Search results for: drag performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4023

Search results for: drag performance

2553 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 155
2552 Development and Characterization of a Fluorinated-Ethylene-Propylene (FEP) Polymer Coating on Brass Faucets

Authors: S. Zouari, H. Ghorbel, H. Liao, R. Elleuch

Abstract:

Research is increasingly moving towards the use of surface treatment processes to limit environmental effects. Electrolytic plating has traditionally been seen as a way to protect brass products, especially faucets, from mechanical and chemical damage. However, this method was not effective industrially, economically and ecologically. The aim of this work is to develop non-usual polymer coatings for brass faucets in order to improve the performance of brass and to replace electrolytic chromium coatings, thereby reducing environmental impact. Fluorinated-Ethylene-Propylene polymer (FEP) was chosen for its excellent mechanical and chemical properties and its good environmental performance. This coating was developed by spraying (painting) process onto brass substrates. The coatings obtained were characterized using a scanning electron microscope to evaluate the morphology of the deposits and their porosity rate. Grid adhesion, surface energy and corrosion tests (salt spray) were also performed to evaluate the mechanical and chemical behavior of these coatings properly. The results show that the deposits obtained have a homogeneous microstructure with a very low porosity rate. The results of the grid adhesion test prove the conformity of the test according to the NF077 standard. The coatings have a hydrophobic character following the low values of surface energy obtained and a very good resistance to corrosion. These results are interesting and may represent real technological issues in the industrial field.

Keywords: FEP coatings, spraying process, brass, adhesion, surface energy, corrosion resistance

Procedia PDF Downloads 146
2551 Performance of Fiber-Reinforced Polymer as an Alternative Reinforcement

Authors: Salah E. El-Metwally, Marwan Abdo, Basem Abdel Wahed

Abstract:

Fiber-reinforced polymer (FRP) bars have been proposed as an alternative to conventional steel bars; hence, the use of these non-corrosive and nonmetallic reinforcing bars has increased in various concrete projects. This concrete material is lightweight, has a long lifespan, and needs minor maintenance; however, its non-ductile nature and weak bond with the surrounding concrete create a significant challenge. The behavior of concrete elements reinforced with FRP bars has been the subject of several experimental investigations, even with their high cost. This study aims to numerically assess the viability of using FRP bars, as longitudinal reinforcement, in comparison with traditional steel bars, and also as prestressing tendons instead of the traditional prestressing steel. The nonlinear finite element analysis has been utilized to carry out the current study. Numerical models have been developed to examine the behavior of concrete beams reinforced with FRP bars or tendons against similar models reinforced with either conventional steel or prestressing steel. These numerical models were verified by experimental test results available in the literature. The obtained results revealed that concrete beams reinforced with FRP bars, as passive reinforcement, exhibited less ductility and less stiffness than similar beams reinforced with steel bars. On the other hand, when FRP tendons are employed in prestressing concrete beams, the results show that the performance of these beams is similar to those beams prestressed by conventional active reinforcement but with a difference caused by the two tendon materials’ moduli of elasticity.

Keywords: reinforced concrete, prestressed concrete, nonlinear finite element analysis, fiber-reinforced polymer, ductility

Procedia PDF Downloads 22
2550 A Spatial Perspective on the Metallized Combustion Aspect of Rockets

Authors: Chitresh Prasad, Arvind Ramesh, Aditya Virkar, Karan Dholkaria, Vinayak Malhotra

Abstract:

Solid Propellant Rocket is a rocket that utilises a combination of a solid Oxidizer and a solid Fuel. Success in Solid Rocket Motor design and development depends significantly on knowledge of burning rate behaviour of the selected solid propellant under all motor operating conditions and design limit conditions. Most Solid Motor Rockets consist of the Main Engine, along with multiple Boosters that provide an additional thrust to the space-bound vehicle. Though widely used, they have been eclipsed by Liquid Propellant Rockets, because of their better performance characteristics. The addition of a catalyst such as Iron Oxide, on the other hand, can drastically enhance the performance of a Solid Rocket. This scientific investigation tries to emulate the working of a Solid Rocket using Sparklers and Energized Candles, with a central Energized Candle acting as the Main Engine and surrounding Sparklers acting as the Booster. The Energized Candle is made of Paraffin Wax, with Magnesium filings embedded in it’s wick. The Sparkler is made up of 45% Barium Nitrate, 35% Iron, 9% Aluminium, 10% Dextrin and the remaining composition consists of Boric Acid. The Magnesium in the Energized Candle, and the combination of Iron and Aluminium in the Sparkler, act as catalysts and enhance the burn rates of both materials. This combustion of Metallized Propellants has an influence over the regression rate of the subject candle. The experimental parameters explored here are Separation Distance, Systematically varying Configuration and Layout Symmetry. The major performance parameter under observation is the Regression Rate of the Energized Candle. The rate of regression is significantly affected by the orientation and configuration of the sparklers, which usually act as heat sources for the energized candle. The Overall Efficiency of any engine is factorised by the thermal and propulsive efficiencies. Numerous efforts have been made to improve one or the other. This investigation focuses on the Orientation of Rocket Motor Design to maximize their Overall Efficiency. The primary objective is to analyse the Flame Spread Rate variations of the energized candle, which resembles the solid rocket propellant used in the first stage of rocket operation thereby affecting the Specific Impulse values in a Rocket, which in turn have a deciding impact on their Time of Flight. Another objective of this research venture is to determine the effectiveness of the key controlling parameters explored. This investigation also emulates the exhaust gas interactions of the Solid Rocket through concurrent ignition of the Energized Candle and Sparklers, and their behaviour is analysed. Modern space programmes intend to explore the universe outside our solar system. To accomplish these goals, it is necessary to design a launch vehicle which is capable of providing incessant propulsion along with better efficiency for vast durations. The main motivation of this study is to enhance Rocket performance and their Overall Efficiency through better designing and optimization techniques, which will play a crucial role in this human conquest for knowledge.

Keywords: design modifications, improving overall efficiency, metallized combustion, regression rate variations

Procedia PDF Downloads 181
2549 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems

Authors: Nyeng P. Gyang

Abstract:

Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.

Keywords: cloud computing systems, multicore systems, parallel Delaunay triangulation, parallel surface modeling and generation

Procedia PDF Downloads 210
2548 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities

Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra

Abstract:

Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.

Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics

Procedia PDF Downloads 147
2547 Optimizing Emergency Rescue Center Layouts: A Backpropagation Neural Networks-Genetic Algorithms Method

Authors: Xiyang Li, Qi Yu, Lun Zhang

Abstract:

In the face of natural disasters and other emergency situations, determining the optimal location of rescue centers is crucial for improving rescue efficiency and minimizing impact on affected populations. This paper proposes a method that integrates genetic algorithms (GA) and backpropagation neural networks (BPNN) to address the site selection optimization problem for emergency rescue centers. We utilize BPNN to accurately estimate the cost of delivering supplies from rescue centers to each temporary camp. Moreover, a genetic algorithm with a special partially matched crossover (PMX) strategy is employed to ensure that the number of temporary camps assigned to each rescue center adheres to predetermined limits. Using the population distribution data during the 2022 epidemic in Jiading District, Shanghai, as an experimental case, this paper verifies the effectiveness of the proposed method. The experimental results demonstrate that the BPNN-GA method proposed in this study outperforms existing algorithms in terms of computational efficiency and optimization performance. Especially considering the requirements for computational resources and response time in emergency situations, the proposed method shows its ability to achieve rapid convergence and optimal performance in the early and mid-stages. Future research could explore incorporating more real-world conditions and variables into the model to further improve its accuracy and applicability.

Keywords: emergency rescue centers, genetic algorithms, back-propagation neural networks, site selection optimization

Procedia PDF Downloads 93
2546 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.

Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE

Procedia PDF Downloads 430
2545 Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow

Authors: Shubham Kumar, Chaitanya Goswami, Sudipto Sarkar

Abstract:

Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.

Keywords: Ansys Fluent, CFD, periodic vortex shedding, pseudoplastic fluid flow

Procedia PDF Downloads 213
2544 The Impact of Climate Change on Sustainable Aquaculture Production

Authors: Peyman Mosberian-Tanha, Mona Rezaei

Abstract:

Aquaculture sector is the fastest growing food sector with annual growth rate of about 10%. The sustainability of aquaculture production, however, has been debated mainly in relation to the feed ingredients used for farmed fish. The industry has been able to decrease its dependency on marine-based ingredients in line with policies for more sustainable production. As a result, plant-based ingredients have increasingly been incorporated in aquaculture feeds, especially in feeds for popular carnivorous species, salmonids. The effect of these ingredients on salmonids’ health and performance has been widely studied. In most cases, plant-based diets are associated with varying degrees of health and performance issues across salmonids, partly depending on inclusion levels of plant ingredients and the species in question. However, aquaculture sector is facing another challenge of concern. Environmental challenges in association with climate change is another issue the aquaculture sector must deal with. Data from trials in salmonids subjected to environmental challenges of various types show adverse physiological responses, partly in relation to stress. To date, there are only a limited number of studies reporting the interactive effects of adverse environmental conditions and dietary regimens on salmonids. These studies have shown that adverse environmental conditions exacerbate the detrimental effect of plant-based diets on digestive function and health in salmonids. This indicates an additional challenge for the aquaculture sector to grow in a sustainable manner. The adverse environmental conditions often studied in farmed fish is the change in certain water quality parameters such as oxygen and/or temperature that are typically altered in response to climate change and, more specifically, global warming. In a challenge study, we observed that the in the fish fed a plant-based diet, the fish’s ability to absorb dietary energy was further reduced when reared under low oxygen level. In addition, gut health in these fish was severely impaired. Some other studies also confirm the adverse effect of environmental challenge on fish’s gut health. These effects on the digestive function and gut health of salmonids may result in less resistance to diseases and weaker performance with significant economic and ethical implications. Overall, various findings indicate the multidimensional negative effects of climate change, as a major environmental issue, in different sectors, including aquaculture production. Therefore, a comprehensive evaluation of different ways to cope with climate change is essential for planning more sustainable strategies in aquaculture sector.

Keywords: aquaculture, climate change, sustainability, salmonids

Procedia PDF Downloads 191
2543 Analysis of Lift Force in Hydrodynamic Transport of a Finite Sized Particle in Inertial Microfluidics with a Rectangular Microchannel

Authors: Xinghui Wu, Chun Yang

Abstract:

Inertial microfluidics is a competitive fluidic method with applications in separation of particles, cells and bacteria. In contrast to traditional microfluidic devices with low Reynolds number, inertial microfluidics works in the intermediate Re number range which brings about several intriguing inertial effects on particle separation/focusing to meet the throughput requirement in the real-world. Geometric modifications to make channels become irregular shapes can leverage fluid inertia to create complex secondary flow for adjusting the particle equilibrium positions and thus enhance the separation resolution and throughput. Although inertial microfluidics has been extensively studied by experiments, our current understanding of its mechanisms is poor, making it extremely difficult to build rational-design guidelines for the particle focusing locations, especially for irregularly shaped microfluidic channels. Inertial particle microfluidics in irregularly shaped channels were investigated in our group. There are several fundamental issues that require us to address. One of them is about the balance between the inertial lift forces and the secondary drag forces. Also, it is critical to quantitatively describe the dependence of the life forces on particle-particle interactions in irregularly shaped channels, such as a rectangular one. To provide physical insights into the inertial microfluidics in channels of irregular shapes, in this work the immersed boundary-lattice Boltzmann method (IB-LBM) was introduced and validated to explore the transport characteristics and the underlying mechanisms of an inertial focusing single particle in a rectangular microchannel. The transport dynamics of a finitesized particle were investigated over wide ranges of Reynolds number (20 < Re < 500) and particle size. The results show that the inner equilibrium positions are more difficult to occur in the rectangular channel, which can be explained by the secondary flow caused by the presence of a finite-sized particle. Furthermore, force decoupling analysis was utilized to study the effect of each type of lift force on the inertia migration, and a theoretical model for the lateral lift force of a finite-sized particle in the rectangular channel was established. Such theoretical model can be used to provide theoretical guidance for the design and operation of inertial microfluidics.

Keywords: inertial microfluidics, particle focuse, life force, IB-LBM

Procedia PDF Downloads 74
2542 Tuning the Surface Roughness of Patterned Nanocellulose Films: An Alternative to Plastic Based Substrates for Circuit Priniting in High-Performance Electronics

Authors: Kunal Bhardwaj, Christine Browne

Abstract:

With the increase in global awareness of the environmental impacts of plastic-based products, there has been a massive drive to reduce our use of these products. Use of plastic-based substrates in electronic circuits has been a matter of concern recently. Plastics provide a very smooth and cheap surface for printing high-performance electronics due to their non-permeability to ink and easy mouldability. In this research, we explore the use of nano cellulose (NC) films in electronics as they provide an advantage of being 100% recyclable and eco-friendly. The main hindrance in the mass adoption of NC film as a substitute for plastic is its higher surface roughness which leads to ink penetration, and dispersion in the channels on the film. This research was conducted to tune the RMS roughness of NC films to a range where they can replace plastics in electronics(310-470nm). We studied the dependence of the surface roughness of the NC film on the following tunable aspects: 1) composition by weight of the NC suspension that is sprayed on a silicon wafer 2) the width and the depth of the channels on the silicon wafer used as a base. Various silicon wafers with channel depths ranging from 6 to 18 um and channel widths ranging from 5 to 500um were used as a base. Spray coating method for NC film production was used and two solutions namely, 1.5wt% NC and a 50-50 NC-CNC (cellulose nanocrystal) mixture in distilled water, were sprayed through a Wagner sprayer system model 117 at an angle of 90 degrees. The silicon wafer was kept on a conveyor moving at a velocity of 1.3+-0.1 cm/sec. Once the suspension was uniformly sprayed, the mould was left to dry in an oven at 50°C overnight. The images of the films were taken with the help of an optical profilometer, Olympus OLS 5000. These images were converted into a ‘.lext’ format and analyzed using Gwyddion, a data and image analysis software. Lowest measured RMS roughness of 291nm was with a 50-50 CNC-NC mixture, sprayed on a silicon wafer with a channel width of 5 µm and a channel depth of 12 µm. Surface roughness values of 320+-17nm were achieved at lower (5 to 10 µm) channel widths on a silicon wafer. This research opened the possibility of the usage of 100% recyclable NC films with an additive (50% CNC) in high-performance electronics. Possibility of using additives like Carboxymethyl Cellulose (CMC) is also being explored due to the hypothesis that CMC would reduce friction amongst fibers, which in turn would lead to better conformations amongst the NC fibers. CMC addition would thus be able to help tune the surface roughness of the NC film to an even greater extent in future.

Keywords: nano cellulose films, electronic circuits, nanocrystals and surface roughness

Procedia PDF Downloads 129
2541 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar

Abstract:

Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.

Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation

Procedia PDF Downloads 119
2540 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats

Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.

Keywords: MDA, TBA, ciprofloxacin, HPLC-UV

Procedia PDF Downloads 329
2539 Heat Transfer Performance of a Small Cold Plate with Uni-Directional Porous Copper for Cooling Power Electronics

Authors: K. Yuki, R. Tsuji, K. Takai, S. Aramaki, R. Kibushi, N. Unno, K. Suzuki

Abstract:

A small cold plate with uni-directional porous copper is proposed for cooling power electronics such as an on-vehicle inverter with the heat generation of approximately 500 W/cm2. The uni-directional porous copper with the pore perpendicularly orienting the heat transfer surface is soldered to a grooved heat transfer surface. This structure enables the cooling liquid to evaporate in the pore of the porous copper and then the vapor to discharge through the grooves. In order to minimize the cold plate, a double flow channel concept is introduced for the design of the cold plate. The cold plate consists of a base plate, a spacer, and a vapor discharging plate, totally 12 mm in thickness. The base plate has multiple nozzles of 1.0 mm in diameter for the liquid supply and 4 slits of 2.0 mm in width for vapor discharging, and is attached onto the top surface of the porous copper plate of 20 mm in diameter and 5.0 mm in thickness. The pore size is 0.36 mm and the porosity is 36 %. The cooling liquid flows into the porous copper as an impinging jet flow from the multiple nozzles, and then the vapor, which is generated in the pore, is discharged through the grooves and the vapor slits outside the cold plate. A heated test section consists of the cold plate, which was explained above, and a heat transfer copper block with 6 cartridge heaters. The cross section of the heat transfer block is reduced in order to increase the heat flux. The top surface of the block is the grooved heat transfer surface of 10 mm in diameter at which the porous copper is soldered. The grooves are fabricated like latticework, and the width and depth are 1.0 mm and 0.5 mm, respectively. By embedding three thermocouples in the cylindrical part of the heat transfer block, the temperature of the heat transfer surface ant the heat flux are extrapolated in a steady state. In this experiment, the flow rate is 0.5 L/min and the flow velocity at each nozzle is 0.27 m/s. The liquid inlet temperature is 60 °C. The experimental results prove that, in a single-phase heat transfer regime, the heat transfer performance of the cold plate with the uni-directional porous copper is 2.1 times higher than that without the porous copper, though the pressure loss with the porous copper also becomes higher than that without the porous copper. As to the two-phase heat transfer regime, the critical heat flux increases by approximately 35% by introducing the uni-directional porous copper, compared with the CHF of the multiple impinging jet flow. In addition, we confirmed that these heat transfer data was much higher than that of the ordinary single impinging jet flow. These heat transfer data prove high potential of the cold plate with the uni-directional porous copper from the view point of not only the heat transfer performance but also energy saving.

Keywords: cooling, cold plate, uni-porous media, heat transfer

Procedia PDF Downloads 300
2538 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries

Authors: Gaurav Kumar Sinha

Abstract:

The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.

Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance

Procedia PDF Downloads 34
2537 Flow Field Optimization for Proton Exchange Membrane Fuel Cells

Authors: Xiao-Dong Wang, Wei-Mon Yan

Abstract:

The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.

Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection

Procedia PDF Downloads 302
2536 Efficiency and Scale Elasticity in Network Data Envelopment Analysis: An Application to International Tourist Hotels in Taiwan

Authors: Li-Hsueh Chen

Abstract:

Efficient operation is more and more important for managers of hotels. Unlike the manufacturing industry, hotels cannot store their products. In addition, many hotels provide room service, and food and beverage service simultaneously. When efficiencies of hotels are evaluated, the internal structure should be considered. Hence, based on the operational characteristics of hotels, this study proposes a DEA model to simultaneously assess the efficiencies among the room production division, food and beverage production division, room service division and food and beverage service division. However, not only the enhancement of efficiency but also the adjustment of scale can improve the performance. In terms of the adjustment of scale, scale elasticity or returns to scale can help to managers to make decisions concerning expansion or contraction. In order to construct a reasonable approach to measure the efficiencies and scale elasticities of hotels, this study builds an alternative variable-returns-to-scale-based two-stage network DEA model with the combination of parallel and series structures to explore the scale elasticities of the whole system, room production division, food and beverage production division, room service division and food and beverage service division based on the data of international tourist hotel industry in Taiwan. The results may provide valuable information on operational performance and scale for managers and decision makers.

Keywords: efficiency, scale elasticity, network data envelopment analysis, international tourist hotel

Procedia PDF Downloads 227
2535 The Effect of Perceived Environmental Uncertainty on Corporate Entrepreneurship Performance: A Field Study in a Large Industrial Zone in Turkey

Authors: Adem Öğüt, M. Tahir Demirsel

Abstract:

Rapid changes and developments today, besides the opportunities and facilities they offer to the organization, may also be a source of danger and difficulties due to the uncertainty. In order to take advantage of opportunities and to take the necessary measures against possible uncertainties, organizations must always follow the changes and developments that occur in the business environment and develop flexible structures and strategies for the alternative cases. Perceived environmental uncertainty is an outcome of managers’ perceptions of the combined complexity, instability and unpredictability in the organizational environment. An environment that is perceived to be complex, changing rapidly, and difficult to predict creates high levels of uncertainty about the appropriate organizational responses to external circumstances. In an uncertain and complex environment, organizations experiencing cutthroat competition may be successful by developing their corporate entrepreneurial ability. Corporate entrepreneurship is a process that includes many elements such as innovation, creating new business, renewal, risk-taking and being predictive. Successful corporate entrepreneurship is a critical factor which has a significant contribution to gain a sustainable competitive advantage, to renew the organization and to adapt the environment. In this context, the objective of this study is to investigate the effect of perceived environmental uncertainty of managers on corporate entrepreneurship performance. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). According to the results, it has been observed that there is a positive statistically significant relationship between perceived environmental uncertainty and corporate entrepreneurial activities.

Keywords: corporate entrepreneurship, entrepreneurship, industrial zone, perceived environmental uncertainty, uncertainty

Procedia PDF Downloads 317
2534 Bi-Liquid Free Surface Flow Simulation of Liquid Atomization for Bi-Propellant Thrusters

Authors: Junya Kouwa, Shinsuke Matsuno, Chihiro Inoue, Takehiro Himeno, Toshinori Watanabe

Abstract:

Bi-propellant thrusters use impinging jet atomization to atomize liquid fuel and oxidizer. Atomized propellants are mixed and combusted due to auto-ignitions. Therefore, it is important for a prediction of thruster’s performance to simulate the primary atomization phenomenon; especially, the local mixture ratio can be used as indicator of thrust performance, so it is useful to evaluate it from numerical simulations. In this research, we propose a numerical method for considering bi-liquid and the mixture and install it to CIP-LSM which is a two-phase flow simulation solver with level-set and MARS method as an interfacial tracking method and can predict local mixture ratio distribution downstream from an impingement point. A new parameter, beta, which is defined as the volume fraction of one liquid in the mixed liquid within a cell is introduced and the solver calculates the advection of beta, inflow and outflow flux of beta to a cell. By validating this solver, we conducted a simple experiment and the same simulation by using the solver. From the result, the solver can predict the penetrating length of a liquid jet correctly and it is confirmed that the solver can simulate the mixing of liquids. Then we apply this solver to the numerical simulation of impinging jet atomization. From the result, the inclination angle of fan after the impingement in the bi-liquid condition reasonably agrees with the theoretical value. Also, it is seen that the mixture of liquids can be simulated in this result. Furthermore, simulation results clarify that the injecting condition affects the atomization process and local mixture ratio distribution downstream drastically.

Keywords: bi-propellant thrusters, CIP-LSM, free-surface flow simulation, impinging jet atomization

Procedia PDF Downloads 285
2533 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 82
2532 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations

Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu

Abstract:

Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.

Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior

Procedia PDF Downloads 109
2531 Design Optimization of Miniature Mechanical Drive Systems Using Tolerance Analysis Approach

Authors: Eric Mxolisi Mkhondo

Abstract:

Geometrical deviations and interaction of mechanical parts influences the performance of miniature systems.These deviations tend to cause costly problems during assembly due to imperfections of components, which are invisible to a naked eye.They also tend to cause unsatisfactory performance during operation due to deformation cause by environmental conditions.One of the effective tools to manage the deviations and interaction of parts in the system is tolerance analysis.This is a quantitative tool for predicting the tolerance variations which are defined during the design process.Traditional tolerance analysis assumes that the assembly is static and the deviations come from the manufacturing discrepancies, overlooking the functionality of the whole system and deformation of parts due to effect of environmental conditions. This paper presents an integrated tolerance analysis approach for miniature system in operation.In this approach, a computer-aided design (CAD) model is developed from system’s specification.The CAD model is then used to specify the geometrical and dimensional tolerance limits (upper and lower limits) that vary component’s geometries and sizes while conforming to functional requirements.Worst-case tolerances are analyzed to determine the influenced of dimensional changes due to effects of operating temperatures.The method is used to evaluate the nominal conditions, and worse case conditions in maximum and minimum dimensions of assembled components.These three conditions will be evaluated under specific operating temperatures (-40°C,-18°C, 4°C, 26°C, 48°C, and 70°C). A case study on the mechanism of a zoom lens system is used to illustrate the effectiveness of the methodology.

Keywords: geometric dimensioning, tolerance analysis, worst-case analysis, zoom lens mechanism

Procedia PDF Downloads 167
2530 Robust Processing of Antenna Array Signals under Local Scattering Environments

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.

Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch

Procedia PDF Downloads 119
2529 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics

Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty

Abstract:

Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.

Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC

Procedia PDF Downloads 224
2528 Discriminant Analysis of Pacing Behavior on Mass Start Speed Skating

Authors: Feng Li, Qian Peng

Abstract:

The mass start speed skating (MSSS) is a new event for the 2018 PyeongChang Winter Olympics and will be an official race for the 2022 Beijing Winter Olympics. Considering that the event rankings were based on points gained on laps, it is worthwhile to investigate the pacing behavior on each lap that directly influences the ranking of the race. The aim of this study was to detect the pacing behavior and performance on MSSS regarding skaters’ level (SL), competition stage (semi-final/final) (CS) and gender (G). All the men's and women's races in the World Cup and World Championships were analyzed in the 2018-2019 and 2019-2020 seasons. As a result, a total of 601 skaters from 36 games were observed. ANOVA for repeated measures was applied to compare the pacing behavior on each lap, and the three-way ANOVA for repeated measures was used to identify the influence of SL, CS, and G on pacing behavior and total time spent. In general, the results showed that the pacing behavior from fast to slow were cluster 1—laps 4, 8, 12, 15, 16, cluster 2—laps 5, 9, 13, 14, cluster 3—laps 3, 6, 7, 10, 11, and cluster 4—laps 1 and 2 (p=0.000). For CS, the total time spent in the final was less than the semi-final (p=0.000). For SL, top-level skaters spent less total time than the middle-level and low-level (p≤0.002), while there was no significant difference between the middle-level and low-level (p=0.214). For G, the men’s skaters spent less total time than women on all laps (p≤0.048). This study could help to coach staff better understand the pacing behavior regarding SL, CS, and G, further providing references concerning promoting the pacing strategy and decision making before and during the race.

Keywords: performance analysis, pacing strategy, winning strategy, winter Olympics

Procedia PDF Downloads 196
2527 Predictive Analytics in Oil and Gas Industry

Authors: Suchitra Chnadrashekhar

Abstract:

Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.

Keywords: hydrocarbon, information technology, SAS, predictive analytics

Procedia PDF Downloads 367
2526 Physical and Physiological Characteristics of Young Soccer Players in Republic of Macedonia

Authors: Sanja Manchevska, Vaska Antevska, Lidija Todorovska, Beti Dejanova, Sunchica Petrovska, Ivanka Karagjozova, Elizabeta Sivevska, Jasmina Pluncevic Gligoroska

Abstract:

Introduction: A number of positive effects on the player’s physical status, including the body mass components are attributed to training process. As young soccer players grow up qualitative and quantitative changes appear and contribute to better performance. Player’s anthropometric and physiologic characteristics are recognized as important determinants of performance. Material: A sample of 52 soccer players with an age span from 9 to 14 years were divided in two groups differentiated by age. The younger group consisted of 25 boys under 11 years (mean age 10.2) and second group consisted of 27 boys with mean age 12.64. Method: The set of basic anthropometric parameters was analyzed: height, weight, BMI (Body Mass Index) and body mass components. Maximal oxygen uptake was tested using the treadmill protocol by Brus. Results: The group aged under 11 years showed the following anthropometric and physiological features: average height= 143.39cm, average weight= 44.27 kg; BMI= 18.77; Err = 5.04; Hb= 13.78 g/l; VO2=37.72 mlO2/kg. Average values of analyzed parameters were as follows: height was 163.7 cm; weight= 56.3 kg; BMI = 19.6; VO2= 39.52 ml/kg; Err=5.01; Hb=14.3g/l for the participants aged 12 to14 years. Conclusion: Physiological parameters (maximal oxygen uptake, erythrocytes and Hb) were insignificantly higher in the older group compared to the younger group. There were no statistically significant differences between analyzed anthropometric parameters among the two groups except for the basic measurements (height and weight).

Keywords: body composition, young soccer players, BMI, physical status

Procedia PDF Downloads 404
2525 The Nexus between Manpower Training and Corporate Compliance

Authors: Timothy Wale Olaosebikan

Abstract:

The most active resource in any organization is the manpower. Every other resource remains inactive unless there is competent manpower to handle them. Manpower training is needed to enhance productivity and overall performance of the organizations. This is due to the recognition of the important role of manpower training in attainment of organizational goals. Corporate Compliance conjures visions of an incomprehensible matrix of laws and regulations that defy logic and control by even the most seasoned manpower training professionals. Similarly, corporate compliance can be viewed as one of the most significant problems faced in manpower training process for any organization, therefore, commands relevant attention and comprehension. Consequently, this study investigated the nexus between manpower training and corporate compliance. Collection of data for the study was effected through the use of questionnaire with a sample size of 265 drawn by stratified random sampling. The data were analyzed using descriptive and inferential statistics. The findings of the study show that about 75% of the respondents agree that there is a strong relationship between manpower training and corporate compliance, which brings out the organizational attainment from any training process. The findings further show that most organisation do not totally comply with the rules guiding manpower training process thereby making the process less effective on organizational performance, which may affect overall profitability. The study concludes that formulation and compliance of adequate rules and guidelines for manpower trainings will produce effective results for both employees and the organization at large. The study recommends that leaders of organizations, industries, and institutions must ensure total compliance on the part of both the employees and the organization to manpower training rules. Organizations and stakeholders should also ensure that strict policies on corporate compliance to manpower trainings form the heart of their cardinal mission.

Keywords: corporate compliance, manpower training, nexus, rules and guidelines

Procedia PDF Downloads 146
2524 Improving Vocabulary and Listening Comprehension via Watching French Films without Subtitles: Positive Results

Authors: Yelena Mazour-Matusevich, Jean-Robert Ancheta

Abstract:

This study is based on more than fifteen years of experience of teaching a foreign language, in my case French, to the English-speaking students. It represents a qualitative research on foreign language learners’ reaction and their gains in terms of vocabulary and listening comprehension through repeatedly viewing foreign feature films with the original sountrack but without English subtitles. The initial idea emerged upon realization that the first challenge faced by my students when they find themselves in a francophone environment has been their lack of listening comprehension. Their inability to understand colloquial speech affects not only their academic performance, but their psychological health as well. To remedy this problem, I have designed and applied for many years my own teaching method based on one particular French film, exceptionally suited, for the reasons described in detail in the paper, for the intermediate-advanced level foreign language learners. This project, conducted together with my undergraduate assistant and mentoree J-R Ancheta, aims at showing how the paralinguistic features, such as characters’ facial expressions, settings, music, historical background, images provided before the actual viewing, etc., offer crucial support and enhance students’ listening comprehension. The study, based on students’ interviews, also offers special pedagogical techniques, such as ‘anticipatory’ vocabulary lists and exercises, drills, quizzes and composition topics that have proven to boost students’ performance. For this study, only the listening proficiency and vocabulary gains of the interviewed participants were assessed.

Keywords: comprehension, film, listening, subtitles, vocabulary

Procedia PDF Downloads 628