Search results for: wolof word classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2902

Search results for: wolof word classification

2782 Compounding and Blending in English and Hausa Languages

Authors: Maryam Maimota

Abstract:

Words are the basic building blocks of a language. In everyday usage of a language, words are used and new words are formed and reformed in order to contain and accommodate all entities, phenomena, qualities and every aspect of the entire human life. This research study seeks to examine and compare some of the word formation processes and how they are used in forming new words in English and Hausa languages. The study focuses its main attention on blending and compounding as word formation processes and how the processes are used adequately in the formation of words in both English and Hausa languages. The research aims to find out, how compounding and blending are used, as processes of word formation in these two languages. And also, to investigate the word formation processes involved in compounding and blending in these languages, and the nature of words that are formed. Therefore, the research tries to find the answers to the following research questions; What types of compound and blended forms are found and how they are formed in the English and Hausa languages? How these compounded and blended forms functioned in both English and Hausa languages in different context such as in phrases and sentences structures? Findings of the study reveal that, there exist new kind of words formed in Hausa and English language under blending, which previous findings did not either reveal or explain in detail. Similarly, there are a lot of similarities found in the way these blends and compounds forms in the two languages, however, the data available shows that, blends in the Hausa language are more, when compared to the blends in English. The data of this study will be gathered based on discourse found in newspaper, articles, novels, and written literature of the Hausa and English languages.

Keywords: blending, compounding, morphology, word formation

Procedia PDF Downloads 379
2781 A Comparison of South East Asian Face Emotion Classification based on Optimized Ellipse Data Using Clustering Technique

Authors: M. Karthigayan, M. Rizon, Sazali Yaacob, R. Nagarajan, M. Muthukumaran, Thinaharan Ramachandran, Sargunam Thirugnanam

Abstract:

In this paper, using a set of irregular and regular ellipse fitting equations using Genetic algorithm (GA) are applied to the lip and eye features to classify the human emotions. Two South East Asian (SEA) faces are considered in this work for the emotion classification. There are six emotions and one neutral are considered as the output. Each subject shows unique characteristic of the lip and eye features for various emotions. GA is adopted to optimize irregular ellipse characteristics of the lip and eye features in each emotion. That is, the top portion of lip configuration is a part of one ellipse and the bottom of different ellipse. Two ellipse based fitness equations are proposed for the lip configuration and relevant parameters that define the emotions are listed. The GA method has achieved reasonably successful classification of emotion. In some emotions classification, optimized data values of one emotion are messed or overlapped to other emotion ranges. In order to overcome the overlapping problem between the emotion optimized values and at the same time to improve the classification, a fuzzy clustering method (FCM) of approach has been implemented to offer better classification. The GA-FCM approach offers a reasonably good classification within the ranges of clusters and it had been proven by applying to two SEA subjects and have improved the classification rate.

Keywords: ellipse fitness function, genetic algorithm, emotion recognition, fuzzy clustering

Procedia PDF Downloads 546
2780 Differences in Word Choice between Male and Female Translators: Analyzing Persian Translations of “A Man Called Ove”

Authors: Roya Alipour

Abstract:

The present study concentrates on answering the question of whether there are unintentional differences between genders in the translation of emotive and non-emotive texts, resulting in female translators preferring more expressive words when translating emotive texts in comparison to their male counterparts. The works of four translators, two males and two females, who had translated Fredrik Backman’s novel: A Man Called Ove, from English into Persian were used as samples of the study. To answer the research question, qualitative method was used, and the data were collected by analyzing some words, phrases and sentences as the bases for analysis. It was concluded that although there were obvious differences in word choice in translations, no specific pattern was found that showed gender might affect translation of emotive and non-emotive texts.

Keywords: translation, gender, word choice, translator, A Man Called Ove

Procedia PDF Downloads 79
2779 New Ways of Vocabulary Enlargement

Authors: S. Pesina, T. Solonchak

Abstract:

Lexical invariants, being a sort of stereotypes within the frames of ordinary consciousness, are created by the members of a language community as a result of uniform division of reality. The invariant meaning is formed in person’s mind gradually in the course of different actualizations of secondary meanings in various contexts. We understand lexical the invariant as abstract language essence containing a set of semantic components. In one of its configurations it is the basis or all or a number of the meanings making up the semantic structure of the word.

Keywords: lexical invariant, invariant theories, polysemantic word, cognitive linguistics

Procedia PDF Downloads 322
2778 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 382
2777 Semi-Automatic Method to Assist Expert for Association Rules Validation

Authors: Amdouni Hamida, Gammoudi Mohamed Mohsen

Abstract:

In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process.

Keywords: association rules, rule-based classification, classification quality, validation

Procedia PDF Downloads 437
2776 Spatial Audio Player Using Musical Genre Classification

Authors: Jun-Yong Lee, Hyoung-Gook Kim

Abstract:

In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.

Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing

Procedia PDF Downloads 429
2775 A Study Investigating Word Association Behaviour in People with Acquired Language and Communication Disorders

Authors: Angela Maria Fenu

Abstract:

The aim of this study was to better characterize the nature of word association responses in people with aphasia. The participants selected for the experimental group were 4 individuals with mild Broca’s aphasia. The control group consisted of 51 cognitively intact age- and gender-matched individuals. The participants were asked to perform a word association task in which they had to say the first word they thought of when hearing each cue. The cue words (n= 16) were the translation in Italian of the set of English cue words of a published study. The participants from the experimental group were administered the word association test every two weeks for a period of two months when they received speech-language therapy A combination of analytical approaches to measure the data was used. To analyse different patterns of word association responses in both groups, the nature of the relationship between the cue and the response was examined: responses were divided into five categories of association. To investigate the similarity between aphasic and non-aphasic subjects, the stereotypy of responses was examined.While certain stimulus words (nouns, adjectives) elicited responses from Broca’s aphasics that tended to resemble those made by non-aphasic subjects; others (adverbs, verbs) showed the tendency to elicit responses different from the ones given by normal subjects. This suggests that some mechanisms underlying certain types of associations are degraded in aphasics individuals, while others display little evidence of disruption. The high number of paradigmatic associations given in response to a noun or an adjective might imply that the mechanisms, largely semantic, underlying paradigmatic associations are relatively preserved in Broca’s aphasia, but it might also mean that some words are more easily processed depending on their grammatical class (nouns, adjectives). The most significant variation was noticed when the grammatical class of the cue word was an adverb. Unlike the normal individuals, the experimental subjects gave the most idiosyncratic associations, which are often produced when the attempt to give a paradigmatic response fails. In turn, the failure to retrieve paradigmatic responses when the cue is an adverb might suggest that Broca’s aphasics are more sensitive to this grammatical class.The findings from this study suggest that, from research on word associations in people with aphasia, important data can arise concerning the specific lexical retrieval impairments that characterize the different types of aphasia and the various treatments that might positively influence the kinds of word association responses affected by language disruption.

Keywords: aphasia therapy, clinical linguistics, word-association behaviour, mental lexicon

Procedia PDF Downloads 88
2774 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 520
2773 Perceiving Casual Speech: A Gating Experiment with French Listeners of L2 English

Authors: Naouel Zoghlami

Abstract:

Spoken-word recognition involves the simultaneous activation of potential word candidates which compete with each other for final correct recognition. In continuous speech, the activation-competition process gets more complicated due to speech reductions existing at word boundaries. Lexical processing is more difficult in L2 than in L1 because L2 listeners often lack phonetic, lexico-semantic, syntactic, and prosodic knowledge in the target language. In this study, we investigate the on-line lexical segmentation hypotheses that French listeners of L2 English form and then revise as subsequent perceptual evidence is revealed. Our purpose is to shed further light on the processes of L2 spoken-word recognition in context and better understand L2 listening difficulties through a comparison of skilled and unskilled reactions at the point where their working hypothesis is rejected. We use a variant of the gating experiment in which subjects transcribe an English sentence presented in increments of progressively greater duration. The spoken sentence was “And this amazing athlete has just broken another world record”, chosen mainly because it included common reductions and phonetic features in English, such as elision and assimilation. Our preliminary results show that there is an important difference in the manner in which proficient and less-proficient L2 listeners handle connected speech. Less-proficient listeners delay recognition of words as they wait for lexical and syntactic evidence to appear in the gates. Further statistical results are currently being undertaken.

Keywords: gating paradigm, spoken word recognition, online lexical segmentation, L2 listening

Procedia PDF Downloads 462
2772 Documents Emotions Classification Model Based on TF-IDF Weighting Measure

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.

Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms

Procedia PDF Downloads 483
2771 The Effects of Negative Electronic Word-of-Mouth and Webcare on Thai Online Consumer Behavior

Authors: Pongsatorn Tantrabundit, Lersak Phothong, Ong-art Chanprasitchai

Abstract:

Due to the emergence of the Internet, it has extended the traditional Word-of-Mouth (WOM) to a new form called “Electronic Word-of-Mouth (eWOM).” Unlike traditional WOM, eWOM is able to present information in various ways by applying different components. Each eWOM component generates different effects on online consumer behavior. This research investigates the effects of Webcare (responding message) from product/ service providers on negative eWOM by applying two types of products (search and experience). The proposed conceptual model was developed based on the combination of the stages in consumer decision-making process, theory of reasoned action (TRA), theory of planned behavior (TPB), the technology acceptance model (TAM), the information integration theory and the elaboration likelihood model. The methodology techniques used in this study included multivariate analysis of variance (MANOVA) and multiple regression analysis. The results suggest that Webcare does slightly increase Thai online consumer’s perceptions on perceived eWOM trustworthiness, information diagnosticity and quality. For negative eWOM, we also found that perceived eWOM Trustworthiness, perceived eWOM diagnosticity and quality have a positive relationship with eWOM influence whereas perceived valence has a negative relationship with eWOM influence in Thai online consumers.

Keywords: consumer behavior, electronic word-of-mouth, online review, online word-of-mouth, Thai online consumer, webcare

Procedia PDF Downloads 204
2770 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification

Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi

Abstract:

Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.

Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images

Procedia PDF Downloads 87
2769 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 211
2768 Equivalences and Contrasts in the Morphological Formation of Echo Words in Two Indo-Aryan Languages: Bengali and Odia

Authors: Subhanan Mandal, Bidisha Hore

Abstract:

The linguistic process whereby repetition of all or part of the base word with or without internal change before or after the base itself takes place is regarded as reduplication. The reduplicated morphological construction annotates with itself a new grammatical category and meaning. Reduplication is a very frequent and abundant phenomenon in the eastern Indian languages from the states of West Bengal and Odisha, i.e. Bengali and Odia respectively. Bengali, an Indo-Aryan language and a part of the Indo-European language family is one of the largest spoken languages in India and is the national language of Bangladesh. Despite this classification, Bengali has certain influences in terms of vocabulary and grammar due to its geographical proximity to Tibeto-Burman and Austro-Asiatic language speaking communities. Bengali along with Odia belonged to a single linguistic branch. But with time and gradual linguistic changes due to various factors, Odia was the first to break away and develop as a separate distinct language. However, less of contrasts and more of similarities still exist among these languages along the line of linguistics, leaving apart the script. This paper deals with the procedure of echo word formations in Bengali and Odia. The morphological research of the two languages concerning the field of reduplication reveals several linguistic processes. The revelation is based on the information elicited from native language speakers and also on the analysis of echo words found in discourse and conversational patterns. For the purpose of partial reduplication analysis, prefixed class and suffixed class word formations are taken into consideration which show specific rule based changes. For example, in suffixed class categorization, both consonant and vowel alterations are found, following the rules: i) CVx à tVX, ii) CVCV à CVCi. Further classifications were also found on sentential studies of both languages which revealed complete reduplication complexities while forming echo words where the head word lose its original meaning. Complexities based on onomatopoetic/phonetic imitation of natural phenomena and not according to any rule-based occurrences were also found. Taking these aspects into consideration which are very prevalent in both the languages, inferences are drawn from the study which bring out many similarities in both the languages in this area in spite of branching away from each other several years ago.

Keywords: consonant alteration, onomatopoetic, partial reduplication and complete reduplication, reduplication, vowel alteration

Procedia PDF Downloads 240
2767 Formation of Blends in Hausa Language

Authors: Maryam Maimota Shehu

Abstract:

Words are the basic building blocks of a language. In everyday usage of a language, words are used, and new words are formed and reformed to contain and accommodate all entities, phenomena, qualities and every aspect of the entire life. Despite the fact that many studies have been conducted on morphological processes in The Hausa language. Most of the works concentrated on borrowing, affixation, reduplication and derivation, but blending has been neglected to the extent that some of the Hausa linguists claim that, blending does not exist in the language. Therefore, the current study investigates and examines blending as one of the word formation processes' in the language. The study focuses its main attention on blending as a word-formation process and how this process is used adequately in the formation of words in The Hausa language. To achieve the aims, the research answered these questions: 1) is blending used as a process of word formation in Hausa? 2) What are the words formed using this process? This study utilizes the Natural Morphology Theory proposed by Dressler, (1985) which was adopted by Belly (2007). The data of this study have been collected from newspaper articles, novels, and written literature of Hausa language. Based on the findings, this study found out that, there exist new kind of words formed in The Hausa language under blending, which previous findings did not either reveal or explain in detail. Another part of the finding shows that some of the words change their grammatical classes and meaning while blended.

Keywords: morphology, word formation, blending in hausa language, language

Procedia PDF Downloads 418
2766 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 477
2765 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 335
2764 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 346
2763 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 463
2762 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 637
2761 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.

Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble

Procedia PDF Downloads 491
2760 Automatic Speech Recognition Systems Performance Evaluation Using Word Error Rate Method

Authors: João Rato, Nuno Costa

Abstract:

The human verbal communication is a two-way process which requires a mutual understanding that will result in some considerations. This kind of communication, also called dialogue, besides the supposed human agents it can also be performed between human agents and machines. The interaction between Men and Machines, by means of a natural language, has an important role concerning the improvement of the communication between each other. Aiming at knowing the performance of some speech recognition systems, this document shows the results of the accomplished tests according to the Word Error Rate evaluation method. Besides that, it is also given a set of information linked to the systems of Man-Machine communication. After this work has been made, conclusions were drawn regarding the Speech Recognition Systems, among which it can be mentioned their poor performance concerning the voice interpretation in noisy environments.

Keywords: automatic speech recognition, man-machine conversation, speech recognition, spoken dialogue systems, word error rate

Procedia PDF Downloads 320
2759 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile

Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali

Abstract:

Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.

Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile

Procedia PDF Downloads 453
2758 Preliminary Study of Sediment-Derived Plastiglomerate: Proposal to Classification

Authors: Agung Rizki Perdana, Asrofi Mursalin, Adniwan Shubhi Banuzaki, M. Indra Novian

Abstract:

The understanding about sediment-derived plastiglomerate has a wide-range of merit in the academic realm. It can cover discussions about the Anthropocene Epoch in the scope of geoscience knowledge to even provide a solution for the environmental problem of plastic waste. Albeit its importance, very few research has been done regarding this issue. This research aims to create a classification as a pioneer for the study of sediment-derived plastiglomerate. This research was done in Bantul Regency, Daerah Istimewa Yogyakarta Province as an analogue of plastic debris sedimentation process. Observation is carried out in five observation points that shows three different depositional environments, which are terrestrial, fluvial, and transitional environment. The resulting classification uses three parameters and forms in a taxonomical manner. These parameters are composition, degree of lithification, and abundance of matrix respectively in advancing order. There is also a compositional ternary diagram which should be followed before entering the plastiglomerate nomenclature classification.

Keywords: plastiglomerate, classification, sedimentary mechanism, microplastic

Procedia PDF Downloads 131
2757 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents

Authors: Prasanna Haddela

Abstract:

Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.

Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm

Procedia PDF Downloads 112
2756 Students' Errors in Translating Algebra Word Problems to Mathematical Structure

Authors: Ledeza Jordan Babiano

Abstract:

Translating statements into mathematical notations is one of the processes in word problem-solving. However, based on the literature, students still have difficulties with this skill. The purpose of this study was to investigate the translation errors of the students when they translate algebraic word problems into mathematical structures and locate the errors via the lens of the Translation-Verification Model. Moreover, this qualitative research study employed content analysis. During the data-gathering process, the students were asked to answer a six-item algebra word problem questionnaire, and their answers were analyzed by experts through blind coding using the Translation-Verification Model to determine their translation errors. After this, a focus group discussion was conducted, and the data gathered was analyzed through thematic analysis to determine the causes of the students’ translation errors. It was found out that students’ prevalent error in translation was the interpretation error, which was situated in the Attribute construct. The emerging themes during the FGD were: (1) The procedure of translation is strategically incorrect; (2) Lack of comprehension; (3) Algebra concepts related to difficulty; (4) Lack of spatial skills; (5) Unprepared for independent learning; and (6) The content of the problem is developmentally inappropriate. These themes boiled down to the major concept of independent learning preparedness in solving mathematical problems. This concept has subcomponents, which include contextual and conceptual factors in translation. Consequently, the results provided implications for instructors and professors in Mathematics to innovate their teaching pedagogies and strategies to address translation gaps among students.

Keywords: mathematical structure, algebra word problems, translation, errors

Procedia PDF Downloads 48
2755 Classification Systems of Peat Soils Based on Their Geotechnical, Physical and Chemical Properties

Authors: Mohammad Saberian, Reza Porhoseini, Mohammad Ali Rahgozar

Abstract:

Peat is a partially carbonized vegetable tissue which is formed in wet conditions by decomposition of various plants, mosses and animal remains. This restricted definition, including only materials which are entirely of vegetative origin, conflicts with several established soil classification systems. Peat soils are usually defined as soils having more than 75 percent organic matter. Due to this composition, the structure of peat soil is highly different from the mineral soils such as silt, clay and sand. Peat has high compressibility, high moisture content, low shear strength and low bearing capacity, so it is considered to be in the category of problematic. Since this kind of soil is generally found in many countries and various zones, except for desert and polar zones, recognizing this soil is inevitably significant. The objective of this paper is to review the classification of peats based on various properties of peat soils such as organic contents, water content, color, odor, and decomposition, scholars offer various classification systems which Von Post classification system is one of the most well-known and efficient system.

Keywords: peat soil, degree of decomposition, organic content, water content, Von Post classification

Procedia PDF Downloads 595
2754 Electronic-Word of Mouth(e-WoM): Preliminary Study of Malaysian Undergrad Students Smartphone Online Review

Authors: Norshakirah Ab.Aziz, Nurul Atiqah Jamaluddin

Abstract:

Consequently, electronic word-of-mouth (e-WoM) becomes one of the resources in the decision making process and considered a valuable marketing channel for consumers and organizations. Admittedly, there is increasing concern on the accuracy and genuine of e-WoM content because consumers prefer to look out product or service information available online. Thus, the focus of this study is to propose a model and guidelines how to select trusted online review content according to domain chosen –undergrad students smartphone online review. Undeniable, mobile devices like smartphone has now become a necessity in today are daily life to complete our daily chores. The model and guideline focused on product competency review and the message integrity. In other words, this study aims to enable consumers to identify trusted online review content, which helps them in buying decisions.

Keywords: electronic word of mouth, e-WoM, WoM, online review

Procedia PDF Downloads 327
2753 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 77