Search results for: Environmental
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6819

Search results for: Environmental

5349 Unbranched, Saturated, Carboxylic Esters as Phase-Change Materials

Authors: Anastasia Stamatiou, Melissa Obermeyer, Ludger J. Fischer, Philipp Schuetz, Jörg Worlitschek

Abstract:

This study evaluates unbranched, saturated carboxylic esters with respect to their suitability to be used as storage media for latent heat storage applications. Important thermophysical properties are gathered both by means of literature research as well as by experimental measurements. Additionally, esters are critically evaluated against other common phase-change materials in terms of their environmental impact and their economic potential. The experimental investigations are performed for eleven selected ester samples with a focus on the determination of their melting temperature and their enthalpy of fusion using differential scanning calorimetry. Transient Hot Bridge was used to determine the thermal conductivity of the liquid samples while thermogravimetric analysis was employed for the evaluation of the 5% weight loss temperature as well as of the decomposition temperature of the non-volatile samples. Both experimental results and literature data reveal the high potential of esters as phase-change materials. Their good thermal and environmental properties as well as the possibility for production from natural sources (e.g. vegetable oils) render esters as very promising for future storage applications. A particularly high short term application potential of esters could lie in low temperature storage applications where the main alternative is using salt hydrates as phase-change material.

Keywords: esters, phase-change materials, thermal properties, latent heat storage

Procedia PDF Downloads 418
5348 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis

Authors: Grace Rachid, Mutasem El Fadel, Mahmoud Al Hindi, Ibrahim Jamali, Daniel Abdel Nour

Abstract:

This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and cost-benefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost < $ 80/m2 or a lease rate < $1/m2/yr. Beyond those rates, further subsidy lifting is required.

Keywords: solar energy, desalination, value engineering, CBA, carbon credit, subsidies

Procedia PDF Downloads 577
5347 The Impact of Right to Repair Initiatives on Environmental and Financial Performance in European Consumer Electronics Firms: An Econometric Analysis

Authors: Daniel Stabler, Anne-Laure Mention, Henri Hakala, Ahmad Alaassar

Abstract:

In Europe, 2.2 billion tons of waste annually generate severe environmental damage and economic burdens, and negatively impact human health. A stark illustration of the problem is found within the consumer electronics industry, which reflects one of the most complex global waste streams. Of the 5.3 billion globally discarded mobile phones in 2022, only 17% were properly recycled. To address these pressing issues, Europe has made significant strides in developing waste management strategies, Circular Economy initiatives, and Right to Repair policies. These endeavors aim to make product repair and maintenance more accessible, extend product lifespans, reduce waste, and promote sustainable resource use. European countries have introduced Right to Repair policies, often in conjunction with extended producer responsibility legislation, repair subsidies, and consumer repair indices, to varying degrees of regulatory rigor. Changing societal trends emphasizing sustainability and environmental responsibility have driven consumer demand for more sustainable and repairable products, benefiting repair-focused consumer electronics businesses. In academic research, much of the literature in Management studies has examined the European Circular Economy and the Right to Repair from firm-level perspectives. These studies frequently employ a business-model lens, emphasizing innovation and strategy frameworks. However, this study takes an institutional perspective, aiming to understand the adoption of Circular Economy and repair-focused business models within the European consumer electronics market. The concepts of the Circular Economy and the Right to Repair align with institutionalism as they reflect evolving societal norms favoring sustainability and consumer empowerment. Regulatory institutions play a pivotal role in shaping and enforcing these concepts through legislation, influencing the behavior of businesses and individuals. Compliance and enforcement mechanisms are essential for their success, compelling actors to adopt sustainable practices and consider product life extension. Over time, these mechanisms create a path for more sustainable choices, underscoring the influence of institutions and societal values on behavior and decision-making. Institutionalism, particularly 'neo-institutionalism,' provides valuable insights into the factors driving the adoption of Circular and repair-focused business models. Neo-institutional pressures can manifest through coercive regulatory initiatives or normative standards shaped by socio-cultural trends. The Right to Repair movement has emerged as a prominent and influential idea within academic discourse and sustainable development initiatives. Therefore, understanding how macro-level societal shifts toward the Circular Economy and the Right to Repair trigger firm-level responses is imperative. This study aims to answer a crucial question about the impact of European Right to Repair initiatives had on the financial and environmental performance of European consumer electronics companies at the firm level. A quantitative and statistical research design will be employed. The study will encompass an extensive sample of consumer electronics firms in Northern and Western Europe, analyzing their financial and environmental performance in relation to the implementation of Right to Repair mechanisms. The study's findings are expected to provide valuable insights into the broader implications of the Right to Repair and Circular Economy initiatives on the European consumer electronics industry.

Keywords: circular economy, right to repair, institutionalism, environmental management, european union

Procedia PDF Downloads 84
5346 Social Network Analysis, Social Power in Water Co-Management (Case Study: Iran, Shemiranat, Jirood Village)

Authors: Fariba Ebrahimi, Mehdi Ghorbani, Ali Salajegheh

Abstract:

Comprehensively water management considers economic, environmental, technical and social and also sustainability of water resources for future generations. Grassland management implies cooperative approach and involves all stakeholders and also introduces issues to managers, decision and policy makers. Solving these issues needs integrated and system approach. According to the recognition of actors or key persons in necessary to apply cooperative management of Water. Therefore, based on stakeholder analysis and social network analysis can be used to demonstrate the most effective actors for environmental decisions. In this research, social powers according are specified to social network approach at Water utilizers’ level of Natural in Jirood catchment of Latian basin. In this paper, utilizers of water resources were recognized using field trips and then, trust and collaboration matrix produced using questionnaires. In the next step, degree centrality index were Examined. Finally, geometric position of each actor was illustrated in the network. The results of the research based on centrality index have a key role in recognition of cooperative management of Water in Jirood and also will help managers and planners of water in the case of recognition of social powers in order to organization and implementation of sustainable management of Water.

Keywords: social network analysis, water co-management, social power, centrality index, local stakeholders network, Jirood catchment

Procedia PDF Downloads 374
5345 Mechanical, Thermal and Biodegradable Properties of Bioplast-Spruce Green Wood Polymer Composites

Authors: A. Atli, K. Candelier, J. Alteyrac

Abstract:

Environmental and sustainability concerns push the industries to manufacture alternative materials having less environmental impact. The Wood Plastic Composites (WPCs) produced by blending the biopolymers and natural fillers permit not only to tailor the desired properties of materials but also are the solution to meet the environmental and sustainability requirements. This work presents the elaboration and characterization of the fully green WPCs prepared by blending a biopolymer, BIOPLAST® GS 2189 and spruce sawdust used as filler with different amounts. Since both components are bio-based, the resulting material is entirely environmentally friendly. The mechanical, thermal, structural properties of these WPCs were characterized by different analytical methods like tensile, flexural and impact tests, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). Their water absorption properties and resistance to the termite and fungal attacks were determined in relation with different wood filler content. The tensile and flexural moduli of WPCs increased with increasing amount of wood fillers into the biopolymer, but WPCs became more brittle compared to the neat polymer. Incorporation of spruce sawdust modified the thermal properties of polymer: The degradation, cold crystallization, and melting temperatures shifted to higher temperatures when spruce sawdust was added into polymer. The termite, fungal and water absorption resistance of WPCs decreased with increasing wood amount in WPCs, but remained in durability class 1 (durable) concerning fungal resistance and quoted 1 (attempted attack) in visual rating regarding to the termites resistance except that the WPC with the highest wood content (30 wt%) rated 2 (slight attack) indicating a long term durability. All the results showed the possibility to elaborate the easy injectable composite materials with adjustable properties by incorporation of BIOPLAST® GS 2189 and spruce sawdust. Therefore, lightweight WPCs allow both to recycle wood industry byproducts and to produce a full ecologic material.

Keywords: biodegradability, color measurements, durability, mechanical properties, melt flow index, MFI, structural properties, thermal properties, wood-plastic composites, WPCs

Procedia PDF Downloads 139
5344 Determinants of Sustainable Supplier Selection: An Exploratory Study of Manufacturing Tunisian’s SMEs

Authors: Ahlem Dhahri, Audrey Becuwe

Abstract:

This study examines the adoption of sustainable purchasing practices among Tunisian SMEs, with a focus on assessing how environmental and social sustainability maturity affects the implementation of sustainable supplier selection (SSS) criteria. Using institutional theory to classify coercive, normative, and mimetic pressures, as well as emerging drivers and barriers, this study explores the institutional factors influencing sustainable purchasing practices and the specific barriers faced by Tunisian SMEs in this area. An exploratory, abductive qualitative research design was adopted for this multiple case study, which involved 19 semi-structured interviews with owners and managers of 17 Tunisian manufacturing SMEs. The Gioia method was used to analyze the data, thus enabling the identification of key themes and relationships directly from the raw data. This approach facilitated a structured interpretation of the institutional factors influencing sustainable purchasing practices, with insights drawn from the participants' perspectives. The study reveals that Tunisian SMEs are at different levels of sustainability maturity, with a significant impact on their procurement practices. SMEs with advanced sustainability maturity integrate both environmental and social criteria into their supplier selection processes, while those with lower maturity levels rely on mostly traditional criteria such as cost, quality, and delivery. Key institutional drivers identified include regulatory pressure, market expectations, and stakeholder influence. Additional emerging drivers—such as certifications and standards, economic incentives, environmental commitment as a core value, and group-wide strategic alignment—also play a critical role in driving sustainable procurement. Conversely, the study reveals significant barriers, including economic constraints, limited awareness, and resource limitations. It also identifies three main categories of emerging barriers: (1) logistical and supply chain constraints, including retailer/intermediary dependency, tariff regulations, and a perceived lack of direct responsibility in B2B supply chains; (2) economic and financial constraints; and (3) operational barriers, such as unilateral environmental responsibility, a product-centric focus and the influence of personal relationships. Providing valuable insights into the role of sustainability maturity in supplier selection, this study is the first to explore sustainable procurement practices in the Tunisian SME context. Integrating an analysis of institutional drivers, including emerging incentives and barriers, provides practical implications for SMEs seeking to improve sustainability in procurement. The results highlight the need for stronger regulatory frameworks and support mechanisms to facilitate the adoption of sustainable practices among SMEs in Tunisia.

Keywords: Tunisian SME, sustainable supplier selection, institutional theory, determinant, qualitative study

Procedia PDF Downloads 16
5343 Development and Implementation of An "Electric Island" Monitoring Infrastructure for Promoting Energy Efficiency in Schools

Authors: Vladislav Grigorovitch, Marina Grigorovitch, David Pearlmutter, Erez Gal

Abstract:

The concept of “electric island” is involved with achieving the balance between the self-power generation ability of each educational institution and energy consumption demand. Photo-Voltaic (PV) solar system installed on the roofs of educational buildings is a common way to absorb the available solar energy and generate electricity for self-consumption and even for returning to the grid. The main objective of this research is to develop and implement an “electric island” monitoring infrastructure for promoting energy efficiency in educational buildings. A microscale monitoring methodology will be developed to provide a platform to estimate energy consumption performance classified by rooms and subspaces rather than the more common macroscale monitoring of the whole building. The monitoring platform will be established on the experimental sites, enabling an estimation and further analysis of the variety of environmental and physical conditions. For each building, separate measurement configurations will be applied taking into account the specific requirements, restrictions, location and infrastructure issues. The direct results of the measurements will be analyzed to provide deeper understanding of the impact of environmental conditions and sustainability construction standards, not only on the energy demand of public building, but also on the energy consumption habits of the children that study in those schools and the educational and administrative staff that is responsible for providing the thermal comfort conditions and healthy studying atmosphere for the children. A monitoring methodology being developed in this research is providing online access to real-time data of Interferential Therapy (IFTs) from any mobile phone or computer by simply browsing the dedicated website, providing powerful tools for policy makers for better decision making while developing PV production infrastructure to achieve “electric islands” in educational buildings. A detailed measurement configuration was technically designed based on the specific conditions and restriction of each of the pilot buildings. A monitoring and analysis methodology includes a large variety of environmental parameters inside and outside the schools to investigate the impact of environmental conditions both on the energy performance of the school and educational abilities of the children. Indoor measurements are mandatory to acquire the energy consumption data, temperature, humidity, carbon dioxide and other air quality conditions in different parts of the building. In addition to that, we aim to study the awareness of the users to the energy consideration and thus the impact on their energy consumption habits. The monitoring of outdoor conditions is vital for proper design of the off-grid energy supply system and validation of its sufficient capacity. The suggested outcomes of this research include: 1. both experimental sites are designed to have PV production and storage capabilities; 2. Developing an online information feedback platform. The platform will provide consumer dedicated information to academic researchers, municipality officials and educational staff and students; 3. Designing an environmental work path for educational staff regarding optimal conditions and efficient hours for operating air conditioning, natural ventilation, closing of blinds, etc.

Keywords: sustainability, electric island, IOT, smart building

Procedia PDF Downloads 180
5342 The Distribution and Environmental Behavior of Heavy Metals in Jajarm Bauxite Mine, Northeast Iran

Authors: Hossein Hassani, Ali Rezaei

Abstract:

Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Environmental protection against various pollutants, such as heavy metals formed by industries, mines and modern technologies, is a concern for researchers and industry. In order to assess the contamination of soils the distribution and environmental behavior have been investigated. Jajarm bauxite mine, the most important deposits have been discovered in Iran, which is about 22 million tons of reserve, and is the main mineral of the Diaspora. With a view to estimate the heavy metals ratio of the Jajarm bauxite mine area and to evaluate the pollution level, 50 samples have been collected and have been analyzed for the heavy metals of As, Cd, Cu, Hg, Ni and Pb with the help of Inductively Coupled Plasma-Mass Spectrometer (ICP- MS). In this study, we have dealt with determining evaluation criteria including contamination factor (CF), average concentration (AV), enrichment factor (EF) and geoaccumulation index (GI) to assess the risk of pollution from heavy metals(As, Cd, Cu, Hg, Ni and Pb) in Jajarm bauxite mine. In the samples of the studied, the average of recorded concentration of elements for Arsenic, Cadmium, Copper, Mercury, Nickel and Lead are 18, 0.11, 12, 0.07, 58 and 51 (mg/kg) respectively. The comparison of the heavy metals concentration average and the toxic potential in the samples has shown that an average with respect to the world average of the uncontaminated soil amounts. The average of Pb and As elements shows a higher quantity with respect to the world average quantity. The pollution factor for the study elements has been calculated on the basis of the soil background concentration and has been categorized on the basis of the uncontaminated world soil average with respect to the Hakanson classification. The calculation of the corrected pollutant degree shows the degree of the bulk intermediate pollutant (1.55-2.0) for the average soil sampling of the study area which is on the basis of the background quantity and the world average quantity of the uncontaminated soils. The provided conclusion from calculation of the concentrated factor, for some of the samples show that the average of the lead and arsenic elements stations are more than the background values and the unnatural metal concentration are covered under the study area, That's because the process of mining and mineral extraction. Given conclusion from the calculation of Geoaccumulation index of the soil sampling can explain that the copper, nickel, cadmium, arsenic, lead and mercury elements are Uncontamination. In general, the results indicate that the Jajarm bauxite mine of heavy metal pollution is uncontaminated area and extract the mineral from the mine, not create environmental hazards in the region.

Keywords: enrichment factor, geoaccumulation index, heavy metals, Jajarm bauxite mine, pollution

Procedia PDF Downloads 293
5341 The Automated Soil Erosion Monitoring System (ASEMS)

Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos

Abstract:

The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of an innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholder's and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.

Keywords: soil management, climate change, new technologies, conservation practices

Procedia PDF Downloads 348
5340 Designing Bird-Friendly Kolkata city

Authors: Madhumita Roy

Abstract:

Kolkata, the city of joy, is an organic city with 45 lakhs of people till date. The increasing population stress is creating a constant pressure on the ground surface which in turn reducing the possible area for plantation. Humans, plants, and birds have a mutualistic relationship, and all are dependent on each other for their survival. Vegetation structure is very important for a bird life because it can be used as a residence, foraging, life cycle, and shelter from predators. On the other hand, in urban areas, buildings and structures also plays a major role for birds habitat w.r.t, nesting, resting, etc. City birds are constantly upgrading their adaptative mechanism with changing urban pattern with modern architectural designs. Urbanisation and unplanned development lead to environmental degradation and bird habitat fragmentation, which have impacts on the degradation of the quality and quantity of bird habitat. Declining green cover and habitat loss affects the diversity and population structure of birds. Their reducing number is an increasing threat not only to the bird community but also to the city as birds are considered as one of the most important environmental indicator. This study aims to check the present avian status like species richness, relative abundance, and diversity of bird species in the context of changing urban pattern in Kolkata city. Nesting strategy in the urban habitat of the avian community is another avenue of interest.

Keywords: urbanisation, avian species, kolkata metropolis, planning

Procedia PDF Downloads 102
5339 Extended Literature Review on Sustainable Energy by Using Multi-Criteria Decision Making Techniques

Authors: Koray Altintas, Ozalp Vayvay

Abstract:

Increased global issues such as depletion of sources, environmental problems and social inequality triggered public awareness towards finding sustainable solutions in order to ensure the well-being of the current as well as future generations. Since energy plays a significant role in improved social and economic well-being and is imperative on both industrial and commercial wealth creation, it is a must to develop a standardized set of metrics which makes it possible to indicate the present condition relative to conditions in the past and to develop any perspective which is required to frame actions for the future. This is not an easy task by considering the complexity of the issue which requires integrating economic, environmental and social aspects of sustainable energy. Multi-criteria decision making (MCDM) can be considered as a form of integrated sustainability evaluation and a decision support approach that can be used to solve complex problems featuring; conflicting objectives, different forms of data and information, multi-interests and perspectives. On that matter, MCDM methods are useful for providing solutions to complex energy management problems. The aim of this study is to review MCDM approaches that can be used for examining sustainable energy management. This study presents an insight into MCDM techniques and methods that can be useful for engineers, researchers and policy makers working in the energy sector.

Keywords: sustainable energy, sustainability criteria, multi-criteria decision making, sustainability dimensions

Procedia PDF Downloads 335
5338 Application of Shore Protective Structures in Optimum Land Using of Defense Sites Located in Coastal Cities

Authors: Mir Ahmad Lashteh Neshaei, Hamed Afsoos Biria, Ata Ghabraei, Mir Abdolhamid Mehrdad

Abstract:

Awareness of effective land using issues in coastal area including protection of natural ecosystems and coastal environment due to the increasing of human life along the coast is of great importance. There are numerous valuable structures and heritages which are located in defence sites and waterfront area. Marine structures such as groins, sea walls and detached breakwaters are constructed in coast to improve the coast stability against bed erosion due to changing wave and climate pattern. Marine mechanisms and interaction with the shore protection structures need to be intensively studied. Groins are one of the most prominent structures that are used in shore protection to create a safe environment for coastal area by maintaining the land against progressive coastal erosion. The main structural function of a groin is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative environmental impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood at present. Nowadays, modelling and computer simulation are used to assess beach morphology in the vicinity of marine structures to reduce their environmental impact. The objective of this study is to predict the beach morphology in the vicinity of submerged groins and comparison with non-submerged groins with focus on a part of the coast located in Dahane sar Sefidrood, Guilan province, Iran where serious coast erosion has occurred recently. The simulations were obtained using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groins. The results of the proposed model are compared with field measurements to determine the shape of the coast. Finally, the results of the present study show that using submerged groins can have a good efficiency to control the beach erosion without causing severe environmental impact to the coast. The important outcome from this study can be employed in optimum designing of defence sites in the coastal cities to improve their efficiency in terms of re-using the heritage lands.

Keywords: submerged structures, groin, shore protective structures, coastal cities

Procedia PDF Downloads 319
5337 Remote Sensing Application in Environmental Researches: Case Study of Iran Mangrove Forests Quantitative Assessment

Authors: Neda Orak, Mostafa Zarei

Abstract:

Environmental assessment is an important session in environment management. Since various methods and techniques have been produces and implemented. Remote sensing (RS) is widely used in many scientific and research fields such as geology, cartography, geography, agriculture, forestry, land use planning, environment, etc. It can show earth surface objects cyclical changes. Also, it can show earth phenomena limits on basis of electromagnetic reflectance changes and deviations records. The research has been done on mangrove forests assessment by RS techniques. Mangrove forests quantitative analysis in Basatin and Bidkhoon estuaries was the aim of this research. It has been done by Landsat satellite images from 1975- 2013 and match to ground control points. This part of mangroves are the last distribution in northern hemisphere. It can provide a good background to improve better management on this important ecosystem. Landsat has provided valuable images to earth changes detection to researchers. This research has used MSS, TM, +ETM, OLI sensors from 1975, 1990, 2000, 2003-2013. Changes had been studied after essential corrections such as fix errors, bands combination, georeferencing on 2012 images as basic image, by maximum likelihood and IPVI Index. It was done by supervised classification. 2004 google earth image and ground points by GPS (2010-2012) was used to compare satellite images obtained changes. Results showed mangrove area in bidkhoon was 1119072 m2 by GPS and 1231200 m2 by maximum likelihood supervised classification and 1317600 m2 by IPVI in 2012. Basatin areas is respectively: 466644 m2, 88200 m2, 63000 m2. Final results show forests have been declined naturally. It is due to human activities in Basatin. The defect was offset by planting in many years. Although the trend has been declining in recent years again. So, it mentioned satellite images have high ability to estimation all environmental processes. This research showed high correlation between images and indexes such as IPVI and NDVI with ground control points.

Keywords: IPVI index, Landsat sensor, maximum likelihood supervised classification, Nayband National Park

Procedia PDF Downloads 294
5336 Ambient Factors in the Perception of Crowding in Public Transport

Authors: John Zacharias, Bin Wang

Abstract:

Travel comfort is increasingly seen as crucial to effecting the switch from private motorized modes to public transit. Surveys suggest that travel comfort is closely related to perceived crowding, that may involve lack of available seating, difficulty entering and exiting, jostling and other physical contacts with strangers. As found in studies on environmental stress, other factors may moderate perceptions of crowding–in this case, we hypothesize that the ambient environment may play a significant role. Travel comfort was measured by applying a structured survey to randomly selected passengers (n=369) on 3 lines of the Beijing metro on workdays. Respondents were standing with all seats occupied and with car occupancy at 14 levels. A second research assistant filmed the metro car while passengers were interviewed, to obtain the total number of passengers. Metro lines 4, 6 and 10 were selected that travel through the central city north-south, east-west and circumferentially. Respondents evaluated the following factors: crowding, noise, smell, air quality, temperature, illumination, vibration and perceived safety as they experienced them at the time of interview, and then were asked to rank these 8 factors according to their importance for their travel comfort. Evaluations were semantic differentials on a 7-point scale from highly unsatisfactory (-3) to highly satisfactory (+3). The control variables included age, sex, annual income and trip purpose. Crowding was assessed most negatively, with 41% of the scores between -3 and -2. Noise and air quality were also assessed negatively, with two-thirds of the evaluations below 0. Illumination was assessed most positively, followed by crime, vibration and temperature, all scoring at indifference (0) or slightly positive. Perception of crowding was linearly and positively related to the number of passengers in the car. Linear regression tested the impact of ambient environmental factors on perception of crowding. Noise intensity accounted for more than the actual number of individuals in the car in the perception of crowding, with smell also contributing. Other variables do not interact with the crowding variable although the evaluations are distinct. In all, only one-third of the perception of crowding (R2=.154) is explained by the number of people, with the other ambient environmental variables accounting for two-thirds of the variance (R2=.316). However, when ranking the factors by their importance to travel comfort, perceived crowding made up 69% of the first rank, followed by noise at 11%. At rank 2, smell dominates (25%), followed by noise and air quality (17%). Commuting to work induces significantly lower evaluations of travel comfort with shopping the most positive. Clearly, travel comfort is particularly important to commuters. Moreover, their perception of crowding while travelling on metro is highly conditioned by the ambient environment in the metro car. Focussing attention on the ambient environmental conditions of the metro is an effective way to address the primary concerns of travellers with overcrowding. In general, the strongly held opinions on travel comfort require more attention in the effort to induce ridership in public transit.

Keywords: ambient environment, mass rail transit, public transit, travel comfort

Procedia PDF Downloads 265
5335 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace EthylenE-propylene-Diene Monomer Rubber

Authors: Sibel Dikmen Kucuk, Yusuf Guner

Abstract:

In recent years, petroleum-based polymers began to be limited due to the effects on the human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of the use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic-based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal, and aging analyses. The aged surfaces were visually scrutinized, and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose could be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, color change or staining.

Keywords: EPDM, lignin, green materials, biodegradable fillers

Procedia PDF Downloads 131
5334 Energy Service Companies as a Facilitator for Implementation of Energy-Environment Conventions

Authors: Bahareh Arghand

Abstract:

The establishment of rules and regulations for more effective energy-environment interactions are essential to achieving sustainable development. Sustainable development requires mechanisms that can promote compliance in energy-environment conventions. There are many binding agreements and non-binding instruments at regional and international levels on energy and the environment. These conventions try to decrease conflicts of interest between energy, environment and economic by legal principles and practical mechanisms. The major core of conventions is their implementations because the poor implementation and enforcement power affect their success. In this regard, the main goal of this study is proposing the effective implementation mechanisms. Energy service companies' (ESCOs) activities can improve energy efficiency and decrease the environmental degradations. Therefore, it can be proposed and assessed the merit mechanism of ESCO performance as a facilitator to implement energy-environment conventions. An assessment of ESCO performance, including its potentials, problems, and limitations, as a facilitator for effective implementation of the energy-environment convention, is included. This study is oriented towards effective development and application of laws and the function of ESCOs as appropriate economic instruments and facilitator for implementation of energy-environment conventions. The resulting system of close cooperation between the energy-environment conventions and ESCOs is geared toward advancing environmental protection and economic factors by the transfer of environmentally-sound technologies that meet sustainable development objectives.

Keywords: energy-environment conventions, energy service company, facilitator mechanism, sustainable development

Procedia PDF Downloads 185
5333 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait

Authors: Badriya Almutairi, Ashraf El-Hamalawi

Abstract:

Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.

Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy

Procedia PDF Downloads 306
5332 Advanced Textiles for Soldier Clothes Based on Coordination Polymers

Authors: Hossam E. Emam

Abstract:

The functional textiles development history in the military field could be ascribed as a uniquely interesting research topic. Soldiers are like a high-performance athletes, where monitoring their physical and physiological capabilities is a vital requirement. Functional clothes represent a “second skin” that has a close, “intimate” relationship with the human body. For the application of textiles in military purposes, which is normally required in difficult weather and environmental conditions, several functions are required. The requirements for designing functional military textiles for soldier's protection can be categorized into three categories; i) battle field (protection from chemical warfare agents, flames, and thermal radiation), ii) environmental (water proof, air permeable, UV-protection, antibacterial), iii) physiological (minimize heat stress, low weight, insulative, durability). All of these requirements are important, but the means to fulfill these requirements are not simple and straight forward. Additionally, the combination of more than one function is reported to be very expensive and requires many complicated steps, and the final product is found to be low durability. Not only do all of these requirements are overlapping, but they are also contradicting each other at various levels. Thus, we plan to produce multi-functional textiles (e.g., anti-microbial, UV-protection, fire retardant, photoluminescent) to be applied in military clothes. The current project aims to use quite a simple and applicable technique through the modification of textiles with different coordination polymers and functionalized coordination polymers.

Keywords: functional textiles, military clothes, coordination polymers, antimicrobial, fire retardant, photolumenscent

Procedia PDF Downloads 183
5331 Real-World Vehicle to Grid: Case Study on School Buses in New England

Authors: Aaron Huber, Manoj Karwa

Abstract:

Floods, heat waves, drought, wildfires, tornadoes and other environmental disasters are a snapshot of looming national problems that can create increasing demands on the national grid. With nearly 500,000 school buses on the road and the environmental protection agency (EPA) providing nearly $1B for electric school buses, there is a solution for this national issue. Bidirectional batteries in electric school buses enable a future proof solution to sustain the power grid during adverse environmental conditions and other periods of high demand. School buses have larger batteries than standard electric vehicles. When they are not transporting students, these buses can spend peak solar hours parked and plugged into bi-directional direct current fast chargers (DCFC). A partnership with Highland Electric, Proterra and Rhombus enabled over 7 MWh of energy servicing Massachusetts and Vermont grids. The buses were part of a vehicle to grid (V2G) program with National Grid and Green Mountain Power that can charge an average American home for one month with a single bus. V2G infrastructure enables school systems to future proof their charging strategies, strengthen their local grids and can create additional revenue streams with their EV fleets. A bidirectional ecosystem with Highland, Proterra and Rhombus can enable grid resiliency or the ability to withstand power outages caused by excessive demands, natural disasters or rogue nation's attacks with no loss of service. A fleet of school buses is a standalone resilient asset that can be accessed across a city to keep its citizens safe without having any toxic fumes. Nearly 95% of all school buses across USA are powered by diesel internal combustion engines. Diesel exhaust has been classified as a human carcinogen, and it can lead to and exacerbate respiratory conditions. Bidirectional school buses and chargers enable energy justice by providing backup power in case of emergencies or high demand for marginalized communities and aim to make energy more accessible, affordable, clean, and democratically managed.

Keywords: V2G, vehicle to grid, electric buses, eBuses, DC fast chargers, DCFC

Procedia PDF Downloads 78
5330 Experiments on Residual Compressive Strength After Fatigue of Carbon Fiber Fabric Composites in Hydrothermal Environment

Authors: Xuan Sun, Mingbo Tong

Abstract:

In order to study the effect of hydrothermal environment on the fatigue properties of carbon fiber fabric composites, the experiments on fatigue and residual compressive strength with the center-hole laminates were carried out. For the experiments on fatigue in hydrothermal environment, an environmental chamber used for hydrothermal environment was designed, and the FLUENT was used to simulate the field of temperature in the environmental chamber, it proved that the design met the test requirements. In accordance with ASTM standard, the fatigue test fixture and compression test fixture were designed and produced. Then the tension-compression fatigue tests were carried out in conditions of standard environment (temperature of 23+2℃, relative humidity of 50+/-5%RH) and hydrothermal environment (temperature of 70 +2℃, relative humidity of 85+/-5%RH). After that, the residual compressive strength tests were carried out, respectively. The residual compressive strength after fatigue in condition of standard environment was set as a reference value, compared with the value in condition of hydrothermal environment, calculating the difference between them. According to the result of residual compressive strength tests, it shows that the residual compressive strength after fatigue in condition of hydrothermal environment was decreased by 13.5%,so the hydrothermal environment has little effect on the residual compressive strength of carbon fiber fabric composites laminates after fatigue under load spectrum in this research.

Keywords: carbon fiber, hydrothermal environment, fatigue, residual compressive strength

Procedia PDF Downloads 489
5329 The Social Conflicts and Evaluation of Times Square, Middletown Manhattan District in Development Since the Inceptive Point

Authors: Seung Oh, Satoshi Okada

Abstract:

This study is information-intensive research that provides insight from the factual history, social perception, and robust ideas derived from the social conflict in the most progressively thriving district in the world, Times Square. The case study provides the socio-environmental setup since the Inceptive Point of the development, the Great Depression, the history archives, and evaluation based on the master-level journals as standard. The Great Depression invited macro-sized changes, including financial systems, to raise fluidity by gutting off the debt limit by the gold value, organizing the labor, and social problems in the major cities. The locality of Times Square was implemented by the socio-political changes, overturning ownerships of properties, including theaters, delocalizing tourism, and re-entering the labors with organizations through infrastructure projects and civil activities for minorities and preservations amid the progressive developments over time. Naturally, chasing the media for factual research before and after Inceptive Points. Times Square is understood not just the ‘tower with subway’ progression but also social conflicts raised for adjustment for civil rights, preservations, and progression to deliver the environmental background to trigger the 42nd Street Development (42DP) in the 1990s.

Keywords: development, district, progressive, preservation, social conflict, value chasing

Procedia PDF Downloads 75
5328 “Environmental-Friendly” and “People-Friendly” Project for a New North-East Italian Hospital

Authors: Emanuela Zilli, Antonella Ruffatto, Davide Bonaldo, Stefano Bevilacqua, Tommaso Caputo, Luisa Fontana, Carmelina Saraceno, Antonio Sturaroo, Teodoro Sava, Antonio Madia

Abstract:

The new Hospital in Cittadella - ULSS 6 Euganea Health Trust, in the North-East of Italy (400 beds, project completion date in 2026), will partially take the place of the existing building. Interesting features have been suggested in order to project a modern, “environmental-friendly” and “people-friendly” building. Specific multidisciplinary meetings (involving stakeholders and professionals with different backgrounds) have been organized on a periodic basis in order to guarantee the appropriate implementation of logistic and organizational solutions related to eco-sustainability, integration with the context, and the concept of “design for all” and “humanization of care.” The resulting building will be composed of organic shapes determined by the external environment (sun movement, climate, landscape, pre-existing buildings, roads) and the needs of the internal environment (areas of care and diagnostic-treatment paths reorganized with experience gained during the pandemic), with extensive use of renewable energy, solar panels, a 4th-generation heating system, sanitised and maintainable surfaces. There is particular attention to the quality of the staff areas, which include areas dedicated to psycho-physical well-being (relax points, yoga gym), study rooms, and a centralized conference room. Outdoor recreational spaces and gardens for music and watercolour therapy will be included; atai-chi gym is dedicated to oncology patients. Integration in the urban and social context is emphasized through window placement toward the gardens (maternal-infant, mental health, and rehabilitation wards). Service areas such as dialysis, radiology, and labs have views of the medieval walls, the symbol of the city’s history. The new building has been designed to pursue the maximum level of eco-sustainability, harmony with the environment, and integration with the historical, urban, and social context; the concept of humanization of care has been considered in all the phases of the project management.

Keywords: environmental-friendly, humanization, eco-sustainability, new hospital

Procedia PDF Downloads 120
5327 Optimal Energy Management and Environmental Index Optimization of a Microgrid Operating by Renewable and Sustainable Generation Systems

Authors: Nabil Mezhoud

Abstract:

The economic operation of electric energy generating systems is one of the predominant problems in energy systems. Due to the need for better reliability, high energy quality, lower losses, lower cost and a clean environment, the application of renewable and sustainable energy sources, such as wind energy, solar energy, etc., in recent years has become more widespread. In this work, one of a bio-inspired meta-heuristic algorithm inspired by the flashing behavior of fireflies at night called the Firefly Algorithm (FFA) is applied to solve the Optimal Energy Management (OEM) and the environmental index (EI) problems of a micro-grid (MG) operating by Renewable and Sustainable Generation Systems (RSGS). Our main goal is to minimize the nonlinear objective function of an electrical microgrid, taking into account equality and inequality constraints. The FFA approach was examined and tested on a standard MG system composed of different types of RSGS, such as wind turbines (WT), photovoltaic systems (PV), and non-renewable energy, such as fuel cells (FC), micro turbine (MT), diesel generator (DEG) and loads with energy storage systems (ESS). The results are promising and show the effectiveness and robustness of the proposed approach to solve the OEM and the EI problems. The results of the proposed method have been compared and validated with those known references published recently.

Keywords: renewable energy sources, energy management, distributed generator, micro-grids, firefly algorithm

Procedia PDF Downloads 81
5326 A Conceptual Framework of Scheduled Waste Management in Highway Industry

Authors: Nurul Nadhirah Anuar, Muhammad Fauzi Abdul Ghani

Abstract:

Scheduled waste management is very important in environmental and health aspects. Despite it is very important, the research study on schedule waste management is very little in the highway industry even though there is a rapid growth of highway operation in the Asian region. It should be noted that there are many unnoticeable wastes in highway industry that should be managed properly. This paper aims to define the scheduled waste, to provide a conceptual framework of the scheduled waste management in highway industry, to highlight the effect of improper management of scheduled waste and to encourage future researchers to identify and share the present practice of scheduled management in their country. The understanding on effective management of scheduled waste will help the operators of highway industry, the academicians, future researchers, and encourage a friendly environment around the world. The study on scheduled waste management in highway industry is very crucial as compared to factories in which the factories are located on specified areas whereas, highway transverse and run along kilometers crossing the various type of environment, residential and schools. Using Environmental Quality (Scheduled Waste) Regulations, 2005 as a guide, this conceptual paper highlight several scheduled wastes produced by highway industry in Malaysia and provide a conceptual framework of scheduled waste management that focused on the highway industry. Understanding on schedule waste management is vital in order to preserve the environment. Besides that, the waste substances are hazardous to human being. Many diseases have been associated with the improper management of scheduled waste such as cancer, throat irritation and respiration problem.

Keywords: Asia region, environment, highway industry, scheduled waste

Procedia PDF Downloads 423
5325 Strategies and Difficulties to Integrate Renewable Energy into Recreational Open Spaces

Authors: A. Tereci, M. Atmaca

Abstract:

Recreational spaces designed or build for refreshment of the users through natural riches and/or activities. Those places contribute to the quality of city life by providing relaxation point for citizens and maintaining the environmental equilibrium. The elements which constitute the recreational areas also promote long-term environmental and social sustainability of cities. Preservation and creation of the recreation open spaces are important for water and air quality, natural habitat and also social communication. On this point, it is also a good area for promoting the renewable energy sources through comprehension of the sustainable development which is possible only with using nature and technic together. Energy production is mainly technical issue, and architectural design of these elements to the site always ignores or avoid. The main problems for integration of renewable energy sources are the system suitability, security, durability, and resiliency. In this paper, one of the city recreational open spaces in Konya, Turkey was evaluated for integration of possible renewable energy sources. It shows that the solar energy potential is high and PV integration is the best option. On the other hand wind, energy power and area is not suitable for wind turbine, so wind belts were decided to integrate on the design. According to recreational activities, the chosen elements was designed for site application, and their performance was calculated. According to possible installation on the furniture, there is 50 MWh/a electricity production capacity.

Keywords: energy, integrated design, recreational space, renewables

Procedia PDF Downloads 159
5324 Sustainability in Hospitality: An Inevitable Necessity in New Age with Big Environmental Challenges

Authors: Majid Alizadeh, Sina Nematizadeh, Hassan Esmailpour

Abstract:

The mutual effects of hospitality and the environment are undeniable, so that the tourism industry has major harmful effects on the environment. Hotels, as one of the most important pillars of the hospitality industry, have significant effects on the environment. Green marketing is a promising strategy in response to the growing concerns about the environment. A green hotel marketing model was proposed using a grounded theory approach in the hotel industry. The study was carried out as a mixed method study. Data gathering in the qualitative phase was done through literature review and In-depth, semi-structured interviews with 10 experts in green marketing using snowball technique. Following primary analysis, open, axial, and selective coding was done on the data, which yielded 69 concepts, 18 categories and six dimensions. Green hotel (green product) was adopted as the core phenomenon. In the quantitative phase, data were gleaned using 384 questionnaires filled-out by hotel guests and descriptive statistics and Structural equation modeling (SEM) were used for data analysis. The results indicated that the mediating role of behavioral response between the ecological literacy, trust, marketing mix and performance was significant. The green marketing mix, as a strategy, had a significant and positive effect on guests’ behavioral response, corporate green image, and financial and environmental performance of hotels.

Keywords: green marketing, sustainable development, hospitality, grounded theory, structural equations model

Procedia PDF Downloads 82
5323 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 102
5322 Sustainable Valorization of Wine Production Waste: Unlocking the Potential of Grape Pomace and Lees in the Vinho Verde Region

Authors: Zlatina Genisheva, Pedro Ferreira-Santos, Margarida Soares, Cândida Vilarinho, Joana Carvalho

Abstract:

The wine industry produces significant quantities of waste, much of which remains underutilized as a potential raw material. Typically, this waste is either discarded in the fields or incinerated, leading to environmental concerns. By-products of wine production, like lees and grape pomace, are readily available at relatively low costs and hold promise as raw materials for biochemical conversion into valuable products. Reusing these waste materials is crucial, not only for reducing environmental impact but also for enhancing profitability. The Vinhos Verdes demarcated region, the largest wine-producing area in Portugal, has remained relatively stagnant over time. This project aims to offer an alternative income source for producers in the region while also expanding the limited existing research on this area. The main objective of this project is the study of the sustainable valorization of grape pomace and lees from the production of DOC Vinho Verde. Extraction tests were performed to obtain high-value compounds, targeting phenolic compounds from grape pomace and protein-rich extracts from lees. An environmentally friendly technique, microwave extraction, was used for this process. This method is not only efficient but also aligns with the principles of green chemistry, reducing the use of harmful solvents and minimizing energy consumption. The findings from this study have the potential to open new revenue streams for the region’s wine producers while promoting environmental sustainability. The optimal conditions for extracting proteins from lees involve the use of NaOH at 150ºC. Regardless of the solvent employed, the ideal temperature for obtaining extracts rich in polyphenol compounds and exhibiting strong antioxidant activity is also 150ºC. For grape pomace, extracts with a high concentration of polyphenols and significant antioxidant properties were obtained at 210ºC. However, the highest total tannin concentrations were achieved at 150ºC, while the maximum total flavonoid content was obtained at 170ºC.

Keywords: antioxidants, circular economy, polyphenol compounds, waste valorization

Procedia PDF Downloads 22
5321 Dynamic Capability: An Exploratory Study Applied to Social Enterprise in South East Asia

Authors: Atiwat Khatpibunchai, Taweesak Kritjaroen

Abstract:

A social enterprise is the innovative hybrid organizations where its ultimate goal is to generate revenue and use it as a fund to solve the social and environmental problem. Although the evidence shows the clear value of economic, social and environmental aspects, the limitations of most of the social enterprises are the expanding impact of social and environmental aspects through the normal market mechanism. This is because the major sources of revenues of social enterprises derive from the business advocates who merely wish to support society and environment by using products and services of social enterprises rather than expect the satisfaction and the distinctive advantage of products and services. Thus, social enterprises cannot reach the achievement as other businesses do. The relevant concepts from the literature review revealed that dynamic capability is the ability to sense, integrate and reconfigure internal resources and utilize external resources to adapt to changing environments, create innovation and achieve competitive advantage. The objective of this research is to study the influence of dynamic capability that affects competitive advantage and sustainable performance, as well as to determine important elements of dynamic capability. The researchers developed a conceptual model from the related concepts and theories of dynamic capability. A conceptual model will support and show the influence of dynamic capability on competitive advantage and sustainable performance of social enterprises. The 230 organizations in South-East Asia served as participants in this study. The results of the study were analyzed by the structural equation model (SEM) and it was indicated that research model is consistent with empirical research. The results also demonstrated that dynamic capability has a direct and indirect influence on competitive advantage and sustainable performance. Moreover, it can be summarized that dynamic capability consists of the five elements: 1) the ability to sense an opportunity; 2) the ability to seize an opportunity; 3) the ability to integrate resources; 4) the ability to absorb resources; 5) the ability to create innovation. The study recommends that related sectors can use this study as a guideline to support and promote social enterprises. The focus should be pointed to the important elements of dynamic capability that are the development of the ability to transform existing resources in the organization and the ability to seize opportunity from changing market.

Keywords: dynamic capability, social enterprise, sustainable competitive advantage, sustainable performance

Procedia PDF Downloads 252
5320 Managing Construction and Demolition Wastes - A Case Study of Multi Triagem, Lda

Authors: Cláudia Moço, Maria Santos, Carlos Arsénio, Débora Mendes, Miguel Oliveira. José Paulo Da Silva

Abstract:

Construction industry generates large amounts of waste all over the world. About 450 million tons of construction and demolition wastes (C&DW) are produced annually in the European Union. C&DW are highly heterogeneous materials in size and composition, which imposes strong difficulties on their management. Directive n.º 2008/98/CE, of the European Parliament and of the Council of 6 November establishes that 70 % of the C&DW have to be recycled by 2020. To evaluate possible applications of these materials, a detailed physical, chemical and environmental characterization is necessary. Multi Triagem, Lda. is a company located in Algarve (Portugal) and was supported by the European Regional Development Fund (grant QREN 30307 Multivalor) to quantify and characterize the received C&DW, in order to evaluate their possible applications. This evaluation, performed in collaboration with the University of Algarve, involves a physical, chemical and environmental detailed characterization of the received C&DW. In this work we report on the amounts, trial procedures and properties of the C&DW received over a period of fifteen month. In this period the company received C&DW coming from 393 different origins. The total amount was 32.458 tons, mostly mixtures containing concrete, masonry/mortar and soil/rock. Most of C&DW came from demodulation constructions and diggings. The organic/inert component, namely metal, glass, wood and plastics, were screened first and account for about 3 % of the received materials. The remaining materials were screened and grouped according to their origin and contents, the latter evaluated by visual inspection. Twenty five samples were prepared and submitted to a detailed physical, chemical and environmental analysis. The C&DW aggregates show lower quality properties than natural aggregates for concrete preparation and unbound layers of road pavements. However, chemical analyzes indicated that most samples are environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds is needed in order to perform a proper screening of the C&DW. C&DW aggregates provide a good alternative to natural aggregates.

Keywords: construction and demolition wastes, waste classification, waste composition, waste screening

Procedia PDF Downloads 352