Search results for: consensus algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2475

Search results for: consensus algorithms

1005 Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices

Authors: Mohammed M. Siddeq, Mohammed H. Rasheed, Omar M. Salih, Marcos A. Rodrigues

Abstract:

This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms.

Keywords: matrix minimization algorithm, decoding sequential search algorithm, image compression, DCT, DWT

Procedia PDF Downloads 148
1004 Applying Epistemology to Artificial Intelligence in the Social Arena: Exploring Fundamental Considerations

Authors: Gianni Jacucci

Abstract:

Epistemology traditionally finds its place within human research philosophies and methodologies. Artificial intelligence methods pose challenges, particularly given the unresolved relationship between AI and pivotal concepts in social arenas such as hermeneutics and accountability. We begin by examining the essential criteria governing scientific rigor in the human sciences. We revisit the three foundational philosophies underpinning qualitative research methods: empiricism, hermeneutics, and phenomenology. We elucidate the distinct attributes, merits, and vulnerabilities inherent in the methodologies they inspire. The integration of AI, e.g., deep learning algorithms, sparks an interest in evaluating these criteria against the diverse forms of AI architectures. For instance, Interpreted AI could be viewed as a hermeneutic approach, relying on a priori interpretations, while straight AI may be perceived as a descriptive phenomenological approach, processing original and uncontaminated data. This paper serves as groundwork for such explorations, offering preliminary reflections to lay the foundation and outline the initial landscape.

Keywords: artificial intelligence, deep learning, epistemology, qualitative research, methodology, hermeneutics, accountability

Procedia PDF Downloads 37
1003 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator

Authors: Kaushikk Iyer, Richard M Hall, David Keeling

Abstract:

Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.

Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator

Procedia PDF Downloads 168
1002 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 588
1001 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 183
1000 Assessment of the Situation and the Cause of Junk Food Consumption in Iranians: A Qualitative Study

Authors: A. Rezazadeh, B Damari, S. Riazi-Esfahani, M. Hajian

Abstract:

The consumption of junk food in Iran is alarmingly increasing. This study aimed to investigate the influencing factors of junk food consumption and amendable interventions that are criticized and approved by stakeholders, in order to presented to health policy makers. The articles and documents related to the content of study were collected by using the appropriate key words such as junk food, carbonated beverage, chocolate, candy, sweets, industrial fruit juices, potato chips, French fries, puffed corn, cakes, biscuits, sandwiches, prepared foods and popsicles, ice cream, bar, chewing gum, pastilles and snack, in scholar.google.com, pubmed.com, eric.ed.gov, cochrane.org, magiran.com, medlib.ir, irandoc.ac.ir, who.int, iranmedex.com, sid.ir, pubmed.org and sciencedirect.com databases. The main key points were extracted and included in a checklist and qualitatively analyzed. Then a summarized abstract was prepared in a format of a questionnaire to be presented to stakeholders. The design of this was qualitative (Delphi). According to this method, a questionnaire was prepared based on reviewing the articles and documents and it was emailed to stakeholders, who were asked to prioritize and choose the main problems and effective interventions. After three rounds, consensus was obtained.            Studies revealed high consumption of junk foods in the Iranian population, especially in children and adolescents. The most important affecting factors include availability, low price, media advertisements, preference of fast foods taste, the variety of the packages and their attractiveness, low awareness and changing in lifestyle. Main interventions recommended by stakeholders include developing a protective environment, educational interventions, increasing healthy food access and controlling media advertisements and putting pressure from the Industry and Mining Ministry on producers to produce healthy snacks. According to the findings, the results of this study may be proposed to public health policymakers as an advocacy paper and to be integrated in the interventional programs of Health and Education ministries and the media. Also, implementation of supportive meetings with the producers of alternative healthy products is suggested.

Keywords: junk foods, situation, qualitative study, Iran

Procedia PDF Downloads 258
999 Peer Instruction, Technology, Education for Textile and Fashion Students

Authors: Jimmy K. C. Lam, Carrie Wong

Abstract:

One of the key goals on Learning and Teaching as documented in the University strategic plan 2012/13 – 2017/18 is to encourage active learning, the use of innovative teaching approaches and technology, and promoting the adoption of flexible and varied teaching delivery methods. This research reported the recent visited to Prof Eric Mazur at Harvard University on Peer Instruction: Collaborative learning in large class and innovative use of technology to enable new mode of learning. Peer Instruction is a research-based, interactive teaching method developed by Prof. Eric Mazur at Harvard University in the 1990s. It has been adopted across the disciplines, institutional type and throughout the world. One problem with conventional teaching lies in the presentation of the material. Frequently, it comes straight out of textbook/notes, giving students little incentive to attend class. This traditional presentation is always delivered as monologue in front of passive audience. Only exceptional lecturers are capable of holding students’ attention for an entire lecture period. Consequently, lectures simply reinforce students’ feelings that the most important step in mastering the material is memorizing a zoo of unrelated examples. In order to address these misconceptions about learning, Prof Mazur’s Team developed “Peer Instruction”, a method which involves students in their own learning during lectures and focuses their attention on underling concepts. Lectures are interspersed with conceptual questions called Concept Tests, designed to expose common difficulties in understanding the material. The students are given one or two minutes to think about the question and formulate their own answers; they then spend two or three minutes discussing their answers in a group of three or four, attempting to reach consensus on the correct answer. This process forces the students to think through the arguments being developed, and enable them to assess their understanding concepts before they leave the classroom. The findings from Peer Instruction and innovative use of technology on teaching at Harvard University were applied to the first year Textiles and Fashion students in Hong Kong. Survey conducted from 100 students showed that over 80% students enjoyed the flexibility of peer instruction and 70% of them enjoyed the instant feedback from the Clicker system (Student Response System used at Harvard University). Further work will continue to explore the possibility of peer instruction to art and fashion students.

Keywords: peer instruction, education, technology, fashion

Procedia PDF Downloads 315
998 Integration of Resistivity and Seismic Refraction Using Combine Inversion for Ancient River Findings at Sungai Batu, Lembah Bujang, Malaysia

Authors: Rais Yusoh, Rosli Saad, Mokhtar Saidin, Fauzi Andika, Sabiu Bala Muhammad

Abstract:

Resistivity and seismic refraction profiling have become a common method in pre-investigations for visualizing subsurface structure. The integration of the methods could reduce an interpretation ambiguity. Both methods have their individual software packages for data inversion, but potential to combine certain geophysical methods are restricted; however, the research algorithms that have this functionality was existed and are evaluated personally. The interpretation of subsurface were improve by combining inversion data from both methods by influence each other models using closure coupling; thus, by implementing both methods to support each other which could improve the subsurface interpretation. These methods were applied on a field dataset from a pre-investigation for archeology in finding the ancient river. There were no major changes in the inverted model by combining data inversion for this archetype which probably due to complex geology. The combine data analysis provides an additional technique for interpretation such as an alluvium, which can have strong influence on the ancient river findings.

Keywords: ancient river, combine inversion, resistivity, seismic refraction

Procedia PDF Downloads 330
997 Moment-Curvature Relation for Nonlinear Analysis of Slender Structural Walls

Authors: E. Dehghan, R. Dehghan

Abstract:

Generally, the slender structural walls have flexural behavior. Since behavior of bending members can be explained by moment–curvature relation, therefore, an analytical model is proposed based on moment–curvature relation for slender structural walls. The moment–curvature relationships of RC sections are constructed through section analysis. Governing equations describing the bond-slip behavior in walls are derived and applied to moment–curvature relations. For the purpose of removing the imprecision in analytical results, the plastic hinge length is included in the finite element modeling. Finally, correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed algorithms. The results show that bond-slip effect is more significant in walls subjected to larger axial compression load. Moreover, preferable results are obtained when ultimate strain of concrete is assumed conservatively.

Keywords: nonlinear analysis, slender structural walls, moment-curvature relation, bond-slip, plastic hinge length

Procedia PDF Downloads 315
996 Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia

Authors: Tathiana Yesenia Coy Mondragón, Jossitt William Vargas Cruz, Cristian Leonardo Gutiérrez Gómez

Abstract:

The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models.

Keywords: CORSIKA, cosmic rays, eas, Colombia

Procedia PDF Downloads 80
995 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images

Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam

Abstract:

The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.

Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy

Procedia PDF Downloads 77
994 Evaluation of MPPT Algorithms for Photovoltaic Generator by Comparing Incremental Conductance Method, Perturbation and Observation Method and the Method Using Fuzzy Logic

Authors: Elmahdi Elgharbaoui, Tamou Nasser, Ahmed Essadki

Abstract:

In the era of sustainable development, photovoltaic (PV) technology has shown significant potential as a renewable energy source. Photovoltaic generators (GPV) have a non-linear current-voltage characteristic, with a maximum power point (MPP) characterized by an optimal voltage, and depends on environmental factors such as temperature and irradiation. To extract each time the maximum power available at the terminals of the GPV and transfer it to the load, an adaptation stage is used, consisting of a boost chopper controlled by a maximum power point tracking technique (MPPT) through a stage of pulse width modulation (PWM). Our choice has focused on three techniques which are: the perturbation and observation method (P&O), the incremental conductance method (InCond) and the last is that of control using the fuzzy logic. The implementation and simulation of the system (photovoltaic generator, chopper boost, PWM and MPPT techniques) are then performed in the Matlab/Simulink environment.

Keywords: photovoltaic generator, technique MPPT, boost chopper, PWM, fuzzy logic, P&O, InCond

Procedia PDF Downloads 323
993 A Survey on Speech Emotion-Based Music Recommendation System

Authors: Chirag Kothawade, Gourie Jagtap, PreetKaur Relusinghani, Vedang Chavan, Smitha S. Bhosale

Abstract:

Psychological research has proven that music relieves stress, elevates mood, and is responsible for the release of “feel-good” chemicals like oxytocin, serotonin, and dopamine. It comes as no surprise that music has been a popular tool in rehabilitation centers and therapy for various disorders, thus with the interminably rising numbers of people facing mental health-related issues across the globe, addressing mental health concerns is more crucial than ever. Despite the existing music recommendation systems, there is a dearth of holistically curated algorithms that take care of the needs of users. Given that, an undeniable majority of people turn to music on a regular basis and that music has been proven to increase cognition, memory, and sleep quality while reducing anxiety, pain, and blood pressure, it is the need of the hour to fashion a product that extracts all the benefits of music in the most extensive and deployable method possible. Our project aims to ameliorate our users’ mental state by building a comprehensive mood-based music recommendation system called “Viby”.

Keywords: language, communication, speech recognition, interaction

Procedia PDF Downloads 63
992 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis

Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su

Abstract:

The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.

Keywords: dataset, GTTM, local boundary, neural network

Procedia PDF Downloads 144
991 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults

Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead

Abstract:

Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.

Keywords: classification, falls, health risk factors, machine learning, older adults

Procedia PDF Downloads 146
990 Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data

Authors: Fanqiang Kong, Chending Bian

Abstract:

Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, simultaneous sparse representation, sparse regression, non-local means

Procedia PDF Downloads 244
989 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy

Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang

Abstract:

The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.

Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device

Procedia PDF Downloads 128
988 The Effectiveness of an Injury Prevention Workshop in Increasing Knowledge and Understanding in Grass-Root Youth Coaches

Authors: Mark De Ste Croix, Jonathan Hughes, Francisco Ayala, Michal Lehnert

Abstract:

There are well-known challenges to implementing injury prevention training for youth players but no data are available on the knowledge and understanding of deliverers of such programmes at grass root level. To increase adoption and adherence to such programmes coach knowledge and understanding of injury risk and prevention is essential. Therefore, the purpose of this study was to examine grass-root coaches knowledge and understanding of injury risk and prevention in youth players. 68 grass root coaches (18 females and 50 males) who were attending a one-day injury prevention workshop completed a modified validated questionnaire exploring knowledge and understanding of injury risk and prevention in youth players. Only 59% of coaches agreed that youth players are at a high risk of suffering an injury. There were high levels of agreement that injuries can have negative impacts on team performance (75%) and can cause physical problems in later life (85%), however only around half of coaches felt that injuries affect youth players current quality of life (59%). There was strong agreement that it is possible to prevent injuries in youth players (84%), but coaches were generally unaware of programs to help prevent injuries (84%), and only 9% used some form of injury prevention program. Despite this, nearly all coaches felt that their coaching could benefit from a greater understanding of growth and maturation (91%), injury prevention programmes (91%) and specific exercises (93%) for youth athletes. 17% of coaches rated their knowledge of injury prevention as good/very good at the start of the workshop and this increased to 94% at the end of the workshop. 62% of coaches identified their attitude towards injury prevention as indifferent at the start of the workshop compared with only 1% at the end. Only 14% of coaches at the start of the workshop were confident to deliver an injury prevention session but 83% stated they were confident by the end of the workshop. Finally, 98% of coaches felt that the workshop provided them with the confidence and the knowledge to deliver an injury prevention session and 98% suggested that they would implement injury prevention into their coaching. These data suggest that there is a lack of understanding of grass root coaches that children are a high-risk group for injuries, and that such injuries impact on current quality of life. Despite understanding that injuries can be prevented most grass root coaches do not have the knowledge to implement injury prevention into their coaching and very few do. There is a common consensus amongst these coaches that a greater understanding of such programmes will enhance their coaching. The injury prevention workshop appears to have increased the knowledge and changed the attitude of coaches towards injury prevention. All coaches felt that the workshop provided them with the tools to adopt, implement and deliver injury prevention in their coaching. These data highlight that there is a clear need for education regarding injury risk and prevention to be embedded within the coach education pathway, especially at grass root level.

Keywords: coach education, injury prevention, knowledge, and understanding, youth

Procedia PDF Downloads 168
987 Probabilistic Gathering of Agents with Simple Sensors: Distributed Algorithm for Aggregation of Robots Equipped with Binary On-Board Detectors

Authors: Ariel Barel, Rotem Manor, Alfred M. Bruckstein

Abstract:

We present a probabilistic gathering algorithm for agents that can only detect the presence of other agents in front of or behind them. The agents act in the plane and are identical and indistinguishable, oblivious, and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction, and in this case, extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case, we can prove gathering into a very small circular region in finite expected time.

Keywords: control, decentralized, gathering, multi-agent, simple sensors

Procedia PDF Downloads 162
986 An Inviscid Compressible Flow Solver Based on Unstructured OpenFOAM Mesh Format

Authors: Utkan Caliskan

Abstract:

Two types of numerical codes based on finite volume method are developed in order to solve compressible Euler equations to simulate the flow through forward facing step channel. Both algorithms have AUSM+- up (Advection Upstream Splitting Method) scheme for flux splitting and two-stage Runge-Kutta scheme for time stepping. In this study, the flux calculations differentiate between the algorithm based on OpenFOAM mesh format which is called 'face-based' algorithm and the basic algorithm which is called 'element-based' algorithm. The face-based algorithm avoids redundant flux computations and also is more flexible with hybrid grids. Moreover, some of OpenFOAM’s preprocessing utilities can be used on the mesh. Parallelization of the face based algorithm for which atomic operations are needed due to the shared memory model, is also presented. For several mesh sizes, 2.13x speed up is obtained with face-based approach over the element-based approach.

Keywords: cell centered finite volume method, compressible Euler equations, OpenFOAM mesh format, OpenMP

Procedia PDF Downloads 318
985 Current Concepts of Male Aesthetics: Facial Areas to Be Focused and Prioritized with Botulinum Toxin and Hyaluronic Acid Dermal Fillers Combination Therapies, Recommendations on Asian Patients

Authors: Sadhana Deshmukh

Abstract:

Objective: Men represent only a fraction of the medical aesthetic practice. They are increasingly becoming more cosmetically-inclined. The primary objective is to harmonize facial proportion by prioritizing and focusing on forehead nose, cheek and chin complex. Introduction: Despite tremendous variability, diverse population of the Indian subcontinent, the male skull is unique in its overall larger size, and shape. Men tend to have a large forehead with prominent supraorbital ridges, wide glabella, square orbit, and a prominent protruding mandible. Men have increased skeletal muscle mass, with less facial subcutaneous fat. Facial aesthetics is evolving rapidly. Commonly published canons of facial proportions usually represent feminine standards and are not applicable to males. Strict adherence to these norms is therefore not necessary to obtain satisfying results in male patients. Materials and Methods: Male patients age group 30-60 years have been enrolled. Botulinum toxin and hyaluronic acid fillers were used to update consensus recommendations for facial rejuvenation using these two types of products alone and in combination. Results: There are specific recommendations by facial area, focusing on relaxing musculature, restoring volume, recontouring using toxin and dermal fillers alone and in combination. For upper face, though botulinum toxin remains the cornerstone of treatment, temples and forehead fillers are recommended for optimal results. In Mid face, these fillers are placed more laterally to maintain the masculine look. Botulinum toxin and fillers in combination can improve outcomes in the lower face. Chin augmentation remains the center point for lower face. Conclusions: Males are more likely to have shorter doctor visits, less likely to ask questions, have a lower attention to bodily changes. The physician must patiently gauge male patients’ aging and cosmetic goals. Clinicians can also benefit from ongoing guidance on products, tailoring treatments, treating multiple facial areas, and using combinations of products. An appreciation that rejuvenation is 3-dimensional process involving muscle control, volume restoration and recontouring helps.

Keywords: male aesthetics, botulinum toxin, hyaluronic acid dermal fillers, Asian patients

Procedia PDF Downloads 156
984 Cloud Data Security Using Map/Reduce Implementation of Secret Sharing Schemes

Authors: Sara Ibn El Ahrache, Tajje-eddine Rachidi, Hassan Badir, Abderrahmane Sbihi

Abstract:

Recently, there has been increasing confidence for a favorable usage of big data drawn out from the huge amount of information deposited in a cloud computing system. Data kept on such systems can be retrieved through the network at the user’s convenience. However, the data that users send include private information, and therefore, information leakage from these data is now a major social problem. The usage of secret sharing schemes for cloud computing have lately been approved to be relevant in which users deal out their data to several servers. Notably, in a (k,n) threshold scheme, data security is assured if and only if all through the whole life of the secret the opponent cannot compromise more than k of the n servers. In fact, a number of secret sharing algorithms have been suggested to deal with these security issues. In this paper, we present a Mapreduce implementation of Shamir’s secret sharing scheme to increase its performance and to achieve optimal security for cloud data. Different tests were run and through it has been demonstrated the contributions of the proposed approach. These contributions are quite considerable in terms of both security and performance.

Keywords: cloud computing, data security, Mapreduce, Shamir's secret sharing

Procedia PDF Downloads 305
983 Chinese Sentence Level Lip Recognition

Authors: Peng Wang, Tigang Jiang

Abstract:

The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.

Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network

Procedia PDF Downloads 126
982 Lessons Learned from Interlaboratory Noise Modelling in Scope of Environmental Impact Assessments in Slovenia

Authors: S. Cencek, A. Markun

Abstract:

Noise assessment methods are regularly used in scope of Environmental Impact Assessments for planned projects to assess (predict) the expected noise emissions of these projects. Different noise assessment methods could be used. In recent years, we had an opportunity to collaborate in some noise assessment procedures where noise assessments of different laboratories have been performed simultaneously. We identified some significant differences in noise assessment results between laboratories in Slovenia. We estimate that despite good input Georeferenced Data to set up acoustic model exists in Slovenia; there is no clear consensus on methods for predictive noise methods for planned projects. We analyzed input data, methods and results of predictive noise methods for two planned industrial projects, both were done independently by two laboratories. We also analyzed the data, methods and results of two interlaboratory collaborative noise models for two existing noise sources (railway and motorway). In cases of predictive noise modelling, the validations of acoustic models were performed by noise measurements of surrounding existing noise sources, but in varying durations. The acoustic characteristics of existing buildings were also not described identically. The planned noise sources were described and digitized differently. Differences in noise assessment results between different laboratories have ranged up to 10 dBA, which considerably exceeds the acceptable uncertainty ranged between 3 to 6 dBA. Contrary to predictive noise modelling, in cases of collaborative noise modelling for two existing noise sources the possibility to perform the validation noise measurements of existing noise sources greatly increased the comparability of noise modelling results. In both cases of collaborative noise modelling for existing motorway and railway, the modelling results of different laboratories were comparable. Differences in noise modeling results between different laboratories were below 5 dBA, which was acceptable uncertainty set up by interlaboratory noise modelling organizer. The lessons learned from the study were: 1) Predictive noise calculation using formulae from International standard SIST ISO 9613-2: 1997 is not an appropriate method to predict noise emissions of planned projects since due to complexity of procedure they are not used strictly, 2) The noise measurements are important tools to minimize noise assessment errors of planned projects and should be in cases of predictive noise modelling performed at least for validation of acoustic model, 3) National guidelines should be made on the appropriate data, methods, noise source digitalization, validation of acoustic model etc. in order to unify the predictive noise models and their results in scope of Environmental Impact Assessments for planned projects.

Keywords: environmental noise assessment, predictive noise modelling, spatial planning, noise measurements, national guidelines

Procedia PDF Downloads 233
981 Minimum Half Power Beam Width and Side Lobe Level Reduction of Linear Antenna Array Using Particle Swarm Optimization

Authors: Saeed Ur Rahman, Naveed Ullah, Muhammad Irshad Khan, Quensheng Cao, Niaz Muhammad Khan

Abstract:

In this paper the optimization performance of non-uniform linear antenna array is presented. The Particle Swarm Optimization (PSO) algorithm is presented to minimize Side Lobe Level (SLL) and Half Power Beamwidth (HPBW). The purpose of using the PSO algorithm is to get the optimum values for inter-element spacing and excitation amplitude of linear antenna array that provides a radiation pattern with minimum SLL and HPBW. Various design examples are considered and the obtain results using PSO are confirmed by comparing with results achieved using other nature inspired metaheuristic algorithms such as real coded genetic algorithm (RGA) and biogeography (BBO) algorithm. The comparative results show that optimization of linear antenna array using the PSO provides considerable enhancement in the SLL and HPBW.

Keywords: linear antenna array, minimum side lobe level, narrow half power beamwidth, particle swarm optimization

Procedia PDF Downloads 551
980 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology

Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva

Abstract:

Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.

Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties

Procedia PDF Downloads 49
979 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 292
978 A Pilot Study on the Development and Validation of an Instrument to Evaluate Inpatient Beliefs, Expectations and Attitudes toward Reflexology (IBEAR)-16

Authors: Samuel Attias, Elad Schiff, Zahi Arnon, Eran Ben-Arye, Yael Keshet, Ibrahim Matter, Boker Lital Keinan

Abstract:

Background: Despite the extensive use of manual therapies, reflexology in particular, no validated tools have been developed to evaluate patients' beliefs, attitudes and expectations regarding reflexology. Such tools however are essential to improve the results of the reflexology treatment, by better adjusting it to the patients' attitudes and expectations. The tool also enables assessing correlations with clinical results of interventional studies using reflexology. Methods: The IBEAR (Inpatient Beliefs, Expectations and Attitudes toward Reflexology) tool contains 25 questions (8 demographic and 17 specifically addressing reflexology), and was constructed in several stages: brainstorming by a multidisciplinary team of experts; evaluation of each of the proposed questions by the experts' team; and assessment of the experts' degree of agreement per each question, based on a Likert 1-7 scale (1 – don't agree at all; 7 – agree completely). Cronbach's Alpha was computed to evaluate the questionnaire's reliability while the Factor analysis test was used for further validation (228 patients). The questionnaire was tested and re-tested (48h) on a group of 199 patients to assure clarity and reliability, using the Pearson coefficient and the Kappa test. It was modified based on these results into its final form. Results: After its construction, the IBEAR questionnaire passed the expert group's preliminary consensus, evaluation of the questions' clarity (from 5.1 to 7.0), inner validation (from 5.5 to 7) and structural validation (from 5.5 to 6.75). Factor analysis pointed to two content worlds in a division into 4 questions discussing attitudes and expectations versus 5 questions on belief and attitudes. Of the 221 questionnaires collected, a Cronbach's Alpha coefficient was calculated on nine questions relating to beliefs, expectations, and attitudes regarding reflexology. This measure stood at 0.716 (satisfactory reliability). At the Test-Retest stage, 199 research participants filled in the questionnaire a second time. The Pearson coefficient for all questions ranged between 0.73 and 0.94 (good to excellent reliability). As for dichotomic answers, Kappa scores ranged between 0.66 and 1.0 (mediocre to high). One of the questions was removed from the IBEAR following questionnaire validation. Conclusions: The present study provides evidence that the proposed IBEAR-16 questionnaire is a valid and reliable tool for the characterization of potential reflexology patients and may be effectively used in settings which include the evaluation of inpatients' beliefs, expectations, and attitudes toward reflexology.

Keywords: reflexology, attitude, expectation, belief, CAM, inpatient

Procedia PDF Downloads 228
977 A Theoretical Model for Pattern Extraction in Large Datasets

Authors: Muhammad Usman

Abstract:

Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.

Keywords: association rule mining, data mining, data warehouses, visualization of association rules

Procedia PDF Downloads 222
976 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression

Procedia PDF Downloads 421