Search results for: control and optimization techniques
17599 Structural Analysis and Detail Design of APV Module Structure Using Topology Optimization Design
Authors: Hyun Kyu Cho, Jun Soo Kim, Young Hoon Lee, Sang Hoon Kang, Young Chul Park
Abstract:
In the study, structure for one of offshore drilling system APV(Air Pressure Vessle) modules was designed by using topology optimum design and performed structural safety evaluation according to DNV rules. 3D model created base on design area and non-design area separated by using topology optimization for the environmental loads. This model separated 17 types for wind loads and dynamic loads and performed structural analysis evaluation for each model. As a result, the maximum stress occurred 181.25MPa.Keywords: APV, topology optimum design, DNV, structural analysis, stress
Procedia PDF Downloads 42517598 Control and Automation of Sensors in Metering System of Fluid
Authors: Abdelkader Harrouz, Omar Harrouz, Ali Benatiallah
Abstract:
This paper is to present the essential definitions, roles and characteristics of automation of metering system. We discuss measurement, data acquisition and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.Keywords: communication, metering, computer, sensor
Procedia PDF Downloads 55517597 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System
Authors: E. E. EL-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou M. El-refay, Mohammed El-Zefery
Abstract:
Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of three-phase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.Keywords: photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT)
Procedia PDF Downloads 48217596 Effect of Silicon Sulphate and Silicic Acid Rates on Growth, Yield and Nutritional Status of Wheat (Triticum aestivum L.)
Authors: R. G. Shemi, M. A. Abo Horish, Kh. M. A. Mekled
Abstract:
The utilization of silicon (Si) sources is a crucial agricultural tool that requires optimization to promote sustainable practices. The application of Si provides the implementation of biological mechanisms of plant nutrition, growth promotion, and protection. The aims of this experiment were to investigate the relative efficacy of Si sources and levels on the growth, yield, and mineral content of wheat. The study examined the effects of silicon sulphate and silicic acid levels on growth, spike characteristics, yield parameters, and macro- and micronutrient concentrations of wheat during the 2-season. The entire above-indicated parameters were significantly (p < 0.05) increased with increasing levels of silicon sulphate and silicic acid compared to the control. Foliar application of silicon sulphate 150 ppm and silicic acid 60 ppm statistically (p < 0.05) enhanced grain N concentration and the grain yield by 136.14 and 77.85%, 43.49 and 34.52% in the 1st season, and by 78.62 and 54.40%, 43.53 and 33.18% in the 2nd season, respectively, as compared with control. Overall, foliar applications of silicon sulphate at 150 ppm and silicic acid at 60 ppm were greatly efficient amongst all Si levels and sources in improving growth and spike characters, increasing yield parameters, and elevating grain nutrients. Finally, the treatment of silicon sulfate at 150 ppm was more effective than the treatment of silicic acid at 60 ppm in increasing growth, grain nutrients, and productivity of wheat and attaining agricultural sustainability under experiment conditions.Keywords: wheat, silicon sulphate, silicic acid, grain nutrients
Procedia PDF Downloads 1817595 Efficacy of Chia Seed Oil Supplemented Ice-Cream against Hypercholesterolemia
Authors: Naureen Naeem, M. S. Aslam
Abstract:
Chia seeds found to be a rich source of dietary fiber contain oil which is high in omega 6 and omega 3 fatty acids and helpful in the control of cardiovascular diseases. Owing to its spectacular significance, present research had been designed to explore its effect on cholesterol level of the individuals after consumption of chia seed oil supplemented ice cream. The project was designed in such a manner that fat of ice cream was replaced with chia seed oil in different proportions i.e., 25%, 50%, 75%, 100%. After physico-chemical and sensory evaluation of ice cream, best treatment was selected and used for efficacy trials. After baseline line study and thorough inclusion criteria 10 individuals were selected and divided into two groups. One group treated as control and the other was given chia seed oil supplemented l(50%) ice cream. Significant decrease in cholesterol level was observed in the treated group. 18% decrease in cholesterol level was observed at 40th day followed by 8% at 20th day. Similarly 20% decrease in LDL cholesterol with 14% increase in HDL cholesterol. It was recommended that further trials be conducted with sophisticated techniques to completely replace saturated fat in ice cream with unsaturated fats and to study its effect in hyperglycemia and oxidative stress.Keywords: hypercholesterolemia, chia seed oil, HDL, triglycerides
Procedia PDF Downloads 30917594 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing
Authors: Thomas Yeboah
Abstract:
Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing
Procedia PDF Downloads 62817593 Adaptive Backstepping Control of Uncertain Nonlinear Systems with Input Backlash
Authors: Ali Anwar, Hu Qinglei, Li Bo, Muhammad Taha Ali
Abstract:
In this paper a generic model of perturbed nonlinear systems is considered which is affected by hard backlash nonlinearity at the input. The nonlinearity is modelled by a dynamic differential equation which presents a more precise shape as compared to the existing linear models and is compatible with nonlinear design technique such as backstepping. Moreover, a novel backstepping based nonlinear control law is designed which explicitly incorporates a continuous-time adaptive backlash inverse model. It provides a significant flexibility to control engineers, whereby they can use the estimated backlash spacing value specified on actuators such as gears etc. in the adaptive Backlash Inverse model during the control design. It ensures not only global stability but also stringent transient performance with desired precision. It is also robust to external disturbances upon which the bounds are taken as unknown and traverses the backlash spacing efficiently with underestimated information about the actual value. The continuous-time backlash inverse model is distinguished in the sense that other models are either discrete-time or involve complex computations. Furthermore, numerical simulations are presented which not only illustrate the effectiveness of proposed control law but also its comparison with PID and other backstepping controllers.Keywords: adaptive control, hysteresis, backlash inverse, nonlinear system, robust control, backstepping
Procedia PDF Downloads 46017592 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 8317591 Exergetic Optimization on Solid Oxide Fuel Cell Systems
Authors: George N. Prodromidis, Frank A. Coutelieris
Abstract:
Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.Keywords: biogas, exergy, efficiency, optimization
Procedia PDF Downloads 37017590 Recent Advances in Data Warehouse
Authors: Fahad Hanash Alzahrani
Abstract:
This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation.Keywords: data warehouse, data mining, knowledge discovery in databases, on-line analytical processing
Procedia PDF Downloads 40417589 Biomechanical Assessment of Esophageal Elongation
Authors: Marta Kozuń, Krystian Toczewski, Sylwester Gerus, Justyna Wolicka, Kamila Boberek, Jarosław Filipiak, Dariusz Patkowski
Abstract:
Long gap esophageal atresia is a congenital defect and is a challenge for pediatric surgeons all over the world. There are different surgical techniques in use to treat atresia. One of them is esophageal elongation but the optimal suture placement technique to achieve maximum elongation with low-risk complications is still unknown. The aim of the study was to characterize the process of esophageal elongation from the biomechanical point of view. Esophagi of white Pekin Duck was used as a model based on the size of this animal which is similar to a newborn (2.5-4kg). The specimens were divided into two groups: the control group (CG) and the group with sutures (SG). The esophagi of the control group were mounted in the grips of the MTS Tytron 250 testing machine and tensile test until rupture was performed. The loading speed during the test was 10mm/min. Then the SG group was tested. Each esophagus was cut into two equal parts and that were fused together using surgical sutures. The distance between both esophagus parts was 20mm. Ten both ends were mounted on the same testing machine and the tensile test with the same parameters was conducted. For all specimens, force and elongation were recorded. The biomechanical properties, i.e., the maximal force and maximal elongation, were determined on the basis of force-elongation curves. The maximal elongation was determined at the point of maximal force. The force achieved with the suture group was 10.1N±1.9N and 50.3N±11.6N for the control group. The highest elongation was also obtained for the control group: 18mm±3mm vs. 13.5mm ±2.4mm for the suture group. The presented study expands the knowledge of elongation of esophagi. It is worth emphasizing that the duck esophagus differs from the esophagus of a newborn, i.e., its wall lacks striated muscle cells. This is why the parts of animal esophagi used in the research are may characterized by different biomechanical properties in comparison with newborn tissue.Keywords: long gap atresia treatment, esophageal elongation, biomechanical properties, soft tissue
Procedia PDF Downloads 10017588 Determination of Critical Period for Weed Control in the Second Crop Forage Maize (454 Cultivar)
Authors: Farhad Farahvash, Parya Mobaseri
Abstract:
Weeds control based on their critical period leads to less production costs and risks of wide chemical application of weeds control methods. The present study considered effect of weeds control time (weeds interference after 20, 40 and 60 days, weeds full control, weeds interference and weeds control after 20, 40 and 60 days) on growth and yield of forage maize 454. The experiment based on full-randomized blocks design with three replications was conducted at research farm of Islamic Azad University of Tabriz located at 15th km of East Tabriz in 2013. According to the results, weeds interference after 40 and 60 days as well as weeds control after 20 days prevented from decrease of maize biomass resulted from weeds presence while weeds interference after 20 days, weeds interference and weeds control after 40 and 60 days led respectively to 41.2%, 35%, 25% and 32.5% decrease of forage maize biomass. The weeds-influenced decrease was manifested at different parts of the plant depending on presence period of weeds. Decrease of fresh weight of ear and fresh weight of leaf and stem was observed due to weeds interference after 20 days and weeds interference. If weeds are controlled after 60 days, decrease of ear weight and fresh weight of stem will lead to biomass decrease. Also, if weeds are controlled after 40 days, decrease of fresh weight of maize stems will result in biomass decrease. Ear traits were affected by weeds control treatment. Being affected by treatments of weeds interference after 20 days, weeds non-interference, weeds control after 40 and 60 days, ear length was shortened 29.9 %, 41.4 %, 27.6 % and 37.2 %, respectively. The stem diameter demonstrated a significant decrease although it was only affected by treatments of weeds interference and weeds control after 60 days. Considering results of the present study, generally, it is suggested to control weeds during initial 20-60 days of maize growth in order to prevent undesirable effect of weeds on growth, production and production biomass of maize and decrease of production costs.Keywords: maize, competition, weed, biomass
Procedia PDF Downloads 35817587 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design
Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley
Abstract:
This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach
Procedia PDF Downloads 65517586 Numerical Investigation for External Strengthening of Dapped-End Beams
Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah
Abstract:
The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.Keywords: dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation
Procedia PDF Downloads 11717585 Preparation of Chemically Activated Carbon from Waste Tire Char for Lead Ions Adsorption and Optimization Using Response Surface Methodology
Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng
Abstract:
The use of tires in automobiles is very important in the automobile industry. However, there is a serious environmental problem concerning the disposal of these rubber tires once they become worn out. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH on pyrolytic char. Adsorption studies on lead onto chemically activated carbon was carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/1000ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found that the adsorption capacity increases with an increase in contact time, pH, temperature and decreases with an increase in lead concentration. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, XRay diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope was used to characterize the pyrolytic carbon char before and after activation. The optimum points 1g/ 100 ml for adsorbent dosage, 7 for pH value of the solution, 115.2 min for contact time, 100 mg/l for initial metal concentration, and 25°C for temperature were obtained to achieve the highest adsorption capacity of 93.176 mg/g with a desirability of 0.994. Fourier Transform Infrared Spectra (FTIR) analysis and Thermogravimetric analysis (TGA) show the presence of oxygen-containing functional groups on the surface of the activated carbon produced and that the weight loss taking place during the activation step is small.Keywords: waste tire pyrolysis char, chemical activation, central composite design (CCD), adsorption capacity, numerical optimization
Procedia PDF Downloads 22617584 Dynamic Analysis and Clutch Adaptive Prefill in Dual Clutch Transmission
Authors: Bin Zhou, Tongli Lu, Jianwu Zhang, Hongtao Hao
Abstract:
Dual clutch transmissions (DCT) offer a high comfort performance in terms of the gearshift. Hydraulic multi-disk clutches are the key components of DCT, its engagement determines the shifting comfort. The prefill of the clutches requests an initial engagement which the clutches just contact against each other but not transmit substantial torque from the engine, this initial clutch engagement point is called the touch point. Open-loop control is typically implemented for the clutch prefill, a lot of uncertainties, such as oil temperature and clutch wear, significantly affects the prefill, probably resulting in an inappropriate touch point. Underfill causes the engine flaring in gearshift while overfill arises clutch tying up, both deteriorating the shifting comfort of DCT. Therefore, it is important to enable an adaptive capacity for the clutch prefills regarding the uncertainties. In this paper, a dynamic model of the hydraulic actuator system is presented, including the variable force solenoid and clutch piston, and validated by a test. Subsequently, the open-loop clutch prefill is simulated based on the proposed model. Two control parameters of the prefill, fast fill time and stable fill pressure is analyzed with regard to the impact on the prefill. The former has great effects on the pressure transients, the latter directly influences the touch point. Finally, an adaptive method is proposed for the clutch prefill during gear shifting, in which clutch fill control parameters are adjusted adaptively and continually. The adaptive strategy is changing the stable fill pressure according to the current clutch slip during a gearshift, improving the next prefill process. The stable fill pressure is increased by means of the clutch slip while underfill and decreased with a constant value for overfill. The entire strategy is designed in the Simulink/Stateflow, and implemented in the transmission control unit with optimization. Road vehicle test results have shown the strategy realized its adaptive capability and proven it improves the shifting comfort.Keywords: clutch prefill, clutch slip, dual clutch transmission, touch point, variable force solenoid
Procedia PDF Downloads 30817583 An Approach to Determine Proper Daylighting Design Solution Considering Visual Comfort and Lighting Energy Efficiency in High-Rise Residential Building
Authors: Zehra Aybike Kılıç, Alpin Köknel Yener
Abstract:
Daylight is a powerful driver in terms of improving human health, enhancing productivity and creating sustainable solutions by minimizing energy demand. A proper daylighting system allows not only a pleasant and attractive visual and thermal environment, but also reduces lighting energy consumption and heating/cooling energy load with the optimization of aperture size, glazing type and solar control strategy, which are the major design parameters of daylighting system design. Particularly, in high-rise buildings where large openings that allow maximum daylight and view out are preferred, evaluation of daylight performance by considering the major parameters of the building envelope design becomes crucial in terms of ensuring occupants’ comfort and improving energy efficiency. Moreover, it is increasingly necessary to examine the daylighting design of high-rise residential buildings, considering the share of residential buildings in the construction sector, the duration of occupation and the changing space requirements. This study aims to identify a proper daylighting design solution considering window area, glazing type and solar control strategy for a high-residential building in terms of visual comfort and lighting energy efficiency. The dynamic simulations are carried out/conducted by DIVA for Rhino version 4.1.0.12. The results are evaluated with Daylight Autonomy (DA) to demonstrate daylight availability in the space and Daylight Glare Probability (DGP) to describe the visual comfort conditions related to glare. Furthermore, it is also analyzed that the lighting energy consumption occurred in each scenario to determine the optimum solution reducing lighting energy consumption by optimizing daylight performance. The results revealed that it is only possible that reduction in lighting energy consumption as well as providing visual comfort conditions in buildings with the proper daylighting design decision regarding glazing type, transparency ratio and solar control device.Keywords: daylighting , glazing type, lighting energy efficiency, residential building, solar control strategy, visual comfort
Procedia PDF Downloads 17617582 A Sustainable Supplier Selection and Order Allocation Based on Manufacturing Processes and Product Tolerances: A Multi-Criteria Decision Making and Multi-Objective Optimization Approach
Authors: Ravi Patel, Krishna K. Krishnan
Abstract:
In global supply chains, appropriate and sustainable suppliers play a vital role in supply chain development and feasibility. In a larger organization with huge number of suppliers, it is necessary to divide suppliers based on their past history of quality and delivery of each product category. Since performance of any organization widely depends on their suppliers, well evaluated selection criteria and decision-making models lead to improved supplier assessment and development. In this paper, SCOR® performance evaluation approach and ISO standards are used to determine selection criteria for better utilization of supplier assessment by using hybrid model of Analytic Hierchchy Problem (AHP) and Fuzzy Techniques for Order Preference by Similarity to Ideal Solution (FTOPSIS). AHP is used to determine the global weightage of criteria which helps TOPSIS to get supplier score by using triangular fuzzy set theory. Both qualitative and quantitative criteria are taken into consideration for the proposed model. In addition, a multi-product and multi-time period model is selected for order allocation. The optimization model integrates multi-objective integer linear programming (MOILP) for order allocation and a hybrid approach for supplier selection. The proposed MOILP model optimizes order allocation based on manufacturing process and product tolerances as per manufacturer’s requirement for quality product. The integrated model and solution approach are tested to find optimized solutions for different scenario. The detailed analysis shows the superiority of proposed model over other solutions which considered individual decision making models.Keywords: AHP, fuzzy set theory, multi-criteria decision making, multi-objective integer linear programming, TOPSIS
Procedia PDF Downloads 17017581 Research on Executive Compensation Incentives and Internal Control: Evidence from China
Authors: Yinjie Han
Abstract:
This paper examines the impact of executive compensation incentives on internal control effectiveness and further analyzes the moderating role of digital transformation in this relationship. Through empirical analysis of relevant data of A-share listed companies in Shanghai and Shenzhen from 2012 to 2022, the results of the study show that there is a significant positive relationship between executive compensation incentives and internal control quality. Digital transformation plays an important moderating role in this relationship. Specifically, executive compensation incentives directly enhance the effectiveness of internal control by increasing executives' motivation and responsibility. At the same time, digital transformation further strengthens the positive impact of executive compensation incentives on the quality of internal controls by increasing information transparency and management efficiency. In addition, the study finds that the impact of executive compensation incentives on internal control quality is more significant in firms with higher levels of digital transformation. This study provides theoretical and practical guidance for enterprises to design and implement effective executive compensation incentives, promote digital transformation, and improve internal control quality.Keywords: executive compensation incentives, internal control, digital transformation, corporate governance
Procedia PDF Downloads 2217580 Efficient Control of Brushless DC Motors with Pulse Width Modulation
Authors: S. Shahzadi, J. Rizk
Abstract:
This paper describes the pulse width modulated control of a three phase, 4 polar DC brushless motor. To implement this practically the Atmel’s AVR ATmega 328 microcontroller embedded on an Arduino Eleven board is utilized. The microcontroller programming is done in an open source Arduino IDE development environment. The programming logic effectively manipulated a six MOSFET bridge which was used to energize the stator windings as per control requirements. The results obtained showed accurate, precise and efficient pulse width modulated operation. Another advantage offered by this pulse width modulated control was the efficient speed control of the motor. By varying the time intervals between successive commutations, faster energizing of the stator windings was possible thereby leading to quicker rotor alignment with these energized phases and faster revolutions.Keywords: brushless DC motors, commutation, MOSFET, PWM
Procedia PDF Downloads 51217579 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 5617578 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat
Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar
Abstract:
One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency
Procedia PDF Downloads 24817577 Hairy Beggarticks (Bidens pilosa L. - Asteraceae) Control in Sunflower Fields Using Pre-Emergence Herbicides
Authors: Alexandre M. Brighenti
Abstract:
One of the most damaging species in sunflower crops in Brazil is the hairy beggarticks (Bidens pilosa L.). The large number of seeds, the various vegetative cycles during the year, the staggered germination and the scarcity of selective and effective herbicides to control this weed in sunflower are some of attributes that hinder the effectiveness in controlling hairy beggarticks populations. The experiment was carried out with the objectives of evaluating the control of hairy beggarticks plants in sunflower crops, and to assess sunflower tolerance to residual herbicides. The treatments were as follows: S-metolachlor (1,200 and 2,400 g ai ha-1), flumioxazin (60 and 120 g ai ha-1), sulfentrazone (150 and 300 g ai ha-1) and two controls (weedy and weed-free check). Phytotoxicity on sunflower plants, percentage of control and density of hairy beggarticks plants, sunflower stand and plant height, head diameter, oil content and sunflower yield were evaluated. The herbicides flumioxazin and sulfentrazone were the most efficient in hairy beggarticks control. S-metolachlor provided acceptable control levels. S-metolachlor (1,200 g ha-1), flumioxazin (60 g ha-1) and sulfentrazone (150 g ha-1) were the most selective doses for sunflower crop.Keywords: flumioxazin, Helianthus annuus, S-metolachlor, sulfentrazone, weeds
Procedia PDF Downloads 36017576 Exploring the Influence of Normative, Financial and Environmental Decision Frames in Nudging 'Green' Behaviour, and Increasing Uptake of Energy-Efficient Technologies
Authors: Rebecca Hafner, Daniel Read, David Elmes
Abstract:
The persuasive potential of normative and feedback (financial vs. environmental) information in ‘nudging’ people towards making environmentally sound decisions was explored in a hypothetical choice experiment. The research was specifically focused on determining how subtle variations in the decision frame could be used to increase the selection of energy efficient vs. standard technologies, using the context of home heating choice. Participants were given a choice of a standard heating system (a gas boiler) and a relatively more-energy efficient option (a heat pump). The experiment had a 2 (normative vs. no normative information) by 3 feedback type (financial, environmental, none) design. The last group constituted the control. Half of the participants were given normative information about what the majority of others in their neighbourhood had opted to do when faced with the same choice set, prior to making their decision. The other half received no such information. Varying feedback frames were incorporated by providing participants with information on either financial or environmental savings that could be achieved by choosing the heat pump. No such information was provided in the control group. A significant interaction was found between normative information and feedback frame type. Specifically, the impact of feedback frames was found to be reduced when normative information was provided; illustrating the overriding influence of normative information on option preference. Participants were significantly more likely to select the heat pump if they were vs. were not given normative information. Yet when no normative information was provided, the persuasive influence of the financial frame was increased – highlighting this as an effective means of encouraging uptake of new technologies in this instance. Conversely, the environmental frame was not found to differ significantly from the control. Marginal carryover effects were also found for stated future real-life decision-making behaviour, with participants who were versus were not given normative information being marginally more likely to state they would consider installing a heat pump when they next need to replace their heating system in real life. We conclude that normative and financial feedback framing techniques are highly effective in increasing uptake of new, energy efficient heating technologies involving significant upfront financial outlay. The implications for researchers looking to promote ‘green’ choice in the context of new technology adoption are discussed.Keywords: energy-efficient technology adoption, environmental decision making, financial vs. environmental feedback framing techniques, social norms
Procedia PDF Downloads 30817575 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques
Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh
Abstract:
In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network
Procedia PDF Downloads 7117574 Mechanical Properties of Sugar Palm Fibre Reinforced Thermoplastic Polyurethane Composites
Authors: Dandi Bachtiar, Mohammed Ausama Abbas, Januar Parlaungan Siregar, Mohd Ruzaimi Bin Mat Rejab
Abstract:
Short sugar palm fibre and thermoplastic polyurethane were combined to produce new composites by using the extrude method. Two techniques used to prepare a new composite material, firstly, extrusion of the base material with short fibre, secondly hot pressing them. The size of sugar palm fibre was fixed at 250µm. Different weight percent (10 wt%, 20 wt% and 30 wt%) were used in order to optimise preparation process. The optimization of process depended on the characterization mechanical properties such as impact, tensile, and flexural of the new (TPU/SPF) composite material. The results proved that best tensile and impact properties of weight additive fibre applied 10 wt%. There was an increasing trend recorded of flexural properties during increased the fibre loading. Meanwhile, the maximum tensile strength was 14.0 MPa at 10 wt% of the fibre. Moreover, there was no significant effect for additions more than 30 wt% of the fibre.Keywords: composites, natural fibre, polyurethane, sugar palm
Procedia PDF Downloads 38417573 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals
Authors: Linghui Meng, James Atlas, Deborah Munro
Abstract:
There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers
Procedia PDF Downloads 2917572 SPBAC: A Semantic Policy-Based Access Control for Database Query
Authors: Aaron Zhang, Alimire Kahaer, Gerald Weber, Nalin Arachchilage
Abstract:
Access control is an essential safeguard for the security of enterprise data, which controls users’ access to information resources and ensures the confidentiality and integrity of information resources [1]. Research shows that the more common types of access control now have shortcomings [2]. In this direction, to improve the existing access control, we have studied the current technologies in the field of data security, deeply investigated the previous data access control policies and their problems, identified the existing deficiencies, and proposed a new extension structure of SPBAC. SPBAC extension proposed in this paper aims to combine Policy-Based Access Control (PBAC) with semantics to provide logically connected, real-time data access functionality by establishing associations between enterprise data through semantics. Our design combines policies with linked data through semantics to create a "Semantic link" so that access control is no longer per-database and determines that users in each role should be granted access based on the instance policy, and improves the SPBAC implementation by constructing policies and defined attributes through the XACML specification, which is designed to extend on the original XACML model. While providing relevant design solutions, this paper hopes to continue to study the feasibility and subsequent implementation of related work at a later stage.Keywords: access control, semantic policy-based access control, semantic link, access control model, instance policy, XACML
Procedia PDF Downloads 9117571 Design and Analysis of Solar Powered Plane
Authors: Malarvizhi, Venkatesan
Abstract:
This paper summarizes about the design and optimization of solar powered unmanned aerial vehicle. The purpose of this research is to increase the range and endurance. It can be used for environmental research, aerial photography, search and rescue mission and surveillance in other planets. The ultimate aim of this research is to design and analyze the solar powered plane in order to detect lift, drag and other parameters by using cfd analysis. Similarly the numerical investigation has been done to compare the results of earth’s atmosphere to the mars atmosphere. This is the approach made to check whether the solar powered plane is possible to glide in the planet mars by using renewable energy (i.e., solar energy).Keywords: optimization, range, endurance, surveillance, lift and drag parameters
Procedia PDF Downloads 46017570 Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on Alcohol Dehydration
Authors: Wei-Song Hung
Abstract:
We utilized pressure, vacuum, and evaporation-assisted self-assembly techniques through which graphene oxide (GO) was deposited on modified polyacrylonitrile (mPAN). The fabricated composite GO/mPAN membranes were applied to dehydrate 1-butanol mixtures by pervaporation. Varying driving forces in the self-assembly techniques induced different GO assembly layer microstructures. XRD results indicated that the GO layer d-spacing varied from 8.3 Å to 11.5 Å. The self-assembly technique with evaporation resulted in a heterogeneous GO layer with loop structures; this layer was shown to be hydrophobic, in contrast to the hydrophilic layer formed from the other two techniques. From the pressure-assisted technique, the composite membrane exhibited exceptional pervaporation performance at 30 C: concentration of water at the permeate side = 99.6 wt% and permeation flux = 2.54 kg m-2 h-1. Moreover, the membrane sustained its operating stability at a high temperature of 70 C: a high water concentration of 99.5 wt% was maintained, and a permeation flux as high as 4.34 kg m-2 h-1 was attained. This excellent separation performance stemmed from the dense, highly ordered laminate structure of GO.Keywords: graphene oxide, self-assembly, alcohol dehydration, polyacrylonitrile (mPAN)
Procedia PDF Downloads 295