Search results for: survival predictive values
8743 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components
Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler
Abstract:
Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.Keywords: case study, internet of things, predictive maintenance, reference architecture
Procedia PDF Downloads 2518742 Synthesis of a Model Predictive Controller for Artificial Pancreas
Authors: Mohamed El Hachimi, Abdelhakim Ballouk, Ilyas Khelafa, Abdelaziz Mouhou
Abstract:
Introduction: Type 1 diabetes occurs when beta cells are destroyed by the body's own immune system. Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an Artificial Pancreas (AP). Method: In this paper, we present a new formulation of the cost function for a Model Predictive Control (MPC) utilizing a technic which accelerates the speed of control of the AP and tackles the nonlinearity of the control problem via asymmetric objective functions. Finding: The finding of this work consists in a new Model Predictive Control algorithm that leads to good performances like decreasing the time of hyperglycaemia and avoiding hypoglycaemia. Conclusion: These performances are validated under in silico trials.Keywords: artificial pancreas, control algorithm, biomedical control, MPC, objective function, nonlinearity
Procedia PDF Downloads 3078741 Significant Factor of Magnetic Resonance for Survival Outcome in Rectal Cancer Patients Following Neoadjuvant Combined Chemotherapy and Radiation Therapy: Stratification of Lateral Pelvic Lymph Node
Authors: Min Ju Kim, Beom Jin Park, Deuk Jae Sung, Na Yeon Han, Kichoon Sim
Abstract:
Purpose: The purpose of this study is to determine the significant magnetic resonance (MR) imaging factors of lateral pelvic lymph node (LPLN) on the assessment of survival outcomes of neoadjuvant combined chemotherapy and radiation therapy (CRT) in patients with mid/low rectal cancer. Materials and Methods: The institutional review board approved this retrospective study of 63 patients with mid/low rectal cancer who underwent MR before and after CRT and patient consent was not required. Surgery performed within 4 weeks after CRT. The location of LPLNs was divided into following four groups; 1) common iliac, 2) external iliac, 3) obturator, and 4) internal iliac lymph nodes. The short and long axis diameters, numbers, shape (ovoid vs round), signal intensity (homogenous vs heterogenous), margin (smooth vs irregular), and diffusion-weighted restriction of LPLN were analyzed on pre- and post-CRT images. For treatment response using size, lymph node groups were defined as group 1) short axis diameter ≤ 5mm on both MR, group 2) > 5mm change into ≤ 5mm after CRT, and group 3) persistent size > 5mm before and after CRT. Clinical findings were also evaluated. The disease-free survival and overall survival rate were evaluated and the risk factors for survival outcomes were analyzed using cox regression analysis. Results: Patients in the group 3 (persistent size >5mm) showed significantly lower survival rates than the group 1 and 2 (Disease-free survival rates of 36.1% and 78.8, 88.8%, p < 0.001). The size response (group 1-3), multiplicity of LPLN, the level of carcinoembryonic antigen (CEA), patient’s age, T and N stage, vessel invasion, perineural invasion were significant factors affecting disease-free survival rate or overall survival rate using univariate analysis (p < 0.05). The persistent size (group 3) and multiplicity of LPLN were independent risk factors among MR imaging features influencing disease-free survival rate (HR = 10.087, p < 0.05; HR = 4.808, p < 0.05). Perineural invasion and T stage were shown as independent histologic risk factors (HR = 16.594, p < 0.05; HR = 15.891, p < 0.05). Conclusion: The persistent size greater than 5mm and multiplicity of LPLN on both pre- and post-MR after CRT were significant MR factors affecting survival outcomes in the patients with mid/low rectal cancer.Keywords: rectal cancer, MRI, lymph node, combined chemoradiotherapy
Procedia PDF Downloads 1508740 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 1548739 Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model
Authors: Doğan Yıldız, Aydan Müşerref Erkmen
Abstract:
The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances.Keywords: model predictive control, nonlinear octocopter model, collision avoidance, obstacle detection
Procedia PDF Downloads 1918738 The Clinical and Survival Differences between Primary B-Cell and T/NK-Cell Non-Hodgkin Lymphomas in the Nasopharynx, Nasal Cavity, and Nasal Sinus: A Population-Based Study of 3839 Cases in the Seer Database
Authors: Jiajia Peng, Danni Cheng, Jianqing Qiu, Yufang Rao, Minzi Mao, Ke Qiu, Junhong Li, Fei Chen, Feng Liu, Jun Liu, Xiaosong Mu, Wenxin Yu, Wei Zhang, Wei Xu, Yu Zhao, Jianjun Ren
Abstract:
Background: Currently, primary B-cell non-Hodgkin lymphoma (B-NHL) and T/NK-cell non-Hodgkin lymphoma (NKT-NHL) originated from the nasal cavity (NC), nasopharynx (NP) and nasal sinus (NS) distinguished unclearly in the clinic. Objective: We sought to compare the clinical and survival differences of B-NHL and NKT-NHL that occurred in NC, NP, and NS, respectively. Methods: Retrospective data of patients diagnosed with nasal cavity lymphoma (NCL), nasopharyngeal lymphoma (NPL), and nasal sinus lymphoma (NSL) between 1975 and 2017 from the Surveillance, Epidemiology, and End Results (SEER) database were collected. We identified the B/NKT-NHL patients based on the histological type and performed univariate, multivariate, and Kaplan-Meier analyses to investigate the survival rates. Results: Of the identified 3,101 B-NHL and 738 NKT-NHL patients, those with B-NHL in NP were the majority (43%) and had better cancer-specific survival than those in NC and NS from 2010 to 2017 (5-year-CSS, NC vs. NP vs. NS: 81% vs. 83% vs. 82%). In contrast, most of the NKT-NHL originated from NC (68%) and had the highest CSS rate in the recent seven years (2010-2017, 5-year-CSS: 63%). Additionally, the survival outcomes of patients with NKT-NHL-NP (HR: 1.34, 95% CI: 0.62-2.89, P=0.460) who had received surgery were much worse than those of patients with NKT-NHL-NC (HR: 1.07, 95% CI: 0.75-1.52, P=0.710) and NKT-NHL-NS (HR: 1.11, 95% CI: 0.59-2.07, P=0.740). NKT-NHL-NS patients who had radiation performed (HR: 0.38, 95% CI: 0.19-0.73, P=0.004) showed the highest survival rates, while chemotherapy performed (HR: 1.01, 95% CI: 0.43-2.37, P=0.980) presented opposite results. Conclusions: Although B-NHL and NKT-NHL originating from NC, NP and NS had similar anatomical locations, their clinical characteristics, treatment therapies, and prognoses were different in this study. Our findings may suggest that B-NHL and NKT-NHL in NC, NP, and NS should be treated as different diseases in the clinic.Keywords: nasopharyngeal lymphoma, nasal cavity lymphoma, nasal sinus lymphoma, B-cell non-Hodgkin lymphoma, T/NK-cell non-Hodgkin lymphoma
Procedia PDF Downloads 1848737 Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data
Authors: Al Omari Moahmmed Ahmed
Abstract:
These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions.Keywords: weibull distribution, bayesian method, markov chain mote carlo, survival and hazard functions
Procedia PDF Downloads 4798736 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: optimal control, stochastic systems, random dither, quantization
Procedia PDF Downloads 4458735 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology
Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi
Abstract:
This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter
Procedia PDF Downloads 4308734 The Psychological Significance of Cultural and Religious Values Among the Arab Population
Authors: Michel Mikhail
Abstract:
Introduction: Values, which are the guiding principles and beliefs of our lives, have an influence on one’s psychological health. This study aims to investigate how Schwartz’s four higher-order values (conservation, openness to change, self-transcendence, and self-enhancement) and religious values influence psychological health among the Arab population. Methods: A total of 1,023 respondents from nine Arab countries aged 18 to 71 filled out an online survey with measures of the following constructs: Schwartz’s four higher-order values (Portrait Value Questionnaire-21), religious values (Sahin’s Index of Islamic Moral Values), and general psychological health (General Health Questionnaire-28). Results: Two models of multiple regression were conducted to investigate the relationships between values and psychological health. Higher conservation, self-enhancement, and religious values were significantly associated with better psychological health, with conservation losing significance after adding religious values to the model. All of Schwartz’s four values were found to have a significant relationship with religious values. More self-enhancement and conservation values were associated with higher identification of religious values, and the opposite was true for the other two values. Conclusion: The findings challenged existing assumptions that conservation values relate negatively to psychological health. This finding could be explained by the congruence of conservation values and the Arab culture. The most powerful relationships were those of self-enhancement and religious values, both of which were positively associated with psychological health. As such, therapists should be aware to reconsider biases against religious or conservation values and rather pay attention to their potential positive influence over one’s psychological health.Keywords: counseling psychology, counseling and cultural values, counseling and religious values, psychotherapy and Arab values
Procedia PDF Downloads 488733 Factors Associated with Recurrence and Long-Term Survival in Younger and Postmenopausal Women with Breast Cancer
Authors: Sopit Tubtimhin, Chaliya Wamaloon, Anchalee Supattagorn
Abstract:
Background and Significance: Breast cancer is the most frequently diagnosed and leading cause of cancer death among women. This study aims to determine factors potentially predicting recurrence and long-term survival after the first recurrence in surgically treated patients between postmenopausal and younger women. Methods and Analysis: A retrospective cohort study was performed on 498 Thai women with invasive breast cancer, who had undergone mastectomy and been followed-up at Ubon Ratchathani Cancer Hospital, Thailand. We collected based on a systematic chart audit from medical records and pathology reports between January 1, 2002, and December 31, 2011. The last follow-up time point for surviving patients was December 31, 2016. A Cox regression model was used to calculate hazard ratios of recurrence and death. Findings: The median age was 49 (SD ± 9.66) at the time of diagnosis, 47% was post-menopausal women ( ≥ 51years and not experienced any menstrual flow for a minimum of 12 months), and 53 % was younger women ( ˂ 51 years and have menstrual period). Median time from the diagnosis to the last follow-up or death was 10.81 [95% CI = 9.53-12.07] years in younger cases and 8.20 [95% CI = 6.57-9.82] years in postmenopausal cases. The recurrence-free survival (RFS) for younger estimates at 1, 5 and 10 years of 95.0 %, 64.0% and 58.93% respectively, appeared slightly better than the 92.7%, 58.1% and 53.1% for postmenopausal women [HRadj = 1.25, 95% CI = 0.95-1.64]. Regarding overall survival (OS) for younger at 1, 5 and 10 years were 97.7%, 72.7 % and 52.7% respectively, for postmenopausal patients, OS at 1, 5 and 10 years were 95.7%, 70.0% and 44.5 respectively, there were no significant differences in survival [HRadj = 1.23, 95% CI = 0.94 -1.64]. Multivariate analysis identified five risk factors for negatively impacting on survival were triple negative [HR= 2.76, 95% CI = 1.47-5.19], Her2-enriched [HR = 2.59, 95% CI = 1.37-4.91], luminal B [HR = 2.29, 95 % CI=1.35-3.89], not free margin [HR = 1.98, 95%CI=1.00-3.96] and patients who received only adjuvant chemotherapy [HR= 3.75, 95% CI = 2.00-7.04]. Statistically significant risks of overall cancer recurrence were Her2-enriched [HR = 5.20, 95% CI = 2.75-9.80], triple negative [HR = 3.87, 95% CI = 1.98-7.59], luminal B [HR= 2.59, 95% CI = 1.48-4.54,] and patients who received only adjuvant chemotherapy [HR= 2.59, 95% CI = 1.48-5.66]. Discussion and Implications: Outcomes from this studies have shown that postmenopausal women have been associated with increased risk of recurrence and mortality. As the results, it provides useful information for planning the screening and treatment of early-stage breast cancer in the future.Keywords: breast cancer, menopause status, recurrence-free survival, overall survival
Procedia PDF Downloads 1638732 Evaluation of Growth Performance and Survival Rate of African Catfish (Clarias gariepinus) Fed with Graded Levels of Egg Shell Substituted Ration
Authors: A. Bello-Olusoji, M. O. Sodamola, Y. A. Adejola, D. D Akinbola
Abstract:
An eight (8) weeks study was carried out on Four hundred and five (405) African catfish (Clarias gariepinus) juveniles to examine the effect of graded levels of egg shell on their growth performance and survival rates. They were acclimatized for two (2) weeks after which they were weighed and allotted into five dietary treatments of three (3) replicates each and 27 fishes per replicate making a total number of eighty-one (81) fishes per treatment. The dietary treatments contained 0, 25, 50, 75 and 100(%) egg shell inclusion from treatment one to treatment five respectively. Parameter on daily feed intake, weekly weight gain, and daily mortalities were recorded. The result of the experiment indicated that treatment four (4) with 75% inclusion of egg shell was the best in terms of weight gain and survival rates and was significantly different (P<0.05) when compared with the other treatments. For Catfish farming to remain viable in the nearest future, lower feed cost and increased profit are required; it is therefore recommended that diets of African catfish (Clarias gariepinus) be supplemented with well processed egg shell at 75% level of inclusion to achieve this.Keywords: African catfish, egg shell, performance, performance, survival rate, weight gain
Procedia PDF Downloads 3868731 Impact of Mammographic Screening on Ethnic Inequalities in Breast Cancer Stage at Diagnosis and Survival in New Zealand
Authors: Sanjeewa Seneviratne, Ian Campbell, Nina Scott, Ross Lawrenson
Abstract:
Introduction: Indigenous Māori women experience a 60% higher breast cancer mortality rate compared with European women in New Zealand. We explored the impact of difference in the rate of screen detected breast cancer between Māori and European women on more advanced disease at diagnosis and lower survival in Māori women. Methods: All primary in-situ and invasive breast cancers diagnosed in screening age women (as defined by the New Zealand National Breast Cancer Screening Programme) between 1999 and 2012 in the Waikato area were identified from the Waikato Breast Cancer Register and the national screening database. Association between screen versus non-screen detection and cancer stage at diagnosis and survival were compared by ethnicity and socioeconomic deprivation. Results: Māori women had 50% higher odds of being diagnosed with more advance staged cancer compared with NZ European women, a half of which was explained by the lower rate of screen detected cancer in Māori women. Significantly lower breast cancer survival rates were observed for Māori compared with NZ European and most deprived compared with most affluent socioeconomic groups for symptomatically detected breast cancer. No significant survival differences by ethnicity or socioeconomic deprivation were observed for screen detected breast cancer. Conclusions: Low rate of screen detected breast cancer appears to be a major contributor for more advanced stage disease at diagnosis and lower breast cancer survival in Māori compared with NZ European women. Increasing screening participation for Māori has the potential to substantially reduce breast cancer mortality inequity between Māori and NZ European women.Keywords: breast cancer, screening, ethnicity, inequity
Procedia PDF Downloads 5148730 Winter – Not Spring - Climate Drives Annual Adult Survival in Common Passerines: A Country-Wide, Multi-Species Modeling Exercise
Authors: Manon Ghislain, Timothée Bonnet, Olivier Gimenez, Olivier Dehorter, Pierre-Yves Henry
Abstract:
Climatic fluctuations affect the demography of animal populations, generating changes in population size, phenology, distribution and community assemblages. However, very few studies have identified the underlying demographic processes. For short-lived species, like common passerine birds, are these changes generated by changes in adult survival or in fecundity and recruitment? This study tests for an effect of annual climatic conditions (spring and winter) on annual, local adult survival at very large spatial (a country, 252 sites), temporal (25 years) and biological (25 species) scales. The Constant Effort Site ringing has allowed the collection of capture - mark - recapture data for 100 000 adult individuals since 1989, over metropolitan France, thus documenting annual, local survival rates of the most common passerine birds. We specifically developed a set of multi-year, multi-species, multi-site Bayesian models describing variations in local survival and recapture probabilities. This method allows for a statistically powerful hierarchical assessment (global versus species-specific) of the effects of climate variables on survival. A major part of between-year variations in survival rate was common to all species (74% of between-year variance), whereas only 26% of temporal variation was species-specific. Although changing spring climate is commonly invoked as a cause of population size fluctuations, spring climatic anomalies (mean precipitation or temperature for March-August) do not impact adult survival: only 1% of between-year variation of species survival is explained by spring climatic anomalies. However, for sedentary birds, winter climatic anomalies (North Atlantic Oscillation) had a significant, quadratic effect on adult survival, birds surviving less during intermediate years than during more extreme years. For migratory birds, we do not detect an effect of winter climatic anomalies (Sahel Rainfall). We will analyze the life history traits (migration, habitat, thermal range) that could explain a different sensitivity of species to winter climate anomalies. Overall, we conclude that changes in population sizes for passerine birds are unlikely to be the consequences of climate-driven mortality (or emigration) in spring but could be induced by other demographic parameters, like fecundity.Keywords: Bayesian approach, capture-recapture, climate anomaly, constant effort sites scheme, passerine, seasons, survival
Procedia PDF Downloads 3038729 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 848728 Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients
Authors: Elnaz Saeedi, Jamileh Abolaghasemi, Mohsen Nasiri Tousi, Saeedeh Khosravi
Abstract:
Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients’ survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients’ survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis 'B' with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year’s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients’ death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable.Keywords: frailty model, latent variables, liver cirrhosis, parametric distribution
Procedia PDF Downloads 2618727 Place of Radiotherapy in the Treatment of Intracranial Meningiomas: Experience of the Cancer Center Emir Abdelkader of Oran Algeria
Authors: Taleb L., Benarbia M., Boutira F. M., Allam H., Boukerche A.
Abstract:
Introduction and purpose of the study: Meningiomas are the most common non-glial intracranial tumors in adults, accounting for approximately 30% of all central nervous system tumors. The aim of our study is to determine the epidemiological, clinical, therapeutic, and evolutionary characteristics of a cohort of patients with intracranial meningioma treated with radiotherapy at the Emir Abdelkader Cancer Center in Oran. Material and methods: This is a retrospective study of 44 patients during the period from 2014 to 2020. The overall survival and relapse-free survival curves were calculated using the Kaplan-Meier method. Results and statistical analysis: The median age of the patients was 49 years [21-76 years] with a clear female predominance (sex ratio=2.4). The average diagnostic delay was seven months [2 to 24 months], the circumstances of the discovery of which were dominated by headaches in 54.5% of cases (n=24), visual disturbances in 40.9% (n=18), and motor disorders in 15.9% (n=7). The seat of the tumor was essentially at the level of the base of the skull in 52.3% of patients (n=23), including 29.5% (n=13) at the level of the cavernous sinus, 27.3% (n=12) at the parasagittal level and 20.5% (n=9) at the convexity. The diagnosis was confirmed surgically in 36 patients (81.8%) whose anatomopathological study returned in favor of grades I, II, and III in respectively 40.9%, 29.5%, and 11.4% of the cases. Radiotherapy was indicated postoperatively in 45.5% of patients (n=20), exclusive in 27.3% (n=12) and after tumor recurrence in 27.3% of cases (n=18). The irradiation doses delivered were as follows: 50 Gy (20.5%), 54 Gy (65.9%), and 60 Gy (13.6%). With a median follow-up of 69 months, the probabilities of relapse-free survival and overall survival at three years are 93.2% and 95.4%, respectively, whereas they are 71.2% and 80.7% at five years. Conclusion: Meningiomas are common primary brain tumors. Most often benign but can also progress aggressively. Their treatment is essentially surgical, but radiotherapy retains its place in specific situations, allowing good tumor control and overall survival.Keywords: diagnosis, meningioma, surgery, radiotherapy, survival
Procedia PDF Downloads 1008726 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives
Procedia PDF Downloads 3178725 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 2768724 Gearbox Defect Detection in the Semi Autogenous Mills Using the Vibration Analysis Technique
Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi
Abstract:
Semi autogenous mills are designed for grinding or primary crushed ore, and are the most widely used in concentrators globally. Any defect occurrence in semi autogenous mills can stop the production line. A Gearbox is a significant part of a rotating machine or a mill, so, the gearbox monitoring is a necessary process to prevent the unwanted defects. When a defect happens in a gearbox bearing, this defect can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. Vibration analysis is one of the most effective and common ways to detect the bearing defects in the mills. Vibration signal in a mill can be made by different parts of the mill including electromotor, pinion girth gear, different rolling bearings, and tire. When a vibration signal, made by the aforementioned parts, is added to the gearbox vibration spectrum, an accurate and on time defect detection in the gearbox will be difficult. In this paper, a new method is proposed to detect the gearbox bearing defects in the semi autogenous mill on time and accurately, using the vibration signal analysis method. In this method, if the vibration values are increased in the vibration curve, the probability of defect occurrence is investigated by comparing the equipment vibration values and the standard ones. Then, all vibration frequencies are extracted from the vibration signal and the equipment defect is detected using the vibration spectrum curve. This method is implemented on the semi autogenous mills in the Golgohar mining and industrial company in Iran. The results show that the proposed method can detect the bearing looseness on time and accurately. After defect detection, the bearing is opened before the equipment failure and the predictive maintenance actions are implemented on it.Keywords: condition monitoring, gearbox defects, predictive maintenance, vibration analysis
Procedia PDF Downloads 4658723 Predictive Analytics in Oil and Gas Industry
Authors: Suchitra Chnadrashekhar
Abstract:
Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.Keywords: hydrocarbon, information technology, SAS, predictive analytics
Procedia PDF Downloads 3608722 The Role of HPV Status in Patients with Overlapping Grey Zone Cancer in Oral Cavity and Oropharynx
Authors: Yao Song
Abstract:
Objectives: We aimed to explore the clinicodemographic characteristics and prognosis of grey zone squamous cell cancer (GZSCC) located in the overlapping or ambiguous area of the oral cavity and oropharynx and to identify valuable factors that would improve its differential diagnosis and prognosis. Methods: Information of GZSCC patients in the Surveillance, Epidemiology, and End Results (SEER) database was compared to patients with an oral cavity (OCSCC) and oropharyngeal (OPSCC) squamous cell carcinomas with corresponding HPV status, respectively. Kaplan-Meier method with log-rank test and multivariate Cox regression analysis were applied to assess associations between clinical characteristics and overall survival (OS). A predictive model integrating age, gender, marital status, HPV status, and staging variables was conducted to classify GZSCC patients into three risk groups and verified internally by 10-fold cross validation. Results: A total of 3318 GZSCC, 10792 OPSCC, and 6656 OCSCC patients were identified. HPV-positive GZSCC patients had the best 5-year OS as HPV-positive OPSCC (81% vs. 82%). However, the 5-year OS of HPV-negative/unknown GZSCC (43%/42%) was the worst among all groups, indicating that HPV status and the overlapping nature of tumors were valuable prognostic predictors in GZSCC patients. Compared with the strategy of dividing GZSCC into two groups by HPV status, the predictive model integrating more variables could additionally identify a unique high-risk GZSCC group with the lowest OS rate. Conclusions: GZSCC patients had distinct clinical characteristics and prognoses compared with OPSCC and OCSCC; integrating HPV status and other clinical factors could help distinguish GZSCC and predict their prognosis.Keywords: GZSCC, OCSCC, OPSCC, HPV
Procedia PDF Downloads 758721 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 3148720 Palliative Orthovoltage Radiotherapy and Subcutaneous Infusion of Carboplatin for Treatment of Appendicular Osteosarcoma in Dogs
Authors: Kathryn L. Duncan, Charles A. Kuntz, Alessandra C. Santamaria, James O. Simcock
Abstract:
Access to megavoltage radiation therapy for small animals is limited in many locations around the world. This can preclude the use of palliative radiation therapy for the treatment of appendicular osteosarcoma in dogs. The objective of this study was to retrospectively assess the adverse effects and survival times of dogs with appendicular osteosarcoma that were treated with hypofractionated orthovoltage radiation therapy and adjunctive carboplatin chemotherapy administered via a single subcutaneous infusion. Medical records were reviewed retrospectively to identify client-owned dogs with spontaneously occurring appendicular osteosarcoma that was treated with palliative orthovoltage radiation therapy and a single subcutaneous infusion of carboplatin. Data recorded included signalment, tumour location, results of diagnostic imaging, haematologic and serum biochemical analyses, adverse effects of radiation therapy and chemotherapy, and survival times. Kaplan-Meier survival analysis was performed, and log-rank analysis was used to determine the impact of specific patient variables on survival time. Twenty-three dogs were identified that met the inclusion criteria. Median survival time for dogs was 182 days. Eleven dogs had adverse haematologic effects, 3 had adverse gastrointestinal effects, 6 had adverse effects at the radiation site and 7 developed infections at the carboplatin infusion site. No statistically significant differences were identified in survival times based on sex, tumour location, development of infection, or pretreatment serum alkaline phosphatase. Median survival time and incidence of adverse effects were comparable to those previously reported in dogs undergoing palliative radiation therapy with megavoltage or cobalt radiation sources and conventional intravenous carboplatin chemotherapy. The use of orthovoltage palliative radiation therapy may be a reasonable alternative to megavoltage radiation in locations where access is limited.Keywords: radiotherapy, veterinary oncology, chemotherapy, osteosarcoma
Procedia PDF Downloads 738719 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 2858718 ICT: Ensuring the Survival of Voluntary Organisations in Ireland
Authors: T. J. McDonald
Abstract:
This paper explores the adoption and usage of ICT by 3 specific types of voluntary organisations in Ireland: Sporting, Community and Rural & Agricultural. It explores the problems that these organisations are facing and examines some of the concerns expressed by their members. The paper outlines how various forms of ICT are being slowly adopted and diffused among its membership to help solve these problems and address their members concerns and in doing so, perhaps ensure the survival of the organisation into the future.Keywords: Ireland, voluntary organisations, ICT, adoption and diffusion
Procedia PDF Downloads 3058717 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot
Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi
Abstract:
To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients
Procedia PDF Downloads 918716 Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance
Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane
Abstract:
Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression.Keywords: image compression, radon transform, linear predictive coding (LPC), run lengthcoding (RLC), meteosat second generation (MSG)
Procedia PDF Downloads 4218715 Intensive Crosstalk between Autophagy and Intracellular Signaling Regulates Osteosarcoma Cell Survival Response under Cisplatin Stress
Authors: Jyothi Nagraj, Sudeshna Mukherjee, Rajdeep Chowdhury
Abstract:
Autophagy has recently been linked with cancer cell survival post drug insult contributing to acquisition of resistance. However, the molecular signaling governing autophagic survival response is poorly explored. In our study, in osteosarcoma (OS) cells cisplatin shock was found to activate both MAPK and autophagy signaling. An activation of JNK and autophagy acted as pro-survival strategy, while ERK1/2 triggered apoptotic signals upon cisplatin stress. An increased sensitivity of the cells to cisplatin was obtained with simultaneous inhibition of both autophagy and JNK pathway. Furthermore, we observed that the autophagic stimulation upon drug stress regulates other developmentally active signaling pathways like the Hippo pathway in OS cells. Cisplatin resistant cells were thereafter developed by repetitive drug exposure followed by clonal selection. Basal levels of autophagy were found to be high in resistant cells to. However, the signaling mechanism leading to autophagic up-regulation and its regulatory effect differed in OS cells upon attaining drug resistance. Our results provide valuable clues to regulatory dynamics of autophagy that can be considered for development of improved therapeutic strategy against resistant type cancers.Keywords: JNK, autophagy, drug resistance, cancer
Procedia PDF Downloads 2908714 Suitability of Green Macroalgae Porteresia coarctata as a Feed Form Macrobrachium rosenbergii
Authors: Rajrupa Ghosh, Abhijit Mitra
Abstract:
Future use of animal protein sources in prawn feeds is expected to be considerably reduced as a consequence of increasing economical, environmental and safety issues. Of main concern has been the use of expensive marine protein sources, such as fish meal which often results in fouling of water quality and disease outbreak in cultured species. To determine prawn capacity to use practical feeds with plant proteins as replacement ingredients to animal protein sources, 8-months growth trial was conducted in two sets of ponds using juvenile (0.02 gm) Macrobrachium rosenbergii. Among the two sets, one set (comprising of three ponds) is experimental pond included formulated feed prepared with 30% Porteresia coarctata dust along with other general ingredients and another set (comprising of another three ponds) is control pond with commercial feed. Mean final weight, percent weight gain, final net yield, feed conversion ratio and survival were evaluated. Higher condition index values, survival rate and gain in prawn weight were observed in experimental pond compared to control pond. Low FCR values were observed in the experimental pond than the control pond. Evaluation of production parameters at the end of the study demonstrated significant differences (P ≥ 0.05) among two ponds. The variation may be attributed to specially formulated plant based feed that not only boosted up the growth of prawns, but also upgraded the ambient aquatic health. These results indicate that fish meal can be replaced with algal protein sources in diets without affecting prawn growth and production.Keywords: macrobrachium rosenbergii, porteresia coarctata, Indian sundarbans, feed
Procedia PDF Downloads 354