teacher, students have time to think about it individually, and then they work in pairs (or small groups) to solve the problem and share their ideas with the entire class. We performed four experiments in the ICT course of the University of the Third Age of Genova (University of Genova, Italy) on the Microsoft Teams platform. The study cohort consisted of 26 students over the age of 45. Data were collected through online questionnaires. Two have been proposed, one at the end of the first activity and another at the end of the course. They consisted of five and three close-ended questions, respectively. The answers were on a Likert scale (from 1 to 4) except two questions (which asked the number of correct answers given individually and in groups) and the field for free comments/suggestions. Results: Results show that groups perform better than individual students (with scores greater than one order of magnitude) and that most students found it helpful to work in groups and interact with their peers. Insights: From these early results, it appears that TPS is applicable to an online third-age ICT classroom and useful for promoting discussion and active learning. Despite this, our experimentation has a number of limitations. First of all, the results highlight the need for more data to be able to perform a statistical analysis in order to determine the effectiveness of this methodology in terms of student engagement and learning outcomes as a future direction.

Keywords: collaborative learning, information technology education, lifelong learning, older adult education, think-pair-share

Procedia PDF Downloads 188
5817 Effect of Joule Heating on Chemically Reacting Micropolar Fluid Flow over Truncated Cone with Convective Boundary Condition Using Spectral Quasilinearization Method

Authors: Pradeepa Teegala, Ramreddy Chetteti

Abstract:

This work emphasizes the effects of heat generation/absorption and Joule heating on chemically reacting micropolar fluid flow over a truncated cone with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence using non-similarity transformations, the governing fluid flow equations along with related boundary conditions are transformed into a set of non-dimensional partial differential equations. Several authors have applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The influence of pertinent parameters namely Biot number, Joule heating, heat generation/absorption, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, spectral quasilinearization method

Procedia PDF Downloads 346
5816 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 145
5815 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer

Authors: Fouzieh Rouzmehr, Mehdi Mousavi

Abstract:

Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results.

Keywords: flexible pavement, asphalt, FEM, viscoelastic, elastic, ANSYS, modeling

Procedia PDF Downloads 129
5814 Structure of Consciousness According to Deep Systemic Constellations

Authors: Dmitry Ustinov, Olga Lobareva

Abstract:

The method of Deep Systemic Constellations is based on a phenomenological approach. Using the phenomenon of substitutive perception it was established that the human consciousness has a hierarchical structure, where deeper levels govern more superficial ones (reactive level, energy or ancestral level, spiritual level, magical level, and deeper levels of consciousness). Every human possesses a depth of consciousness to the spiritual level, however deeper levels of consciousness are not found for every person. It was found that the spiritual level of consciousness is not homogeneous and has its own internal hierarchy of sublevels (the level of formation of spiritual values, the level of the 'inner observer', the level of the 'path', the level of 'God', etc.). The depth of the spiritual level of a person defines the paradigm of all his internal processes and the main motives of the movement through life. At any level of consciousness disturbances can occur. Disturbances at a deeper level cause disturbances at more superficial levels and are manifested in the daily life of a person in feelings, behavioral patterns, psychosomatics, etc. Without removing the deepest source of a disturbance it is impossible to completely correct its manifestation in the actual moment. Thus a destructive pattern of feeling and behavior in the actual moment can exist because of a disturbance, for example, at the spiritual level of a person (although in most cases the source is at the energy level). Psychological work with superficial levels without removing a source of disturbance cannot fully solve the problem. The method of Deep Systemic Constellations allows one to work effectively with the source of the problem located at any depth. The methodology has confirmed its effectiveness in working with more than a thousand people.

Keywords: constellations, spiritual psychology, structure of consciousness, transpersonal psychology

Procedia PDF Downloads 249
5813 Vascularized Adipose Tissue Engineering by Using Adipose ECM/Fibroin Hydrogel

Authors: Alisan Kayabolen, Dilek Keskin, Ferit Avcu, Andac Aykan, Fatih Zor, Aysen Tezcaner

Abstract:

Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, only very thin implants can be used in vivo since vascularization is still a problem for thick implants. Another problem is finding a biocompatible scaffold with good mechanical properties. In this study, the aim is to develop a thick vascularized adipose tissue that will integrate with the host, and perform its in vitro and in vivo characterizations. For this purpose, a hydrogel of decellularized adipose tissue (DAT) and fibroin was produced, and both endothelial cells and adipocytes that were differentiated from adipose derived stem cells were encapsulated in this hydrogel. Mixing DAT with fibroin allowed rapid gel formation by vortexing. It also provided to adjust mechanical strength by changing fibroin to DAT ratio. Based on compression tests, gels of DAT/fibroin ratio with similar mechanical properties to adipose tissue was selected for cell culture experiments. In vitro characterizations showed that DAT is not cytotoxic; on the contrary, it has many natural ECM components which provide biocompatibility and bioactivity. Subcutaneous implantation of hydrogels resulted with no immunogenic reaction or infection. Moreover, localized empty hydrogels gelled successfully around host vessel with required shape. Implantations of cell encapsulated hydrogels and histological analyses are under study. It is expected that endothelial cells inside the hydrogel will form a capillary network and they will bind to the host vessel passing through hydrogel.

Keywords: adipose tissue engineering, decellularization, encapsulation, hydrogel, vascularization

Procedia PDF Downloads 526
5812 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
5811 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction

Procedia PDF Downloads 154
5810 Near-Infrared Hyperspectral Imaging Spectroscopy to Detect Microplastics and Pieces of Plastic in Almond Flour

Authors: H. Apaza, L. Chévez, H. Loro

Abstract:

Plastic and microplastic pollution in human food chain is a big problem for human health that requires more elaborated techniques that can identify their presences in different kinds of food. Hyperspectral imaging technique is an optical technique than can detect the presence of different elements in an image and can be used to detect plastics and microplastics in a scene. To do this statistical techniques are required that need to be evaluated and compared in order to find the more efficient ones. In this work, two problems related to the presence of plastics are addressed, the first is to detect and identify pieces of plastic immersed in almond seeds, and the second problem is to detect and quantify microplastic in almond flour. To do this we make use of the analysis hyperspectral images taken in the range of 900 to 1700 nm using 4 unmixing techniques of hyperspectral imaging which are: least squares unmixing (LSU), non-negatively constrained least squares unmixing (NCLSU), fully constrained least squares unmixing (FCLSU), and scaled constrained least squares unmixing (SCLSU). NCLSU, FCLSU, SCLSU techniques manage to find the region where the plastic is found and also manage to quantify the amount of microplastic contained in the almond flour. The SCLSU technique estimated a 13.03% abundance of microplastics and 86.97% of almond flour compared to 16.66% of microplastics and 83.33% abundance of almond flour prepared for the experiment. Results show the feasibility of applying near-infrared hyperspectral image analysis for the detection of plastic contaminants in food.

Keywords: food, plastic, microplastic, NIR hyperspectral imaging, unmixing

Procedia PDF Downloads 127
5809 Development and Optimization of German Diagnostical Tests in Mathematics for Vocational Training

Authors: J. Thiele

Abstract:

Teachers working at vocational Colleges are often confronted with the problem, that many students graduated from different schools and therefore each had a different education. Especially in mathematics many students lack fundamentals or had different priorities at their previous schools. Furthermore, these vocational Colleges have to provide Graduations for many different working-fields, with different core themes. The Colleges are interested in measuring the different Education levels of their students and providing assistance for those who need to catch up. The Project mathe-meistern was initiated to remedy this problem at vocational Colleges. For this purpose, online-tests were developed. The aim of these tests is to evaluate basic mathematical abilities of the students. The tests are online Multiple-Choice-Tests with a total of 65 Items. They are accessed online with a unique Transaction-Number (TAN) for each participant. The content is divided in several Categories (Arithmetic, Algebra, Fractions, Geometry, etc.). After each test, the student gets a personalized summary depicting their strengths and weaknesses in mathematical Basics. Teachers can visit a special website to examine the results of their classes or single students. In total 5830 students did participate so far. For standardization and optimization purposes the tests are being evaluated, using the classic and probabilistic Test-Theory regarding Objectivity, Reliability and Validity, annually since 2015. This Paper is about the Optimization process considering the Rasch-scaling and Standardization of the tests. Additionally, current results using standardized tests will be discussed. To achieve this Competence levels and Types of errors of students attending vocational Colleges in Nordrheinwestfalen, Germany, were determined, using descriptive Data and Distractorevaluations.

Keywords: diagnostical tests in mathematics, distractor devaluation, test-optimization, test-theory

Procedia PDF Downloads 122
5808 The Life Skills Project: Client-Centered Approaches to Life Skills Acquisition for Homeless and At-Risk Populations

Authors: Leah Burton, Sara Cumming, Julianne DiSanto

Abstract:

Homelessness is a widespread and complex problem in Canada and around the globe. Many Canadians will face homelessness at least once in their lifetime, with several experiencing subsequent bouts or cyclical patterns of housing precarity. While a Housing First approach to homelessness is a long-standing and widely accepted best practice, it is also recognized that the acquisition of life skills is an effective way to reduce cycles of homelessness. Indeed, when individuals are provided with a range of life skills—such as (but not limited to) financial literacy, household management, interpersonal skills, critical thinking, and resource management—they are given the tools required to maintain long-term Housing for a lifetime; thus reducing a repetitive need for services. However, there is limited research regarding the best ways to teach life skills, a problem that has been further complicated in a post-pandemic world, where services are being delivered online or in a hybrid model of care. More than this, it is difficult to provide life skills on a large scale without losing a client-centered approach to services. This lack of client-centeredness is also seen in the lack of attention to culturally sensitive life skills, which consider the diverse needs of individuals and imbed equity, diversity, and inclusion (EDI) within the skills being taught. This study aims to fill these identified gaps in the literature by employing a community-engaged (CER) approach. Academic, government, funders, front-line staff, and clients at 15 not-for-profits from across the Greater Toronto Area in Ontario, Canada, collaborated to co-create a virtual, client-centric, EDI-informed life skill learning management system. A triangulation methodology was utilized for this research. An environmental scan was conducted for current best practices, and over 100 front-line staff (including workers, managers, and executive directors who work with homeless populations) participated in two separate Creative Problem Solving Sessions. Over 200 individuals with experience in homelessness completed quantitative and open-ended surveys. All sections of this research aimed to discover the areas of skills that individuals need to maintain Housing and to ascertain what a more client-driven EDI approach to life skills training should include. This presentation will showcase the findings on which life skills are deemed essential for homeless and precariously housed individuals.

Keywords: homelessness, housing first, life skills, community engaged research, client- centered

Procedia PDF Downloads 101
5807 Investigation of the Density and Control Methods of Weed Species That Are a Problem in Broad Bean (Vicia Faba L.) Cultivation

Authors: Tamer Üstüner, Sena Nur Arı

Abstract:

This study was carried out at Kahramanmaras Sutcu Imam University, trial area Faculty of Agriculture and ÜSKİM laboratory in 2022. Many problems are encountered in broad bean (Vicia faba L.) cultivation. One of these problems is weeds. In this study, weed species, families, and densities of weeds that are a problem in broad beans were determined. A total of 47 weed species belonging to 20 different families were determined in the experimental area. Weed species found very densely in control 1 plots of the broad bean experimental area were Sinapis arvensis 11.50 pieces/m², Lolium temulentum L. 11.20, Ranunculus arvensis L. 10.95, Galium tricornutum Dany. 10.81, Avena sterilis 10.60, Bupleurum lancifolium 10.40, Convolvulus arvensis 10.25 ve Cynodon dactylon 10.14 pieces/m². The weed species Cuscuta campestris Yunck. which is very common in the control plots of the broad bean experimental area, was calculated as 11.94 units/m². It was determined that C. campestris alone caused significant yield and quality loss in broad beans. In this study, it was determined that the most effective method in reducing the weed population was hand hoeing, followed by pre-emergence pendimethalin and post-emergence herbicide with Imazamox active substance. In terms of the effect of these control applications on the pod yield, the hand hoeing application ranked first, the pendimethalin application ranked second, the Imazamox application ranked third, and the control 2 and control 1 plot took the last place.

Keywords: broad bean, weed, struggle, yield

Procedia PDF Downloads 93
5806 Attachment and Decision-Making in Infertility

Authors: Anisa Luli, Alessandra Santona

Abstract:

Wanting a child and experiencing the impossibility to conceive is a painful condition that often is linked to infertility and often leads infertile individuals to experience psychological, relational and social problems. In this situation, infertile couples have to review their choices and take into consideration new ones. Few studies have focused on the decision-making style used by infertile individuals to solve their problem and on the factors that influences it. The aim of this paper is to define the style of decision-making used by infertile persons to give a solution to the “problem” and the predictive role of the attachment, of the representations of the relationship with parents in childhood and of the dyadic adjustment. The total sample is composed by 251 participants, divided in two groups: the experimental group composed by 114 participants, 62 males and 52 females, age between 25 and 59 years, and the control group composed by 137 participants, 65 males and 72 females, age between 22 and 49 years. The battery of instruments comprises: General Decision Making Style (GDMS), Experiences in Close Relationships Questionnaire Revised (ECR-R), Dyadic Adjustment Scale (DAS), Parental Bonding Instrument (PBI) and Symptom Checklist-90-R (SCL-90-R). The results from the analysis of the samples showed a prevalence of the rational decision-making style for both males and females, experimental and control group. There have been founded significant statistical relationships between the attachment scales, the representations of the parenting style, the dyadic adjustment and the decision-making styles. These results contribute to enrich the literature on the subject of decision-making in infertile people and show the relationship between the attachment and decision-making styles, confirming the few results in literature.

Keywords: attachment, decision-making style, infertility, dyadic adjustment

Procedia PDF Downloads 575
5805 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts

Authors: Wei Sun, Yan Dong

Abstract:

There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.

Keywords: robotics, computational thinking, programming, young children, flow chart

Procedia PDF Downloads 145
5804 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 98
5803 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid

Authors: Benjamin Blat Belmonte, Stephan Rinderknecht

Abstract:

The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.

Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market

Procedia PDF Downloads 73
5802 Community’s Role in Slum Development: A Case Study of the Kabul Old City

Authors: Habibi Said Mustafa, Hiroko Ono

Abstract:

Kabul, the capital of Afghanistan, has witnessed a major population growth in the last decades which caused a significant increase in the number of informal settlements. The residents are suffering from many problems such as poor infrastructure, shortage of public facilities, depriving of the sense of ownership and facing much environmental degradation. Even though majority of the residents are living in such condition, the government response has been quite weak. The government’s main planning strategy has been upgrading in the form of provision of facilities and improving elements of physical infrastructure, unfortunately most of the projects which had not community’s support, faced with lots of challenges such as people’s resistance or even in some cases the project rather than solving the problem, compounded them to a worse condition. A major reason as to why many projects have not been effective in achieving certain objectives in the past is the results of local people were not being involved. Community participation plays an important role in slum development projects. The development of an integrated urban development concept these days without the mobilization of participants and community seems difficult and impossible. Therefore this paper looks into factors and methods which can help in creating a participatory approach for developing the slums in Kabul city. Furthermore, it describes the result of a questionnaire which was conducted on a part of the Kabul Old City due to hear resident’s problem related to the slum upgrading and collect their opinions on this regard. The research also points out some factors which can severely hamper the successful implementation of a slum upgrading project if not adequately addressed.

Keywords: Community empowerment, Informal settlements, Job opportunities, People participation

Procedia PDF Downloads 172
5801 Investigation of Shear Thickening Fluid Isolator with Vibration Isolation Performance

Authors: M. C. Yu, Z. L. Niu, L. G. Zhang, W. W. Cui, Y. L. Zhang

Abstract:

According to the theory of the vibration isolation for linear systems, linear damping can reduce the transmissibility at the resonant frequency, but inescapably increase the transmissibility of the isolation frequency region. To resolve this problem, nonlinear vibration isolation technology has recently received increasing attentions. Shear thickening fluid (STF) is a special colloidal material. When STF is subject to high shear rate, it rheological property changes from a flowable behavior into a rigid behavior, i.e., it presents shear thickening effect. STF isolator is a vibration isolator using STF as working material. Because of shear thickening effect, STF isolator is a variable-damped isolator. It exhibits small damping under high vibration frequency and strong damping at resonance frequency due to shearing rate increasing. So its special inherent character is very favorable for vibration isolation, especially for restraining resonance. In this paper, firstly, STF was prepared by dispersing nano-particles of silica into polyethylene glycol 200 fluid, followed by rheological properties test. After that, an STF isolator was designed. The vibration isolation system supported by STF isolator was modeled, and the numerical simulation was conducted to study the vibration isolation properties of STF. And finally, the effect factors on vibrations isolation performance was also researched quantitatively. The research suggests that owing to its variable damping, STF vibration isolator can effetely restrain resonance without bringing unfavorable effect at high frequency, which meets the need of ideal damping properties and resolves the problem of traditional isolators.

Keywords: shear thickening fluid, variable-damped isolator, vibration isolation, restrain resonance

Procedia PDF Downloads 177
5800 A Programming Assessment Software Artefact Enhanced with the Help of Learners

Authors: Romeo A. Botes, Imelda Smit

Abstract:

The demands of an ever changing and complex higher education environment, along with the profile of modern learners challenge current approaches to assessment and feedback. More learners enter the education system every year. The younger generation expects immediate feedback. At the same time, feedback should be meaningful. The assessment of practical activities in programming poses a particular problem, since both lecturers and learners in the information and computer science discipline acknowledge that paper-based assessment for programming subjects lacks meaningful real-life testing. At the same time, feedback lacks promptness, consistency, comprehensiveness and individualisation. Most of these aspects may be addressed by modern, technology-assisted assessment. The focus of this paper is the continuous development of an artefact that is used to assist the lecturer in the assessment and feedback of practical programming activities in a senior database programming class. The artefact was developed using three Design Science Research cycles. The first implementation allowed one programming activity submission per assessment intervention. This pilot provided valuable insight into the obstacles regarding the implementation of this type of assessment tool. A second implementation improved the initial version to allow multiple programming activity submissions per assessment. The focus of this version is on providing scaffold feedback to the learner – allowing improvement with each subsequent submission. It also has a built-in capability to provide the lecturer with information regarding the key problem areas of each assessment intervention.

Keywords: programming, computer-aided assessment, technology-assisted assessment, programming assessment software, design science research, mixed-method

Procedia PDF Downloads 295
5799 From Medusa to #MeToo: Different Discourses on Sexual Violence with Particular Reference to the Situation in Serbia

Authors: Jelena Riznić

Abstract:

Sexual violence is a social fact that is both ubiquitous and invisible. From the myth of Medusa and Lucretia, through legends about sexual violence in war conflicts, to Hollywood films and other productions — sexual violence exists as a motive, implicitly or explicitly. Many Hollywood films contain a scene of rape, and the media is increasingly reporting on cases of sexual violence, often not following the guidelines for sensitized and ethical reporting. On the other hand, sexual violence remains an invisible phenomenon if we are talking from the perspective of the survivors. Only the wave of women's testimonies that flooded social networks after the #MeToo campaign in 2017 pointed to the prevalence and to the existing ideas about sexual violence that persist at the level of myths in society, but also through formal norms in the hearing of justice systems. The problem is also in the way rape is defined in the criminal codes of different countries, and all of this affects the reproduction of sexual violence. Precisely because it is a deeply intimate experience of violence, but also a structural problem; on the other hand, understanding sexual violence requires sociological imagination. Accordingly, the subject of this paper is the presentation and analysis of various discourses on sexual violence throughout history — pre/anti-feminist, feminist and criminal law, with particular reference to the situation in Serbia. The paper uses a critical review and comparative analysis of various sources on sexual violence, as well as an analysis of the impact of these sources on the modern legal framework that regulates sexual violence. Research has shown that despite feminist contributions, myths about sexual violence persist and influence the treatment of women who have survived violence in criminal systems and society in general.

Keywords: sexual violence, gender-based violence, MeToo campaign, feminism, Serbia

Procedia PDF Downloads 84
5798 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport

Authors: Surupa Shaw, Debjyoti Banerjee

Abstract:

Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.

Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement

Procedia PDF Downloads 318
5797 Factors Relating to Motivation to Change Behaviors in Individuals Who Are Overweight

Authors: Teresa Wills, Geraldine Mccarthy, Nicola Cornally

Abstract:

Background: Obesity is an emerging healthcare epidemic affecting virtually all age and socio-economic groups and is one of the most serious and prevalent diseases of the 21st century. It is a public health challenge because of its prevalence, associated costs and health effects. The increasing prevalence of obesity has created a social perception that overweight body sizes are healthy and normal. This normalization of obesity within our society and the acceptance of higher body weights have led to individuals being unaware of the reality of their weight status and gravity of this situation thus impeding recognition of obesity. Given the escalating global health problem of obesity and its co-morbidities, the need to re-appraise its management is more compelling than ever. It is widely accepted that the causes of obesity are complex and multi-factorial. Engagement of individuals in weight management programmes is difficult if they do not perceive they have a problem with their weight. Recognition of the problem is a key component of obesity management and identifying the main predictors of behaviour is key to designing health behaviour interventions. Aim: The aim of the research was to determine factors relating to motivation to change behaviours in individuals who perceive themselves to be overweight. Method: The research design was quantitative, correlational and cross-sectional. The design was guided by the Health Belief Model. Data were collected online using a multi-section and multi-item questionnaire, developed from a review of the theoretical and empirical research. A sample of 202 men and women who perceived themselves to be overweight participated in the research. Descriptive and inferential statistical analyses were employed to describe relationships between variables. Findings: Following multivariate regression analysis, perceived barriers to weight loss and perceived benefits of weight loss were significant predictors of motivation to change behaviour. The perceived barriers to weight loss which were significant were psychological barriers to weight loss (p = < 0.019) and environmental barriers to physical activity (p= < 0.032).The greatest predictor of motivation to change behaviour was the perceived benefits of weight loss (p < 0.001). Perceived susceptibility to obesity and perceived severity of obesity did not emerge as significant predictors in this model. Total variance explained by the model was 33.5%. Conclusion: Perceived barriers to weight loss and perceived benefits of weight loss are important determinants of motivation to change behaviour. These findings have important implications for health professionals to help inform their practice and for the development of intervention programmes to prevent and control obesity.

Keywords: motivation to change behaviours, obesity, predictors of behavior, interventions, overweight

Procedia PDF Downloads 413
5796 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 64
5795 Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision

Authors: Nastaran Hajiheydari, Mohammad Soltani Delgosha

Abstract:

Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated.

Keywords: group decision making, intuitionistic fuzzy set, intuitionistic fuzzy entropy measure, vendor selection, VIKOR

Procedia PDF Downloads 154
5794 An Adjoint-Based Method to Compute Derivatives with Respect to Bed Boundary Positions in Resistivity Measurements

Authors: Mostafa Shahriari, Theophile Chaumont-Frelet, David Pardo

Abstract:

Resistivity measurements are used to characterize the Earth’s subsurface. They are categorized into two different groups: (a) those acquired on the Earth’s surface, for instance, controlled source electromagnetic (CSEM) and Magnetotellurics (MT), and (b) those recorded with borehole logging instruments such as Logging-While-Drilling (LWD) devices. LWD instruments are mostly used for geo-steering purposes, i.e., to adjust dip and azimuthal angles of a well trajectory to drill along a particular geological target. Modern LWD tools measure all nine components of the magnetic field corresponding to three orthogonal transmitter and receiver orientations. In order to map the Earth’s subsurface and perform geo-steering, we invert measurements using a gradient-based method that utilizes the derivatives of the recorded measurements with respect to the inversion variables. For resistivity measurements, these inversion variables are usually the constant resistivity value of each layer and the bed boundary positions. It is well-known how to compute derivatives with respect to the constant resistivity value of each layer using semi-analytic or numerical methods. However, similar formulas for computing the derivatives with respect to bed boundary positions are unavailable. The main contribution of this work is to provide an adjoint-based formulation for computing derivatives with respect to the bed boundary positions. The key idea to obtain the aforementioned adjoint state formulations for the derivatives is to separate the tangential and normal components of the field and treat them differently. This formulation allows us to compute the derivatives faster and more accurately than with traditional finite differences approximations. In the presentation, we shall first derive a formula for computing the derivatives with respect to the bed boundary positions for the potential equation. Then, we shall extend our formulation to 3D Maxwell’s equations. Finally, by considering a 1D domain and reducing the dimensionality of the problem, which is a common practice in the inversion of resistivity measurements, we shall derive a formulation to compute the derivatives of the measurements with respect to the bed boundary positions using a 1.5D variational formulation. Then, we shall illustrate the accuracy and convergence properties of our formulations by comparing numerical results with the analytical derivatives for the potential equation. For the 1.5D Maxwell’s system, we shall compare our numerical results based on the proposed adjoint-based formulation vs those obtained with a traditional finite difference approach. Numerical results shall show that our proposed adjoint-based technique produces enhanced accuracy solutions while its cost is negligible, as opposed to the finite difference approach that requires the solution of one additional problem per derivative.

Keywords: inverse problem, bed boundary positions, electromagnetism, potential equation

Procedia PDF Downloads 177
5793 A New Approach in a Problem of a Supersonic Panel Flutter

Authors: M. V. Belubekyan, S. R. Martirosyan

Abstract:

On the example of an elastic rectangular plate streamlined by a supersonic gas flow, we have investigated the phenomenon of divergence and of panel flatter of the overrunning of the gas flow at a free edge under assumption of the presence of concentrated inertial masses and moments at the free edge. We applied a new approach of finding of solution of these problems, which was developed based on the algorithm for an analytical solution finding. This algorithm is easy to use for theoretical studies for the wides circle of nonconservative problems of linear elastic stability. We have established the relation between the characteristics of natural vibrations of the plate and velocity of the streamlining gas flow, which enables one to draw some conclusions on the stability of disturbed motion of the plate depending on the parameters of the system plate-flow. Its solution shows that either the divergence or the localized divergence and the flutter instability are possible. The regions of the stability and instability in space of parameters of the problem are identified. We have investigated the dynamic behavior of the disturbed motion of the panel near the boundaries of region of the stability. The safe and dangerous boundaries of region of the stability are found. The transition through safe boundary of the region of the stability leads to the divergence or localized divergence arising in the vicinity of free edge of the rectangular plate. The transition through dangerous boundary of the region of the stability leads to the panel flutter. The deformations arising at the flutter are more dangerous to the skin of the modern aircrafts and rockets resulting to the loss of the strength and appearance of the fatigue cracks.

Keywords: stability, elastic plate, divergence, localized divergence, supersonic panels flutter

Procedia PDF Downloads 460
5792 Social Distancing as a Population Game in Networked Social Environments

Authors: Zhijun Wu

Abstract:

While social living is considered to be an indispensable part of human life in today's ever-connected world, social distancing has recently received much public attention on its importance since the outbreak of the coronavirus pandemic. In fact, social distancing has long been practiced in nature among solitary species and has been taken by humans as an effective way of stopping or slowing down the spread of infectious diseases. A social distancing problem is considered for how a population, when in the world with a network of social sites, decides to visit or stay at some sites while avoiding or closing down some others so that the social contacts across the network can be minimized. The problem is modeled as a population game, where every individual tries to find some network sites to visit or stay so that he/she can minimize all his/her social contacts. In the end, an optimal strategy can be found for everyone when the game reaches an equilibrium. The paper shows that a large class of equilibrium strategies can be obtained by selecting a set of social sites that forms a so-called maximal r-regular subnetwork. The latter includes many well-studied network types, which are easy to identify or construct and can be completely disconnected (with r = 0) for the most-strict isolation or allow certain degrees of connectivity (with r > 0) for more flexible distancing. The equilibrium conditions of these strategies are derived. Their rigidity and flexibility are analyzed on different types of r-regular subnetworks. It is proved that the strategies supported by maximal 0-regular subnetworks are strictly rigid, while those by general maximal r-regular subnetworks with r > 0 are flexible, though some can be weakly rigid. The proposed model can also be extended to weighted networks when different contact values are assigned to different network sites.

Keywords: social distancing, mitigation of spread of epidemics, populations games, networked social environments

Procedia PDF Downloads 133