Search results for: ultraviolet radiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1589

Search results for: ultraviolet radiation

1469 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites

Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar

Abstract:

Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.

Keywords: multi-functional, polymer composites, radiation shielding, sandwich composites

Procedia PDF Downloads 284
1468 Sol-Gel Synthesis and Photoluminescent Properties of YPO4: Pr3+ Nanophosphors

Authors: Badis Kahouadji, Lakhdar Guerbous, Lyes Lamiri

Abstract:

For many years, the luminescent materials were investigated principally in the infrared and visible areas, because the ultraviolet (UV) and especially in vacuum Ultraviolet (VUV) are technically more difficult to explore, especially absence of applications requiring of materials suitable to short wavelengths.Recent necessary, related to the development of certain technologies, encouraged research in these spectra domains. It is in this context that the 4Fn-4Fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies. These studies relate in particular to search for new scintillator materials used for spectroscopy and X-ray, ɤ, as well as medical imaging. The 4Fn- 4Fn-15d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggeting to study on a very specific class of inorganic scintillators that are orthophosphate doped with rare earth ions, this study focused on the Pr3+ concentration on the structural and optical properties of Pr3+ doped YPO4 (yttriumorthophosphate) with powder form prepared by the Sol Gel method.

Keywords: rare earth, scintillator, YPO4:Pr3+ nanophosphors, sol gel, 4Fn-4Fn-15d transitions

Procedia PDF Downloads 600
1467 The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane.

Keywords: microwave radiation, biogas, methane fermentation, biomass

Procedia PDF Downloads 530
1466 Assessment of the Efficacy of Routine Medical Tests in Screening Medical Radiation Staff in Shiraz University of Medical Sciences Educational Centers

Authors: Z. Razi, S. M. J. Mortazavi, N. Shokrpour, Z. Shayan, F. Amiri

Abstract:

Long-term exposure to low doses of ionizing radiation occurs in radiation health care workplaces. Although doses in health professions are generally very low, there are still matters of concern. The radiation safety program promotes occupational radiation safety through accurate and reliable monitoring of radiation workers in order to effectively manage radiation protection. To achieve this goal, it has become mandatory to implement health examination periodically. As a result, based on the hematological alterations, working populations with a common occupational radiation history are screened. This paper calls into question the effectiveness of blood component analysis as a screening program which is mandatory for medical radiation workers in some countries. This study details the distribution and trends of changes in blood components, including white blood cells (WBCs), red blood cells (RBCs) and platelets as well as received cumulative doses from occupational radiation exposure. This study was conducted among 199 participants and 100 control subjects at the medical imaging departments at the central hospital of Shiraz University of Medical Sciences during the years 2006–2010. Descriptive and analytical statistics, considering the P-value<0.05 as statistically significance was used for data analysis. The results of this study show that there is no significant difference between the radiation workers and controls regarding WBCs and platelet count during 4 years. Also, we have found no statistically significant difference between the two groups with respect to RBCs. Besides, no statistically significant difference was observed with respect to RBCs with regards to gender, which has been analyzed separately because of the lower reference range for normal RBCs levels in women compared to men and. Moreover, the findings confirm that in a separate evaluation between WBCs count and the personnel’s working experience and their annual exposure dose, results showed no linear correlation between the three variables. Since the hematological findings were within the range of control levels, it can be concluded that the radiation dosage (which was not more than 7.58 mSv in this study) had been too small to stimulate any quantifiable change in medical radiation worker’s blood count. Thus, use of more accurate method for screening program based on the working profile of the radiation workers and their accumulated dose is suggested. In addition, complexity of radiation-induced functions and the influence of various factors on blood count alteration should be taken into account.

Keywords: blood cell count, mandatory testing, occupational exposure, radiation

Procedia PDF Downloads 460
1465 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications

Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar

Abstract:

Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.

Keywords: boron nitride nanotube, radiation shielding, young modulus, atomistic modeling

Procedia PDF Downloads 296
1464 Investigation of Factors Affecting the Total Ionizing Dose Threshold of Electrically Erasable Read Only Memories for Use in Dose Rate Measurement

Authors: Liqian Li, Yu Liu, Karen Colins

Abstract:

The dose rate present in a seriously contaminated area can be indirectly determined by monitoring radiation damage to inexpensive commercial electronics, instead of deploying expensive radiation hardened sensors. EEPROMs (Electrically Erasable Read Only Memories) are a good candidate for this purpose because they are inexpensive and are sensitive to radiation exposure. When the total ionizing dose threshold is reached, an EEPROM chip will show signs of damage that can be monitored and transmitted by less susceptible electronics. The dose rate can then be determined from the known threshold dose and the exposure time, assuming the radiation field remains constant with time. Therefore, the threshold dose needs to be well understood before this method can be used. There are many factors affecting the threshold dose, such as the gamma ray energy spectrum, the operating voltage, etc. The purpose of this study was to experimentally determine how the threshold dose depends on dose rate, temperature, voltage, and duty factor. It was found that the duty factor has the strongest effect on the total ionizing dose threshold, while the effect of the other three factors that were investigated is less significant. The effect of temperature was found to be opposite to that expected to result from annealing and is yet to be understood.

Keywords: EEPROM, ionizing radiation, radiation effects on electronics, total ionizing dose, wireless sensor networks

Procedia PDF Downloads 183
1463 Cosmic Radiation Hazards and Protective Strategies in Space Exploration

Authors: Mehrnaz Mostafavi, Alireza Azani, Mahtab Shabani, Fatemeh Ghafari

Abstract:

While filled with promise and wonder, space exploration also presents significant challenges, one of the foremost being the threat of cosmic radiation to astronaut health. Recent advancements in assessing these risks and developing protective strategies have shed new light on this issue. Cosmic radiation encompasses a variety of high-energy particles originating from sources like solar particle events, galactic cosmic rays, and cosmic rays from beyond the solar system. These particles, composed of protons, electrons, and heavy ions, pose a substantial threat to human health in space due to the lack of Earth's protective atmosphere and magnetic field. Researchers have made significant progress in assessing the risks associated with cosmic radiation exposure. By employing advanced dosimetry techniques and conducting biological studies, they have gained insights into how cosmic radiation affects astronauts' health, including increasing the risk of cancer and radiation sickness. This research has led to personalized risk assessment methods tailored to individual astronaut profiles. Distinctive protection strategies have been proposed to combat the dangers of cosmic radiation. These include developing spacecraft shielding materials and designs to enhance radiation protection. Additionally, researchers are exploring pharmacological interventions such as radioprotective drugs and antioxidant therapies to mitigate the biological effects of radiation exposure and preserve astronaut well-being. The findings from recent research have significant implications for the future of space exploration. By advancing our understanding of cosmic radiation risks and developing effective protection strategies, we pave the way for safer and more sustainable human missions beyond Earth's orbit. This is especially crucial for long-duration missions to destinations like Mars, where astronauts will face prolonged exposure to cosmic radiation. In conclusion, recent research has marked a milestone in addressing the challenges posed by cosmic radiation in space exploration. By delving into the complexities of cosmic radiation exposure and developing innovative protection strategies, scientists are ensuring the health and resilience of astronauts as they venture into the vast expanse of the cosmos. Continued research and collaboration in this area are essential for overcoming the cosmic radiation challenge and enabling humanity to embark on new frontiers of exploration and discovery in space.

Keywords: Space exploration, cosmic radiation, astronaut health, risk assessment, protective strategies

Procedia PDF Downloads 75
1462 Assessment of Nuclear Medicine Radiation Protection Practices Among Radiographers and Nurses at a Small Nuclear Medicine Department in a Tertiary Hospital

Authors: Nyathi Mpumelelo; Moeng Thabiso Maria

Abstract:

BACKGROUND AND OBJECTIVES: Radiopharmaceuticals are used for diagnosis, treatment, staging and follow up of various diseases. However, there is concern that the ionizing radiation (gamma rays, α and ß particles) emitted by radiopharmaceuticals may result in exposure of radiographers and nurses with limited knowledge of the principles of radiation protection and safety, raising the risk of cancer induction. This study aimed at investigation radiation safety awareness levels among radiographers and nurses at a small tertiary hospital in South Africa. METHODS: An analytical cross-sectional study. A validated two-part questionnaire was implemented to consenting radiographers and nurses working in a Nuclear Medicine Department. Part 1 gathered demographic information (age, gender, work experience, attendance to/or passing ionizing radiation protection courses). Part 2 covered questions related to knowledge and awareness of radiation protection principles. RESULTS: Six radiographers and five nurses participated (27% males and 73% females). The mean age was 45 years (age range 20-60 years). The study revealed that neither professional development courses nor radiation protection courses are offered at the Nuclear Medicine Department understudy. However, 6/6 (100%) radiographers exhibited a high level of awareness of radiation safety principles on handling and working with radiopharmaceuticals which correlated to their years of experience. As for nurses, 4/5 (80%) showed limited knowledge and awareness of radiation protection principles irrespective of the number of years in the profession. CONCLUSION: Despite their major role of caring for patients undergoing diagnostic and therapeutic treatments, the nurses showed limited knowledge of ionizing radiation and associated side effects. This was not surprising since they never received any formal basic radiation safety course. These findings were not unique to this Centre. A study conducted in a Kuwaiti Radiology Department also established that the vast majority of nurses did not understand the risks of working with ionizing radiation. Similarly, nurses in an Australian hospital exhibited knowledge limitations. However, nursing managers did provide the necessary radiation safety training when requested. In Guatemala and Saudi Arabia, where there was shortage of professional radiographers, nurses underwent radiography training, a course that equipped them with basic radiation safety principles. The radiographers in the Centre understudy unlike others in various parts of the world demonstrated substantial knowledge and awareness on radiation protection. Radiations safety courses attended when an opportunity arose played a critical role in their awareness. The knowledge and awareness levels of these radiographers were comparable to their counterparts in Sudan. However, it was much more above that of their counterparts in Jordan, Nigeria, Nepal and Iran who were found to have limited awareness and inadequate knowledge on radiation dose. Formal radiation safety and awareness courses and workshops can play a crucial role in raising the awareness of nurses and radiographers on radiation safety for their personal benefit and that of their patients.

Keywords: radiation safety, radiation awareness, training, nuclear medicine

Procedia PDF Downloads 75
1461 Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum

Authors: Li Li, Lei Wang, Chenglin Du, Mengxin Ren, Xinzheng Zhang, Wei Cai, Jingjun Xu

Abstract:

Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies.

Keywords: breathing mode, plasmonics, quantum dot, strong coupling, ultraviolet

Procedia PDF Downloads 197
1460 Validation and Projections for Solar Radiation up to 2100: HadGEM2-AO Global Circulation Model

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

The objective of this work is to evaluate the results of solar radiation projections between 2006 and 2013 for the state of Rio Grande do Sul, Brazil. The projections are provided by the General Circulation Models (MCGs) belonging to the Coupled Model Intercomparison Phase 5 (CMIP5). In all, the results of the simulation of six models are evaluated, compared to monthly data, measured by a network of thirteen meteorological stations of the National Meteorological Institute (INMET). The performance of the models is evaluated by the Nash coefficient and the Bias. The results are presented in the form of tables, graphs and spatialization maps. The ACCESS1-0 RCP 4.5 model presented the best results for the solar radiation simulations, for the most optimistic scenario, in much of the state. The efficiency coefficients (CEF) were between 0.95 and 0.98. In the most pessimistic scenario, HADGen2-AO RCP 8.5 had the best accuracy among the analyzed models, presenting coefficients of efficiency between 0.94 and 0.98. From this validation, solar radiation projection maps were elaborated, indicating a seasonal increase of this climatic variable in some regions of the Brazilian territory, mainly in the spring.

Keywords: climate change, projections, solar radiation, validation

Procedia PDF Downloads 203
1459 An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna

Authors: Gurkirandeep Kaur, Rana Pratap Yadav

Abstract:

This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system.

Keywords: antenna radiation characteristics, dynamically reconfigurable, plasma antenna, plasma column, plasma striations, surface wave

Procedia PDF Downloads 118
1458 Preoperative versus Postoperative Radiation Therapy in Patients with Soft Tissue Sarcoma of the Extremity

Authors: AliAkbar Hafezi, Jalal Taherian, Jamshid Abedi, Mahsa Elahi, Behnam Kadkhodaei

Abstract:

Background: Soft tissue sarcomas (STS) are generally treated with a combination of limb preservation surgery and radiation therapy. Today, preoperative radiation therapy is considered for accurate treatment volume and smaller field size. Therefore, this study was performed to compare preoperative with postoperative radiation therapy in patients with extremity STS. Methods: In this non-randomized clinical trial, patients with localized extremity STS referred to the orthopedic clinics in Iran from 2021 to 2023 were studied. Patients were randomly divided into two groups: preoperative and postoperative radiation therapy. The two groups of patients were compared in terms of acute (wound dehiscence and infection) and late (limb edema, subcutaneous fibrosis, and joint stiffness) complications and their severity, as well as local recurrence and other one-year outcomes. Results: A total of 80 patients with localized extremity STS were evaluated in two treatment groups. The groups were matched in terms of age, sex, history of diabetes mellitus, hypertension, smoking, involved side, involved extremity, lesion location, and tumor histopathology. The acute complications of treatment in the two groups of patients did not differ significantly (P > 0.05). Of the late complications, only joint stiffness between the two groups had significant statistical differences (P < 0.001). The severity of all three late complications in the postoperative radiation therapy group was significantly higher (P < 0.05). There was no significant difference between the two groups in terms of the rate of local recurrence of other one-year outcomes (P > 0.05). Conclusion: This study showed that in patients with localized extremity STS, the two therapeutic approaches of adjuvant and neoadjuvant radiation therapy did not differ significantly in terms of local recurrence and distant metastasis during the one-year follow-up period and due to fewer late complications in preoperative radiotherapy group, this treatment approach can be a better choice than postoperative radiation therapy.

Keywords: soft tissue sarcoma, extremity, preoperative radiation therapy, postoperative radiation therapy

Procedia PDF Downloads 43
1457 Palliative Orthovoltage Radiotherapy and Subcutaneous Infusion of Carboplatin for Treatment of Appendicular Osteosarcoma in Dogs

Authors: Kathryn L. Duncan, Charles A. Kuntz, Alessandra C. Santamaria, James O. Simcock

Abstract:

Access to megavoltage radiation therapy for small animals is limited in many locations around the world. This can preclude the use of palliative radiation therapy for the treatment of appendicular osteosarcoma in dogs. The objective of this study was to retrospectively assess the adverse effects and survival times of dogs with appendicular osteosarcoma that were treated with hypofractionated orthovoltage radiation therapy and adjunctive carboplatin chemotherapy administered via a single subcutaneous infusion. Medical records were reviewed retrospectively to identify client-owned dogs with spontaneously occurring appendicular osteosarcoma that was treated with palliative orthovoltage radiation therapy and a single subcutaneous infusion of carboplatin. Data recorded included signalment, tumour location, results of diagnostic imaging, haematologic and serum biochemical analyses, adverse effects of radiation therapy and chemotherapy, and survival times. Kaplan-Meier survival analysis was performed, and log-rank analysis was used to determine the impact of specific patient variables on survival time. Twenty-three dogs were identified that met the inclusion criteria. Median survival time for dogs was 182 days. Eleven dogs had adverse haematologic effects, 3 had adverse gastrointestinal effects, 6 had adverse effects at the radiation site and 7 developed infections at the carboplatin infusion site. No statistically significant differences were identified in survival times based on sex, tumour location, development of infection, or pretreatment serum alkaline phosphatase. Median survival time and incidence of adverse effects were comparable to those previously reported in dogs undergoing palliative radiation therapy with megavoltage or cobalt radiation sources and conventional intravenous carboplatin chemotherapy. The use of orthovoltage palliative radiation therapy may be a reasonable alternative to megavoltage radiation in locations where access is limited.

Keywords: radiotherapy, veterinary oncology, chemotherapy, osteosarcoma

Procedia PDF Downloads 71
1456 Neurological Complications Related to Anesthesia in Pediatric Patients Receiving Radiation Therapy under Anesthesia

Authors: Behzad Sinaei, Shahryar Sane, Behzad Kazemi Haki

Abstract:

Children with different malignancies usually experience potential neurologic complications when treated with radiation therapy, especially if under frequent anesthesia. The aim of this study was to evaluate the neurologic problems associated with anesthesia in pediatrics treated with radiotherapy under anesthesia. The study was a cross-sectional experiment that consisted of 133 pediatric patients with different malignancies who needed anesthesia for performing radiotherapy and were referred to Omid Charity Hospital and Imam Khomeini University Hospital from 2014 to 2020 by the census. P-values less than 0.05 were considered statistically significant (P-value < 0.05). Anesthesia complications in this study were slight and insignificant. Some were due to the effects of the tumor on other important organs or either previous radiation therapy or chemotherapy. For safe anesthesia, considering the effects of tumors on body organs and the neurological complications they cause can greatly help reduce anesthesia complications in pediatrics under radiation therapy.

Keywords: anesthesia, neurologic complications, pediatrics, radiotherapy

Procedia PDF Downloads 101
1455 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique

Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani

Abstract:

Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.

Keywords: regression, machine learning, scan radiation, robot

Procedia PDF Downloads 75
1454 Assessment of Radiation Protection Measures in Diagnosis and Treatment: A Critical Review

Authors: Buhari Samaila, Buhari Maidamma

Abstract:

Background: The use of ionizing radiation in medical diagnostics and treatment is indispensable for accurate imaging and effective cancer therapies. However, radiation exposure carries inherent risks, necessitating strict protection measures to safeguard both patients and healthcare workers. This review critically examines the existing radiation protection measures in diagnostic radiology and radiotherapy, highlighting technological advancements, regulatory frameworks, and challenges. Objective: The objective of this review is to critically evaluate the effectiveness of current radiation protection measures in diagnostic and therapeutic radiology, focusing on minimizing patient and staff exposure to ionizing radiation while ensuring optimal clinical outcomes and propose future directions for improvement. Method: A comprehensive literature review was conducted, covering scientific studies, regulatory guidelines, and international standards on radiation protection in both diagnostic radiology and radiotherapy. Emphasis was placed on ALARA principles, dose optimization techniques, and protective measures for both patients and healthcare workers. Results: Radiation protection measures in diagnostic radiology include the use of shielding devices, minimizing exposure times, and employing advanced imaging technologies to reduce dose. In radiotherapy, accurate treatment planning and image-guided techniques enhance patient safety, while shielding and dose monitoring safeguard healthcare personnel. Challenges such as limited infrastructure in low-income settings and gaps in healthcare worker training persist, impacting the overall efficacy of protection strategies. Conclusion: While significant advancements have been made in radiation protection, challenges remain in optimizing safety, especially in resource-limited settings. Future efforts should focus on enhancing training, investing in advanced technologies, and strengthening regulatory compliance to ensure continuous improvement in radiation safety practices.

Keywords: radiation protection, diagnostic radiology, radiotherapy, ALARA, patient safety, healthcare worker safety

Procedia PDF Downloads 17
1453 Radionuclide Determination Study for Some Fish Species in Kuwait

Authors: Ahmad Almutairi

Abstract:

Kuwait lies to the northwest of the Arabian Gulf. The levels of radionuclides are unknown in this area. Radionuclide like ²¹⁰Po, ²²⁶Ra, and ⁹⁰Sr accumulated in certain body tissues and bones, relate primarily to dietary uptake and inhalation. A large fraction of radiation exposure experienced by individuals comes from food chain transfer. In this study, some types of Kuwait fish were studied for radionuclide determination. These fish were taken from the Kuwaiti water territory during May. The study is to determine the radiation exposure for ²¹⁰Po in some fish species in Kuwait the ²¹⁰Po concentration was found to be between 0.089 and 2.544 Bq/kg the highs was in Zubaidy and the lowest was in Hamour.

Keywords: the radionuclide, radiation exposure, fish species, Zubaida, Hamour

Procedia PDF Downloads 200
1452 Proteomic Evaluation of Sex Differences in the Plasma of Non-human Primates Exposed to Ionizing Radiation for Biomarker Discovery

Authors: Christina Williams, Mehari Weldemariam, Ann M. Farese, Thomas J. MacVittie, Maureen A. Kane

Abstract:

Radiation exposure results in dose-dependent and time-dependent multi-organ damage. Drug development of medical countermeasures (MCM) for radiation-induced injury occurs under the FDA Animal Rule because human efficacy studies are not ethical or feasible. The FDA Animal Rule requires the representation of both sexes and describes several uses for biomarkers in MCM drug development studies. Currently, MCMs are limited and there is no FDA-approved biomarker for any radiation injury. Sex as a variable is essential to identifying biomarkers and developing effective MCMs for acute radiation exposure (ARS) and delayed effects of acute radiation exposure (DEARE). These studies aim to address the death of information on sex differences that have not been determined by studies that included only male, single-sex cohorts. Studies have reported differences in radiosensitivity according to sex. As such, biomarker discovery for radiation-induced damage must consider sex as a variable. This study evaluated the plasma proteomic profile of Rhesus macaque non-human primates after different exposures and doses, as well as time points after radiation. Exposures and doses included total body irradiation between 5-7.5 Gy and partial body irradiation with 5% bone marrow sparing at 9, 9.5 and 10 Gy. Timepoints after irradiation included days 1, 3, 60, and 180, which encompassed both acute radiation syndromes and delayed effects of acute radiation exposure. Bottom-up proteomic analyses of plasma included equal numbers of males and females. In the control animals, few proteomic differences are observed between the sexes. In the irradiated animals, there are a few sex differences, with changes mostly consisting of proteins upregulated in the female animals. Multiple canonical pathways were upregulated in irradiated animals relative to the control animals when subjected to pathway analysis, but differential responses between the sexes are limited. These data provide critical baseline differences according to sex and establish sex differences in non-human primate models relevant to drug development of MCM under the FDA Animal Rule.

Keywords: ionizing radiation, sex differences, plasma proteomics, biomarker discovery

Procedia PDF Downloads 87
1451 Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey

Authors: N. Arslanoglu

Abstract:

This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0 to 90 in steps of 1was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0 (June) and 59 (December) throughout the year. In winter (December, January, and February) the tilt should be 55, in spring (March, April, and May) 19.6, in summer (June, July, and August) 5.6, and in autumn (September, October, and November) 44.3. The yearly average of this value was obtained to be 31.1 and this would be the optimum fixed slope throughout the year.

Keywords: Bursa, global solar radiation, optimum tilt angle, tilted surface

Procedia PDF Downloads 258
1450 Mutagenesis, Oxidative Stress Induction and Blood Cytokine Profile in First Generation Male Rats Whose Parents Were Exposed to Radiation and Hexavalent Chromium

Authors: Yerbolat Iztleuov

Abstract:

Stochastic effects, which are currently largely associated with exposure to ionizing radiation or a combination of ionizing radiation with other chemical, physical, and biological agents, are expressed in the form of various mutations. In the first stage of the study, rats of both sexes were divided into 3 groups. 1st - control group, animals of the 2nd group were exposed to gamma radiation at a dose of 0.2 Gy. The third group received hexavalent chromium in a dose of 180 mg/ l with drinking water for a month before irradiation and a day after the end of chromium consumption and was subjected to total gamma irradiation at a dose of 0.2 Gy. The second stage of the experiment. After 3 days, the males were mated with the females. The obtained offspring were studied for peroxidation, cytokine profile and micronucleus in the nuclei. This study shows that 5-month-old offspring whose parents were exposed to combined exposure to chromium and γ-irradiation exhibit hereditary instability of the genome, decreased activity of antioxidant enzymes and sulfhydryl blood groups, and increased levels of lipid peroxidation. There is also an increase in the level of inflammatory markers (IL-6 and TNF) in the blood plasma against the background of a decrease in anti-inflammatory cytokine (IL-10). Thus, the combined effect of hexavalent chromium and ionizing radiation can lead to the development of an oncological process.

Keywords: hexavalent chromium, ionizing radiation, first generation, oxidative stress, cytokines, mutagenesis, cancer

Procedia PDF Downloads 22
1449 Medical Radiation Exposure in a Cohort of Children Diagnosed with Solid Tumors: Single Institution Study 1985-2015

Authors: Robin L. Rohrer

Abstract:

Introduction: Pre-natal or early childhood exposure to the medical radiation used in diagnosis or treatment is an identified risk for childhood cancers but can be difficult to document. The author developed a family questionnaire/interview form to identify possible exposures. Aims: This retrospective study examines pre-natal and early childhood medical radiation exposure in a cohort of children diagnosed with a solid tumor including brain tumors from 1985-2015 at the Children’s Hospital of Pittsburgh (CHP). The hospital is a tri-state regional referral center which treats about 150-180 new cases of cancer in children per year. About 70% are diagnosed with a solid tumor. Methods: Each consented family so far (approximately 50% of the cohort) has been interviewed in person or by the phone call. Medical staff and psycho- social staff referred patient families for the interview with the author. Results: Among the families interviewed to date at least one medical radiation exposure has been identified (pre-conception, pre-natal or early childhood) in over 70% of diagnosed children. These exposures have included pre-conception sinus or chest CT or X-ray in either parent, sinus CT or X-ray in the mother or diagnostic radiation of chest or abdomen in children. Conclusions: Exposures to medical radiation for a child later diagnosed with cancer may occur at several critical junctures. These exposures may well contribute to a ‘perfect storm’ in the still elusive causes of childhood cancer. The author plans to expand the study from 1975 to present to hopefully further document these junctures.

Keywords: pediatric, solid tumors, medical radiation, cancer

Procedia PDF Downloads 263
1448 Influence of Thermal Radiation on MHD Micropolar Fluid Flow, Heat and Mass Transfer over Vertical Flat Plate

Authors: Alouaoui Redha, Ferhat Samira, Bouaziz Mohamed Najib

Abstract:

In this work, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation as well as the skin friction coefficient and the both local Nusselt and local Sherwood numbers are significantly influenced by Magnetic parameter, material parameter and thermal radiation parameter.

Keywords: MHD, micropolar fluid, thermal radiation, heat and mass transfer, boundary layer

Procedia PDF Downloads 449
1447 Long-Persistent Luminescent MAl2O4:Eu;Dy Phoshors Synthesized by Combustion

Authors: Yusuf Ziya Halefoğlu

Abstract:

Phosphorescence, classically, excitation effects (radiation, electron beam, electric field, temperature, etc.) is the name given after the elimination of materials that glow in the visible region. This event continues to glow after the elimination of the effect of excitation is called phosphorescence. In this study were synthesized by the method of the combustion lanthanide doped alkaline earth aluminates. High temperature and long reaction time required and the sol-gel method of combustion according to the methods of solid state synthesis temperature lower than the short reaction time, a small particle size, convenience, and is superior in terms of being secured. Their microstructures and its effect on the photoluminescence properties were studied. Phosphorescence is derived in the dark when produced materials are held in sunlight or under ultraviolet light typically at 365-520 nm wavelength range. In this study, the optimal ratio of rare earth elements, in terms of brightness and glow duration was examined by SEM, XRD and photoluminescence analysis.

Keywords: persistence luminescence, phosphorescence, trap depth, combustion method

Procedia PDF Downloads 239
1446 Effects of Ultraviolet Treatment on Microbiological Load and Phenolic Content of Vegetable Juice

Authors: Kubra Dogan, Fatih Tornuk

Abstract:

Due to increasing consumer demand for the high-quality food products and awareness regarding the health benefits of different nutrients in food minimal processing becomes more popular in modern food preservation. To date, heat treatment is often used for inactivation of spoilage microorganisms in foods. However, it may cause significant changes in the quality and nutritional properties of food. In order to overcome the detrimental effects of heat treatment, several alternatives of non-thermal microbial inactivation processes have been investigated. Ultraviolet (UV) inactivation is a promising and feasible method for better quality and longer shelf life as an alternative to heat treatment, which aims to inhibit spoilage and pathogenic microorganisms and to inactivate the enzymes in vegetable juice production. UV-C is a sub-class of UV treatment which shows the highest microcidal effect between 250-270 nm. The wavelength of 254 nm is used for the surface disinfection of certain liquid food products such as vegetable juice. Effects of UV-C treatment on microbiological load and quality parameter of vegetable juice which is a mix of celery, carrot, lemon and orange was investigated. Our results showed that storing of UV-C applied vegetable juice for three months, reduced the count of TMAB by 3.5 log cfu/g and yeast-mold by 2 log cfu/g compared to control sample. Total phenolic content was found to be 514.3 ± 0.6 mg gallic acid equivalent/L, and there wasn’t a significant difference compared to control. The present work suggests that UV-C treatment is an alternative method for disinfection of vegetable juice since it enables adequate microbial inactivation, longer shelf life and has minimal effect on degradation of quality parameters of vegetable juice.

Keywords: heat treatment, phenolic content, shelf life, ultraviolet (UV-C), vegetable juice

Procedia PDF Downloads 208
1445 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method

Authors: A. Ashok, K.Satapathy, B. Prerana Nashine

Abstract:

The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.

Keywords: participating media, finite volume method, radiation coupled with conduction, transient radiative heat transfer

Procedia PDF Downloads 387
1444 'Evaluating Radiation Protections Aspects For Pediatric Chest Radiography: imaging Standards and Radiation Dose Measurements in Various Hospitals In Kuwait

Authors: Kholood Baron

Abstract:

Chest radiography (CXR) is one of the most important diagnostic examinations in pediatric radiography for diagnosing various diseases. Since, chest X-ray use ionizing radiation to obtain image radiographers should follow strict radiation protection strategies and ALARA principle to ensure that pediatrics receive the lowest dose possible [1] [2]. The aim is to evaluate different criteria related to pediatric CXR examinations performed in the radiology department in five hospitals in Kuwait. Methods: Data collected from a questionnaire and Entrance Skin Dose (ESD) measurements during CXR. 100 responses were collected and analyzed to highlight issues related to immobilization devices, radiation protection issues and repeat rate. While ThermoLumenince Dosimeters (TLDs) measured ESD during 25 CXR for pediatric patients. In addition, other aspects on the radiographer skills and information written in patient requests were collected and recorded. Results: Questionnaires responses showed that most radiographers do follow most radiation protection guidelines, but need to focus on improving their skills in collimation to ROI, dealing with immobilization tools and exposure factors. Since the first issue was least applied to young pediatrics, and the latter two were the common reasons for repeating an image. The ESD measurements revealed that the averaged dose involved in pediatric CXR is 143.9 µGy, which is relatively high but still within the limits of the recommended values [2-3] . The data suggests that this relatively high ESD values can be the result of using higher mAs and thus it I recommended to lower it according to ALARA principle. In conclusion, radiographers have the knowledge and the tools to reduce the radiation dose to pediatric patients but few lack the skills to optimize the collimation, immobilization application and exposure factors. The ESD were within recommended values. This research recommends that more efforts in the future should focus on improving the radiographer commitment to radiation protection and their skills in dealing with pediatric patient. This involves lowering the mAs used during DR.

Keywords: pediatric radiography, dosimetry, ESD measurements, radiation protection

Procedia PDF Downloads 27
1443 Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG

Authors: R. Hariti, M. Saighi, H. Saidani-Scott

Abstract:

A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values.

Keywords: tank, storage, liquefied natural gas, natural convection, thermal radiation, numerical simulation

Procedia PDF Downloads 540
1442 Evaluation of Radio Protective Potential of Indian Bamboo Leaves

Authors: Mansi Patel, Priti Mehta

Abstract:

Background: Ionizing radiations have detrimental effects on humans, and the growing technological encroachment has increased human exposure to it enormously. So, the safety issues have emphasized researchers to develop radioprotector from natural resources having minimal toxicity. A substance having anti-inflammatory, antioxidant, and immunomodulatory activity can be a potential candidate for radioprotection. One such plant with immense potential i.e. Bamboo was selected for the present study. Purpose: The study aims to evaluate the potential of Indian bamboo leaves for protection against the clastogenic effect of gamma radiation. Methods: The protective effect of bamboo leaf extract against gamma radiation-induced genetic damage in human peripheral blood lymphocytes (HPBLs) was evaluated in vitro using Cytokinesis blocked micronuclei assay (CBMN). The blood samples were pretreated with varying concentration of extract 30 min before the radiation exposure (4Gy & 6Gy). The reduction in the frequency of micronuclei was observed for the irradiated and control groups. The effect of various concentration of bamboo leaf extract (400,600,800 mg/kg) on the development of radiation induced sickness and altered mortality in mice exposed to 8 Gy of whole-body gamma radiation was studied. The developed symptoms were clinically scored by multiple endpoints for 30 days. Results: Treatment of HPBLs with varying concentration of extract before exposure to a different dose of γ- radiation resulted in significant (P < 0.0001) decline of radiation induced micronuclei. It showed dose dependent and concentration driven activity. The maximum protection ~ 70% was achieved at nine µg/ml concentration. Extract treated whole body irradiated mice showed 50%, 83.3% and 100% survival for 400, 600, and 800mg/kg with 1.05, 0.43 and 0 clinical score respectively when compared to Irradiated mice having 6.03 clinical score and 0% survival. Conclusion: Our findings indicate bamboo leaf extract reduced the radiation induced cytogenetic damage. It has also increased the survival ratio and reduced the radiation induced sickness and mortality when exposed to a lethal dose of gamma radiation.

Keywords: bamboo leaf extract, Cytokinesis blocked micronuclei (CBMN) assay, ionizing radiation, radio protector

Procedia PDF Downloads 144
1441 Radiation Annealing of Radiation Embrittlement of the Reactor Pressure Vessel

Authors: E. A. Krasikov

Abstract:

Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore – nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance, this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion, controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore, flux effect manifestation depends on fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis, at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result, oscillation arises that in turn leads to enhanced data scatter.

Keywords: annealing, embrittlement, radiation, RPV steel

Procedia PDF Downloads 339
1440 Spin One Hawking Radiation from Dirty Black Holes

Authors: Petarpa Boonserm, Tritos Ngampitipan, Matt Visser

Abstract:

A 'clean' black hole is a black hole in vacuum such as the Schwarzschild black hole. However in real physical systems, there are matter fields around a black hole. Such a black hole is called a 'dirty black hole'. In this paper, The effect of matter fields on the black hole and the greybody factor is investigated. The results show that matter fields make a black hole smaller. They can increase the potential energy to a black hole to obstruct Hawking radiation to propagate. This causes the greybody factor of a dirty black hole to be less than that of a clean black hole.

Keywords: dirty black hole, greybody factor, hawking radiation, matter fields.

Procedia PDF Downloads 596