Search results for: chitin binding domain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2586

Search results for: chitin binding domain

1116 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 369
1115 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis

Authors: Yazid Alkraimeen

Abstract:

Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.

Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses

Procedia PDF Downloads 136
1114 Beta-Carotene Attenuates Cognitive and Hepatic Impairment in Thioacetamide-Induced Rat Model of Hepatic Encephalopathy via Mitigation of MAPK/NF-κB Signaling Pathway

Authors: Marawan Abd Elbaset Mohamed, Hanan A. Ogaly, Rehab F. Abdel-Rahman, Ahmed-Farid O.A., Marwa S. Khattab, Reham M. Abd-Elsalam

Abstract:

Liver fibrosis is a severe worldwide health concern due to various chronic liver disorders. Hepatic encephalopathy (HE) is one of its most common complications affecting liver and brain cognitive function. Beta-Carotene (B-Car) is an organic, strongly colored red-orange pigment abundant in fungi, plants, and fruits. The study attempted to know B-Car neuroprotective potential against thioacetamide (TAA)-induced neurotoxicity and cognitive decline in HE in rats. Hepatic encephalopathy was induced by TAA (100 mg/kg, i.p.) three times per week for two weeks. B-Car was given orally (10 or 20 mg/kg) daily for two weeks after TAA injections. Organ body weight ratio, Serum transaminase activities, liver’s antioxidant parameters, ammonia, and liver histopathology were assessed. Also, the brain’s mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), antioxidant parameters, adenosine triphosphate (ATP), adenosine monophosphate (AMP), norepinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) cAMP response element-binding protein (CREB) expression and B-cell lymphoma 2 (Bcl-2) expression were measured. The brain’s cognitive functions (Spontaneous locomotor activity, Rotarod performance test, Object recognition test) were assessed. B-Car prevented alteration of the brain’s cognitive function in a dose-dependent manner. The histopathological outcomes supported these biochemical evidences. Based on these results, it could be established that B-Car could be assigned to treat the brain’s neurotoxicity consequences of HE via downregualtion of MAPK/NF-κB signaling pathways.

Keywords: beta-carotene, liver injury, MAPK, NF-κB, rat, thioacetamide

Procedia PDF Downloads 153
1113 Collaborative and Context-Aware Learning Approach Using Mobile Technology

Authors: Sameh Baccari, Mahmoud Neji

Abstract:

In recent years, the rapid developments on mobile devices and wireless technologies enable new dimension capabilities for the learning domain. This dimension facilitates people daily activities and shortens the distances between individuals. When these technologies have been used in learning, a new paradigm has been emerged giving birth to mobile learning. Because of the mobility feature, m-learning courses have to be adapted dynamically to the learner’s context. The main challenge in context-aware mobile learning is to develop an approach building the best learning resources according to dynamic learning situations. In this paper, we propose a context-aware mobile learning system called Collaborative and Context-aware Mobile Learning System (CCMLS). It takes into account the requirements of Mobility, Collaboration and Context-Awareness. This system is based on the semantic modeling of the learning context and the learning content. The adaptation part of this approach is made up of adaptation rules to propose and select relevant resources, learning partners and learning activities based not only on the user’s needs, but also on its current context.

Keywords: mobile learning, mobile technologies, context-awareness, collaboration, semantic web, adaptation engine, adaptation strategy, learning object, learning context

Procedia PDF Downloads 306
1112 Product Features Extraction from Opinions According to Time

Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou

Abstract:

Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.

Keywords: opinion mining, product feature extraction, sentiment analysis, SentiWordNet

Procedia PDF Downloads 407
1111 STD-NMR Based Protein Engineering of the Unique Arylpropionate-Racemase AMDase G74C

Authors: Sarah Gaßmeyer, Nadine Hülsemann, Raphael Stoll, Kenji Miyamoto, Robert Kourist

Abstract:

Enzymatic racemization allows the smooth interconversion of stereocenters under very mild reaction conditions. Racemases find frequent applications in deracemization and dynamic kinetic resolutions. Arylmalonate decarboxylase (AMDase) from Bordetella Bronchiseptica has high structural similarity to amino acid racemases. These cofactor-free racemases are able to break chemically strong CH-bonds under mild conditions. The racemase-like catalytic machinery of mutant G74C conveys it a unique activity in the racemisation of pharmacologically relevant derivates of 2-phenylpropionic acid (profenes), which makes AMDase G74C an interesting object for the mechanistic investigation of cofactor-independent racemases. Structure-guided protein engineering achieved a variant of this unique racemase with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. By saturation–transfer–difference NMR spectroscopy (STD-NMR), substrate binding during catalysis was investigated. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose variation increased the activity of G74C. While single-amino acid exchanges increased the activity moderately, structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering.

Keywords: racemase, rational protein design, STD-NMR, structure guided saturation mutagenesis

Procedia PDF Downloads 302
1110 Cognitive eTransformation Framework for Education Sector

Authors: A. Hol

Abstract:

21st century brought waves of business and industry eTransformations. The impact of change is also being seen in education. To identify the extent of this, scenario analysis methodology was utilised with the aim to assess business transformations across industry sectors ranging from craftsmanship, medicine, finance and manufacture to innovations and adoptions of new technologies and business models. Firstly, scenarios were drafted based on the current eTransformation models and its dimensions. Following this, eTransformation framework was utilised with the aim to derive the key eTransformation parameters, the essential characteristics that have enabled eTransformations across the sectors. Following this, identified key parameters were mapped to the transforming domain-education. The mapping assisted in deriving a cognitive eTransformation framework for education sector. The framework highlights the importance of context and the notion that education today needs not only to deliver content to students but it also needs to be able to meet the dynamically changing demands of specific student and industry groups. Furthermore, it pinpoints that for such processes to be supported, specific technology is required, so that instant, on demand and periodic feedback as well as flexible, dynamically expanding study content can be sought and received via multiple education mediums.

Keywords: education sector, business transformation, eTransformation model, cognitive model, cognitive systems, eTransformation

Procedia PDF Downloads 135
1109 Genetically Encoded Tool with Time-Resolved Fluorescence Readout for the Calcium Concentration Measurement

Authors: Tatiana R. Simonyan, Elena A. Protasova, Anastasia V. Mamontova, Eugene G. Maksimov, Konstantin A. Lukyanov, Alexey M. Bogdanov

Abstract:

Here, we describe two variants of the calcium indicators based on the GCaMP sensitive core and BrUSLEE fluorescent protein (GCaMP-BrUSLEE and GCaMP-BrUSLEE-145). In contrast to the conventional GCaMP6-family indicators, these fluorophores are characterized by the well-marked responsiveness of their fluorescence decay kinetics to external calcium concentration both in vitro and in cellulo. Specifically, we show that the purified GCaMP-BrUSLEE and GCaMP-BrUSLEE-145 exhibit three-component fluorescence decay kinetics, with the amplitude-normalized lifetime component (t3*A3) of GCaMP-BrUSLEE-145 changing four-fold (500-2000 a.u.) in response to a Ca²⁺ concentration shift in the range of 0—350 nM. Time-resolved fluorescence microscopy of live cells displays the two-fold change of the GCaMP-BrUSLEE-145 mean lifetime upon histamine-stimulated calcium release. The aforementioned Ca²⁺-dependence calls considering the GCaMP-BrUSLEE-145 as a prospective Ca²⁺-indicator with the signal read-out in the time domain.

Keywords: calcium imaging, fluorescence lifetime imaging microscopy, fluorescent proteins, genetically encoded indicators

Procedia PDF Downloads 156
1108 Interior Design Pedagogy in the 21st Century: Personalised Design Process

Authors: Roba Zakariah Shaheen

Abstract:

In the 21st-century Interior, design pedagogy has developed rapidly due to social and economical factors. Socially, this paper presents research findings that shows a significant relationship between educators and students in interior design education. It shows that students’ personal traits, design process, and thinking process are significantly interrelated. Constructively, this paper presented how personal traits can guide educators in the interior design education domain to develop students’ thinking process. In the same time, it demonstrated how students should use their own personal traits to create their own design process. Constructivism was the theory underneath this research, as it supports the grounded theory, which is the methodological approach of this research. Moreover, Mayer’s Briggs Type Indicator strategy was used to investigate the personality traits scientifically, as a psychological strategy that related to cognitive ability. Conclusions from this research strongly recommends that educators and students should utilize their personal traits to foster interior design education.

Keywords: interior design, pedagogy, constructivism, grounded theory, personality traits, creativity

Procedia PDF Downloads 205
1107 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding

Procedia PDF Downloads 360
1106 Glyco-Conjugated Gold Nanorods Based Biosensor for Optical Detection and Photothermal Ablation of Food Borne Bacteria

Authors: Shimayali Kaushal, Nitesh Priyadarshi, Nitin Kumar Singhal

Abstract:

Food borne bacterial species have been identified as major pathogens in most of the severe pathogen-related diseases among humans which result in great loss to human health and food industry. Conventional methods like plating and enzyme-linked immune sorbent assay (ELISA) are time-consuming, laborious and require specialized instruments. Nanotechnology has emerged as a great field in case of rapid detection of pathogens in recent years. The AuNRs material has good electro-optical properties due to its larger light absorption band and scattering in surface plasmon resonance wavelength regions. By exploiting the sugar-based adhesion properties of microorganism, we can use the glycoconjugates capped gold nanorods as a potential nanobiosensor to detect the foodborne pathogen. In the present study, polyethylene glycol (PEG) coated gold nanorods (AuNRs) were prepared and functionalized with different types of carbohydrates and further characterized by UV-Visible spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM). The reactivity of above said nano-biosensor was probed by lectin binding assay and also by different strains of foodborne bacteria by using spectrophotometric and microscopic techniques. Due to the specific interaction of probe with foodborne bacteria (Escherichia coli, Pseudomonas aeruginosa), our nanoprobe has shown significant and selective ablation of targeted bacteria. Our findings suggest that our nanoprobe can be an ideal candidate for selective optical detection of food pathogens and can reduce loss to the food industry.

Keywords: glyco-conjugates, gold nanorods, nanobiosensor, nanoprobe

Procedia PDF Downloads 134
1105 Complex Cooling Approach in Microchannel Heat Exchangers Using Solid and Hollow Fins

Authors: Nahum Yustus Godi

Abstract:

A three-dimensional numerical optimisation of combined microchannels with constructal solid, half hollow, and hollow circular fins is documented in this paper. The technique seeks to minimize peak temperature in the entire volume of the microchannel heat sink. The volume and axial length were all fixed, while the width of the microchannel could morph. High-density heat flux was applied at the bottom wall of the microchannel. The coolant employed to remove the heat deposited at the bottom surface of the microchannel was a single-phase fluid (water) in a forced convection laminar condition, and heat transfer was a conjugate problem. The unit cell symmetrical computation domain was discretised, and governing equations were solved using computational fluid dynamic (CFD) code. The results reveal that the combined microchannel with hollow circular fins and solid fins performed better at different Reynolds numbers. The numerical study was validated for the single microchannel without fins and found to be in good agreement with previous studies.

Keywords: constructal fins, complex heat exchangers, cooling technique, numerical optimisation

Procedia PDF Downloads 223
1104 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications

Authors: B. G. Sheeparamatti, J. S. Kadadevarmath

Abstract:

Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators, and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between the mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics, etc. This paper indicates the need of developing the electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of the microcantilever, the equivalent electrical circuit is drawn and using a force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to a powerful set of intellectual tools that have been developed for understanding electrical circuits. Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantilevers are in agreement with each other.

Keywords: electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors

Procedia PDF Downloads 395
1103 1D Convolutional Networks to Compute Mel-Spectrogram, Chromagram, and Cochleogram for Audio Networks

Authors: Elias Nemer, Greg Vines

Abstract:

Time-frequency transformation and spectral representations of audio signals are commonly used in various machine learning applications. Training networks on frequency features such as the Mel-Spectrogram or Cochleogram have been proven more effective and convenient than training on-time samples. In practical realizations, these features are created on a different processor and/or pre-computed and stored on disk, requiring additional efforts and making it difficult to experiment with different features. In this paper, we provide a PyTorch framework for creating various spectral features as well as time-frequency transformation and time-domain filter-banks using the built-in trainable conv1d() layer. This allows computing these features on the fly as part of a larger network and enabling easier experimentation with various combinations and parameters. Our work extends the work in the literature developed for that end: First, by adding more of these features and also by allowing the possibility of either starting from initialized kernels or training them from random values. The code is written as a template of classes and scripts that users may integrate into their own PyTorch classes or simply use as is and add more layers for various applications.

Keywords: neural networks Mel-Spectrogram, chromagram, cochleogram, discrete Fourrier transform, PyTorch conv1d()

Procedia PDF Downloads 233
1102 Chromatographic Preparation and Performance on Zinc Ion Imprinted Monolithic Column and Its Adsorption Property

Authors: X. Han, S. Duan, C. Liu, C. Zhou, W. Zhu, L. Kong

Abstract:

The ionic imprinting technique refers to the three-dimensional rigid structure with the fixed pore sizes, which was formed by the binding interactions of ions and functional monomers and used ions as the template, it has a high level of recognition to the ionic template. The preparation of monolithic column by the in-situ polymerization need to put the compound of template, functional monomers, cross-linking agent and initiating agent into the solution, dissolve it and inject to the column tube, and then the compound will have a polymerization reaction at a certain temperature, after the synthetic reaction, we washed out the unread template and solution. The monolithic columns are easy to prepare, low consumption and cost-effective with fast mass transfer, besides, they have many chemical functions. But the monolithic columns have some problems in the practical application, such as low-efficiency, quantitative analysis cannot be performed accurately because of the peak shape is wide and has tailing phenomena; the choice of polymerization systems is limited and the lack of theoretical foundations. Thus the optimization of components and preparation methods is an important research direction. During the preparation of ionic imprinted monolithic columns, pore-forming agent can make the polymer generate the porous structure, which can influence the physical properties of polymer, what’ s more, it can directly decide the stability and selectivity of polymerization reaction. The compounds generated in the pre-polymerization reaction could directly decide the identification and screening capabilities of imprinted polymer; thus the choice of pore-forming agent is quite critical in the preparation of imprinted monolithic columns. This article mainly focuses on the research that when using different pore-forming agents, the impact of zinc ion imprinted monolithic column on the enrichment performance of zinc ion.

Keywords: high performance liquid chromatography (HPLC), ionic imprinting, monolithic column, pore-forming agent

Procedia PDF Downloads 212
1101 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ

Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati

Abstract:

This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.

Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse

Procedia PDF Downloads 439
1100 A Model to Assist Military Mission Planners in Identifying and Assessing Variables Impacting Food Security

Authors: Lynndee Kemmet

Abstract:

The U.S. military plays an increasing role in supporting political stability efforts, and this includes efforts to prevent the food insecurity that can trigger political and social instability. This paper presents a model that assists military commanders in identifying variables that impact food production and distribution in their areas of operation (AO), in identifying connections between variables and in assessing the impacts of those variables on food production and distribution. Through use of the model, military units can better target their data collection efforts and can categorize and analyze data within the data categorization framework most widely-used by military forces—PMESII-PT (Political, Military, Economic, Infrastructure, Information, Physical Environment and Time). The model provides flexibility of analysis in that commanders can target analysis to be highly focused on a specific PMESII-PT domain or variable or conduct analysis across multiple PMESII-PT domains. The model is also designed to assist commanders in mapping food systems in their AOs and then identifying components of those systems that must be strengthened or protected.

Keywords: food security, food system model, political stability, US Military

Procedia PDF Downloads 193
1099 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Authors: Ovidiu Domşa, Nicolae Bold

Abstract:

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Keywords: chromosome, genetic algorithm, subtree, test

Procedia PDF Downloads 324
1098 Digital Image Steganography with Multilayer Security

Authors: Amar Partap Singh Pharwaha, Balkrishan Jindal

Abstract:

In this paper, a new method is developed for hiding image in a digital image with multilayer security. In the proposed method, the secret image is encrypted in the first instance using a flexible matrix based symmetric key to add first layer of security. Then another layer of security is added to the secret data by encrypting the ciphered data using Pythagorean Theorem method. The ciphered data bits (4 bits) produced after double encryption are then embedded within digital image in the spatial domain using Least Significant Bits (LSBs) substitution. To improve the image quality of the stego-image, an improved form of pixel adjustment process is proposed. To evaluate the effectiveness of the proposed method, image quality metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), entropy, correlation, mean value and Universal Image Quality Index (UIQI) are measured. It has been found experimentally that the proposed method provides higher security as well as robustness. In fact, the results of this study are quite promising.

Keywords: Pythagorean theorem, pixel adjustment, ciphered data, image hiding, least significant bit, flexible matrix

Procedia PDF Downloads 335
1097 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 230
1096 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

Authors: M. Salmanpour, O. Nourani Zonouz

Abstract:

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation

Procedia PDF Downloads 470
1095 Investigation of Steel-Concrete Composite Bridges under Blasting Loads Based on Slope Reflection

Authors: Yuan Li, Yitao Han, Zhao Zhu

Abstract:

In this paper, the effect of blasting loads on steel-concrete composite bridges has been investigated considering the slope reflection effect. Reasonable values of girder size, plate thickness, stiffening rib, and other design parameters were selected according to design specifications. Modified RHT (Riedel-Hiermaier-Thoma) was used as constitutive relation in analyses. In order to simulate the slope reflection effect, the slope of the bridge was precisely built in the model. Different blasting conditions, including top, middle, and bottom explosions, were simulated. The multi-Euler domain method based on fully coupled Lagrange and Euler models was adopted for the structural analysis of the explosion process using commercial software AUTODYN. The obtained results showed that explosion overpressure was increased by 3006, 879, and 449kPa, corresponding to explosions occurring at the top, middle, and bottom of the slope, respectively. At the same time, due to energy accumulation and transmission dissipation caused by slope reflection, the corresponding yield lengths of steel beams were increased by 8, 0, and 5m, respectively.

Keywords: steel-concrete composite bridge, explosion damage, slope reflection, blasting loads, RHT

Procedia PDF Downloads 93
1094 Glycyrrhizic Acid Inhibits Lipopolysaccharide-Stimulated Bovine Fibroblast-Like Synoviocyte, Invasion through Suppression of TLR4/NF-κB-Mediated Matrix Metalloproteinase-9 Expression

Authors: Hosein Maghsoudi

Abstract:

Rheumatois arthritis (RA) is progressive inflammatory autoimmune diseases that primarily affect the joints, characterized by synovial hyperplasia and inflammatory cell infiltration, deformed and painful joints, which can lead tissue destruction, functional disability systemic complications, and early dead and socioeconomic costs. The cause of rheumatoid arthritis is unknown, but genetic and environmental factors are contributory and the prognosis is guarded. However, advances in understanding the pathogenesis of the disease have fostered the development of new therapeutics, with improved outcomes. The current treatment strategy, which reflects this progress, is to initiate aggressive therapy soon after diagnosis and to escalate the therapy, guided by an assessment of disease activity, in pursuit of clinical remission. The pathobiology of RA is multifaceted and involves T cells, B cells, fibroblast-like synoviocyte (FLSc) and the complex interaction of many pro-inflammatory cytokine. Novel biologic agents that target tumor necrosis or interlukin (IL)-1 and Il-6, in addition T- and B-cells inhibitors, have resulted in favorable clinical outcomes in patients with RA. Despite this, at least 30% of RA patients are résistance to available therapies, suggesting novel mediators should be identified that can target other disease-specific pathway or cell lineage. Among the inflammatory cell population that might participated in RA pathogenesis, FLSc are crucial in initiaing and driving RA in concert of cartilage and bone by secreting metalloproteinase (MMPs) into the synovial fluid and by direct invasion into extracellular matrix (ECM), further exacerbating joint damage. Invasion of fibroblast-like synoviocytes (FLSc) is critical in the pathogenesis of rheumatoid-arthritis. The metalloproteinase (MMPs) and activator of Toll-like receptor 4 (TLR4)/nuclear factor- κB pthway play a critical role in RA-FLS invasion induced by lipopolysaccharide (LPS). The present study aimed to explore the anti-invasion activity of Glycyrrhizic Acid as a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in Bovine fibroblast-like synoviocyte ex- vitro, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Results showed that Glycyrrhizic Acid suppressed LPS-stimulated bovine FLS migration and invasion by inhibition MMP-9 expression and activity. In addition our results revealed that Glycyrrhizic Acid inhibited the transcriptional activity of MMP-9 by suppression the nbinding activity of NF- κB in the MMP-9 promoter pathway. The extract of licorice (Glycyrrhiza glabra L.) has been widely used for many centuries in the traditional Chinese medicine as native anti-allergic agent. Glycyrrhizin (GL), a triterpenoidsaponin, extracted from the roots of licorice is the most effective compound for inflammation and allergic diseases in human body. The biological and pharmacological studies revealed that GL possesses many pharmacological effects, such as anti-inflammatory, anti-viral and liver protective effects, and the biological effects, such as induction of cytokines (interferon-γ and IL-12), chemokines as well as extrathymic T and anti-type 2 T cells. GL is known in the traditional Chinese medicine for its anti-inflammatory effect, which is originally described by Finney in 1959. The mechanism of the GL-induced anti-inflammatory effect is based on different pathways of the GL-induced selective inhibition of the prostaglandin E2 production, the CK-II- mediated activation of both GL-binding lipoxygenas (gbLOX; 17) and PLA2, an anti-thrombin action of GL and production of the reactive oxygen species (ROS; GL exerts liver protection properties by inhibiting PLA2 or by the hydroxyl radical trapping action, leading to the lowering of serum alanine and aspartate transaminase levels. The present study was undertaken to examine the possible mechanism of anti-inflammatory properties GL on IL-1beta and TNF-alpha signalling pathways in bovine fibroblast-like synoviocyte ex-vivo, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Our results clearly showed that treatment of bovine fibroblast-like synoviocyte with GL suppressed LPS-induced cell migration and invasion. Furthermore, it revealed that GL inhibited the transcription activity of MMP-9 by suppressing the binding activity of NF-κB in the MM-9 promoter. MMP-9 is an important ECM-degrading enzyme and overexpression of MMPs in important of RA-FLSs. LPS can stimulate bovine FLS to secret MMPs, and this induction is regulated at the transcription and translational levels. In this study, LPS treatment of bovine FLS caused an increase in MMP-2 and MMP-9 levels. The increase in MMP-9 expression and secretion was inhibited by ex- vitro. Furthermore, these effects were mimicked by MMP-9 siRNA. These result therefore indicate the the inhibition of LPS-induced bovine FLS invasion by GL occurs primarily by inhibiting MMP-9 expression and activity. Next we analyzed the functional significance of NF-κB transcription of MMP-9 activation in Bovine FLSs. Results from EMSA showed that GL suppressed LPS-induced NF-κB binding to the MMP-9 promotor, as NF-κB regulates transcriptional activation of multiple inflammatory cytokines, we predicted that GL might target NF-κB to suppress MMP-9 transcription by LPS. Myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-κB and apoptotic signaling pathways, GL inhibited the expression of TLR4 and MYD88. These results demonstrated that GL suppress LPS-induced MMP-9 expression through the inhibition of the induced TLR4/NFκB signaling pathway. Taken together, our results provide evidence that GL exerts anti-inflammatory effects by inhibition LPS-induced bovine FLSs migration and invasion, and the mechanisms may involve the suppression of TLR4/NFκB –mediated MMP-9 expression. Although further work is needed to clarify the complicated mechanism of GL-induced anti-invasion of bovine FLSs, GL might be used as a further anti-invasion drug with therapeutic efficacy in the treatment of immune-mediated inflammatory disease such as RA.

Keywords: glycyrrhizic acid, bovine fibroblast-like synoviocyte, tlr4/nf-κb, metalloproteinase-9

Procedia PDF Downloads 390
1093 Meta-Instruction Theory in Mathematics Education and Critique of Bloom’s Theory

Authors: Abdollah Aliesmaeili

Abstract:

The purpose of this research is to present a different perspective on the basic math teaching method called meta-instruction, which reverses the learning path. Meta-instruction is a method of teaching in which the teaching trajectory starts from brain education into learning. This research focuses on the behavior of the mind during learning. In this method, students are not instructed in mathematics, but they are educated. Another goal of the research is to "criticize Bloom's classification in the cognitive domain and reverse it", because it cannot meet the educational and instructional needs of the new generation and "substituting math education instead of math teaching". This is an indirect method of teaching. The method of research is longitudinal through four years. Statistical samples included students ages 6 to 11. The research focuses on improving the mental abilities of children to explore mathematical rules and operations by playing only with eight measurements (any years 2 examinations). The results showed that there is a significant difference between groups in remembering, understanding, and applying. Moreover, educating math is more effective than instructing in overall learning abilities.

Keywords: applying, Bloom's taxonomy, brain education, mathematics teaching method, meta-instruction, remembering, starmath method, understanding

Procedia PDF Downloads 20
1092 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique

Authors: Reda Abdel Azim, Tariq Shehab

Abstract:

The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.

Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension

Procedia PDF Downloads 251
1091 Design and Analysis of Metamaterial Based Vertical Cavity Surface Emitting Laser

Authors: Ishraq M. Anjum

Abstract:

Distributed Bragg reflectors are used in vertical-cavity surface-emitting lasers (VCSELs) in order to achieve very high reflectivity. Use of metamaterial in place of distributed Bragg reflector can reduce the device size significantly. A silicon-based metamaterial near perfect reflector is designed to be used in place of distributed Bragg reflectors in VCSELs. Mie resonance in dielectric microparticles is exploited in order to design the metamaterial. A reflectivity of 98.31% is achieved using finite-difference time-domain method. An 808nm double intra-cavity contacted VCSEL structure with 1.5 λ cavity is proposed using this metamaterial near perfect reflector. The active region is designed to be composed of seven GaAs/AlGaAs quantum wells. Upon numerical investigation of the designed VCSEL structure, the threshold current is found to be 2.96 mA at an aperture of 40 square micrometers and the maximum output power is found to be 71 mW at a current of 141 mA. Miniaturization of conventional VCSELs is possible using this design.

Keywords: GaAs, LASER, metamaterial, VCSEL, vertical cavity surface emitting laser

Procedia PDF Downloads 179
1090 Aliens in Space: Reflections on an Applied Theatre Project in a Medium Secure Hospital

Authors: Ashley Barnes

Abstract:

This paper will consider the ways in which varied notions of Space played a central role in a 12-week drama project with patients in a Medium Secure Hospital in the UK. In the project, the patients devised and performed a series of sketches, inspired by Science Fiction films, which echoed their own experience of alienation. During the project, the familiar and rigorously regulated Activity Room became a site of imagination, adventure and laughter; transforming the atmosphere of the hospital and allowing the patients to be transported to another space entirely. A space that was as much in their heads as in the physical domain. It will be argued that, although work created in an institution such as a Medium Secure Hospital is infused with hegemonic associations and meanings, the starting point for such work should be to seek an empty space in which the participants can allow their imaginations to be released. This work sits within a range of contexts and will be consciously interdisciplinary. It will draw from Human Geography and Criminology, as well as Performance and Applied Theatre Literature. It is hoped that this paper will build upon the literature that relates to the very particular environment of Secure Hospitals and to provide a starting point for further practical exploration.

Keywords: criminal justice, mental health, science fiction films, space and place

Procedia PDF Downloads 222
1089 Assembly Training: An Augmented Reality Approach Using Design Science Research

Authors: Stefan Werrlich, Phuc-Anh Nguyen, Kai Nitsche, Gunther Notni

Abstract:

Augmented Reality (AR) is a strong growing research topic. This innovative technology is interesting for several training domains like education, medicine, military, sports and industrial use cases like assembly and maintenance tasks. AR can help to improve the efficiency, quality and transfer of training tasks. Due to these reasons, AR becomes more interesting for big companies and researchers because the industrial domain is still an unexplored field. This paper presents the research proposal of a PhD thesis which is done in cooperation with the BMW Group, aiming to explore head-mounted display (HMD) based training in industrial environments. We give a short introduction, describing the motivation, the underlying problems as well as the five formulated research questions we want to clarify along this thesis. We give a brief overview of the current assembly training in industrial environments and present some AR-based training approaches, including their research deficits. We use the Design Science Research (DSR) framework for this thesis and describe how we want to realize the seven guidelines, mandatory from the DSR. Furthermore, we describe each methodology which we use within that framework and present our approach in a comprehensive figure, representing the entire thesis.

Keywords: assembly, augmented reality, research proposal, training

Procedia PDF Downloads 245
1088 A Qualitative Study: Teaching Fractions with Augmented Reality for 5th Grade Students in Turkey

Authors: Duygu Özdemir, Bilal Özçakır

Abstract:

Usage of augmented reality in education helps students to make sense of the three-dimensional world of mathematics. In this study, it was aimed to develop activities about fractions for 5th-grade students by augmented reality and also aimed to assess these activities in terms of students’ understanding and views. Data obtained from 60 students in a private school in Marmaris, Turkey was obtained through classroom observations, students’ worksheets and semi-structured interviews during two weeks. Data analysis was conducted by using constant-comparative analysis which leads to meaningful categories of findings. Findings of this study indicated that usage of augmented reality is a facilitator to make concretize and provide real-life application for fractions. Moreover, students’ opinions about its usage were lead to categories as benefit for learning, enjoyment and creating awareness of usage of augmented reality in mathematics education. In general, this study could be a bridge to show the contributions of augmented reality applications to mathematics education and also highlights that augmented reality could be used with subjects like fractions rather than subjects only in geometry learning domain.

Keywords: augmented reality, mathematics, fractions, students

Procedia PDF Downloads 196
1087 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models

Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif

Abstract:

This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.

Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function

Procedia PDF Downloads 393