Search results for: slip and fall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 804

Search results for: slip and fall

684 Research on the Development of Ancient Cities in Wenzhou from the Historical Perspective

Authors: Ying Sun, Ji-wu Wang

Abstract:

The establishment of a city is the result of the accumulation of local historical and cultural heritage and the sublimation of settlements. Take history as a mirror, it’s known how the things rise and fall. Based on the perspective of history, the development of the ancient city of Wenzhou was combed, and the urban development history of Wenzhou in 2200 could be divided into seven stages. This paper mainly studies the four stages of germination, formation, initial development and tortuous development, explores the external and internal driving forces of urban development and the structural evolution of urban layout, and discusses how the ancient Wenzhou evolved from a remote town to an important coastal port city. This paper finds that the most important factors affecting the development of ancient cities in Wenzhou are war, policy and geographical environment, and then points out the importance of urban policies to the rise and fall of cities.

Keywords: ancient city development, history, Wenzhou city, city policy

Procedia PDF Downloads 116
683 “Thou Shalt Surely Die”: A Game Theory Analysis of the Book of Genesis

Authors: Bo Kampmann Walther

Abstract:

This essay examines the narratives of the Book of Genesis through the lens of game theory, a mathematical framework for analyzing strategic interactions among rational actors. By treating key figures in Genesis as players in a game, this analysis sheds light on their decisions and the resulting consequences. Focusing primarily on the story of Adam and Eve, the essay utilizes concepts such as game state, saddle point, optimal strategy, and Nash equilibrium to explore the dynamics at play and scrutinize the existence of two kinds of game rules in Genesis: one being global and post-Fall oriented, the other being local and relegated to life in the Garden. The serpent's intervention and the subsequent actions of Adam and Eve are modeled as strategic moves, revealing the complexities and shifts in the game state from harmony in Eden to a world marked by toil and mortality post-Fall.

Keywords: game theory, religion, genesis, strategy, New Game State, Serpent's role

Procedia PDF Downloads 4
682 Examining a Volunteer-Tutoring Program for Students with Special Education Needs

Authors: David Dean Hampton, William Morrison, Mary Rizza, Jan Osborn

Abstract:

This evaluation examined the effects of a supplemental reading intervThis evaluation examined the effects of a supplemental reading intervention for students with specific learning disabilities in reading who were presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4. ntion for students with specific learning disabilities in reading who presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4.

Keywords: special education, evidence-based practices, curriculum, tutoring

Procedia PDF Downloads 44
681 Evaluation of the Most Effective Insecticides against the Spodoptera Frugiperda, on the Maize Production

Authors: Ahmed Ali Hassan

Abstract:

In 2016, the Fall Armyworm (FAW) was first discovered in Africa. FAW is abundantly present in Somalia and seriously harms the maize crop. This investigation examined the impact on maize productivity of three different pesticides used to combat the autumn armyworm, Spodoptera frugiperda (Noctuidae: Lepidoptera). During the 2020–2021 growing season, three insecticides (Malathion 57 EC, Ampligo150 ZC, and Carbryle 85 WP) were evaluated at field demonstration plots. Our result showed that, significant mortality of S. frugiperda was observed on the treatment plot treated with Amplico. Ampligo caused over 90% larval mortality after application. Malathion had moderate activity, causing 53.733% mortality after application, while Carbaryl was less effective, causing 36.367% mortality after application. Consequently, the current finding shows that the three selected insecticides reduced the damage and infestation level of S. frugiperda in the maize field conditions and the most effective treatment were Amplico.

Keywords: pesticides, maize fall army worm, insecticides, mortality, S. frugiperda

Procedia PDF Downloads 40
680 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds

Authors: Vinod Kumar, Surjit Angra

Abstract:

The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.

Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness

Procedia PDF Downloads 370
679 Portrait of Musical Creativity or Indolence: A Critique of Unoka Character in Achebe’s Things Fall Apart

Authors: Ebim Matthew Abua

Abstract:

In Chinua Achebe’s Things Fall Apart (henceforth, TFA), the character Unoka is portrayed as a weakling and indolent person even when he was a creative artist, a talented musician, and a mathematician. His lack of achievement becomes the barometer for measuring his success. Right from time, music is considered to be of great significance because of its capacity to recreate and retell social events. To this end, music is both a social act and a creative art. As a social act, music is a discursive medium that exploits the dynamics of art in its evaluation of society. Music is so much a part of human existence that its presence in literature can help readers relate to fictional situations and characters. In this paper, the character Unoka is examined against the backdrop of his musical proclivities and his contributions to the overall development of TFA. Unfortunately, Achebe’s Things Fall Apart, a product of artistic creativity, portrays the personality of Unoka as lazy and uninspiring because he (Unoka) is a musician who is busy playing his flute and hardly doing anything productive. This paper is significant because it examines the literary and or linguistic depiction of Unoka and the aftermath of that depiction on the entire novel and, by extension, the larger society. Methodologically, this paper adopted the qualitative approach from the ethnography of communication (EOC), which is the analysis of communication within the wider context of the social and cultural practices and beliefs of the members of a particular culture or speech community. The aim of this qualitative research method includes the ability to discern which communication acts and/or codes are important to different groups, what types of meanings groups apply to different communication events, and how group members learn these codes to provide insight into particular communities. The study reveals that the people of Umuofia were mono-directional in their economy, and there was no room for diversification. One was either a farmer, or such a person was relegated to the background. Unoka, taking up a new challenge of diversifying the economy from the perspective of entertainment, was viewed as a misnomer. This study opens the door to other areas of studying Achebe’s epic novel apart from the critical works of literary artists that have been dished out over time.

Keywords: literature, popular culture, unoka, things fall apart

Procedia PDF Downloads 33
678 Effects of the Compressive Eocene Tectonic Phase in the Bou Kornine-Ressas-Messella Structure and Surroundings (Northern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya

Abstract:

The Messalla-Ressas-Bou Kornine (MRB) and Hammamet Korbous (HK) major trending North-South fault zones provide a good opportunity to show the effects of the Eocene compressive phase in northern Tunisia. They acted as paleogeographical boundaries during the Mesozoic and belonged to a significant strike-slip corridor called the «North-South Axis,» extending from the Saharan platform at the South to the Gulf of Tunis at the North. Our study area is situated in a relay zone between two significant strike-slip faults (HK and MRB), separating the Atlas domain from the Pelagian Block. We used a multidisciplinary approach, including fieldwork, stress inversion, and geophysical profiles, to argue the shortening event that affected the study region. The MRB and HK contractional duplex is a privileged area for a local stress field and stress nucleation. The stress inversion of fault slip data reveals an Eocene compression with NW-SE trending SHmax, reactivating most of the ancient Mesozoic normal faults in the region. This shortening phase is represented in the MRB belt by an angular unconformity between the Upper Eocene over various Cretaceous strata. The stress inversion data reveal a compressive tectonic with an average NW-SE trending Shmax. The major N-S faults are reactivated under this shortening as sinistral oblique faults. The orientation of SHmax deviates from NW-SE to E-W near the preexisting deep faults of MRB and HK. This E-W stress direction generated the emerging overlap of Ressas-Messella and blind thrust faults in the Cretaceous deposits. The connection of the sub-meridian reverse faults in depth creates "flower structures" under an E-W local compressive stress. In addition, we detected a reorientation of the SHmax into an N-S direction in the central part of the MRB - HK contractional duplex, creating E-W reverse faults and overlapping zones. Finally, the Eocene compression constituted the first major tectonic phase which inverted the Mesozoic preexisting extensive fault system in Northern Tunisia.

Keywords: Tunisia, eocene compression, tectonic stress field, Bou Kornine-Ressas-Messella

Procedia PDF Downloads 45
677 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk

Authors: Masoud Nasiri Sarvi, Yunhua Luo

Abstract:

Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.

Keywords: bone mineral density, hip fracture risk, impact force, sideways falls

Procedia PDF Downloads 511
676 Experimental Modelling Gear Contact with TE77 Energy Pulse Setup

Authors: Zainab Mohammed Shukur, Najlaa Ali Alboshmina, Ali Safa Alsaegh

Abstract:

The project was investigated tribological behavior of polyether ether ketone (PEEK1000) against PEEK1000 rolling sliding (non-conformal) configuration with slip ratio 83.3%, were tested applications using a TE77 wear mechanisms and friction coefficient test rig. Under marginal lubrication conditions and the absence of film thick conditions, load 100 N was used to simulate the torque in gears 7 N.m. The friction coefficient and wear mechanisms of PEEK were studied under reciprocating roll/slide conditions with water, ethylene glycol, silicone, and base oil. Tribological tests were conducted on a TE77 high-frequency tribometer, with a disc-on-plate slide/roll (the energy pulse criterion) configuration. An Alicona G5 optical 3D micro-coordinate measurement microscope was used to investigate the surface topography and wear mechanisms. The surface roughness had been a significant effect on the friction coefficient for the PEEK/PEEK the rolling sliding contact test ethylene glycol and on the wear mechanisms. When silicone, ethylene glycol, and oil were used as a lubricant, the steady state of friction coefficient was reached faster than the other lubricant. Results describe the effect of the film thick with slip ratio of 83.3% on the tribological performance.

Keywords: polymer, rolling- sliding, energy pulse, gear contact

Procedia PDF Downloads 117
675 A Finite Elements Model for the Study of Buried Pipelines Affected by Strike-Slip Fault

Authors: Reza Akbari, Jalal MontazeriFashtali, PeymanMomeni Taromsari

Abstract:

Pipeline systems, play an important role as a vital element in reducing or increasing the risk of earthquake damage and vulnerability. Pipelines are suitable, cheap, fast, and safe routes for transporting oil, gas, water, sewage, etc. The sepipelines must pass from a wide geographical area; hence they will structurally face different environmental and underground factors of earthquake forces’ effect. Therefore, structural engineering analysis and design for this type of lines requires the understanding of relevant parameters behavior and lack of familiarity with them can cause irreparable damages and risks to design and execution, especially in the face of earthquakes. Today, buried pipelines play an important role in human life cycle, thus, studying the vulnerability of pipeline systems is of particular importance. This study examines the behavior of buried pipelines affected by strike-slip fault. Studied fault is perpendicular to the tube axis and causes stress and deformation in the tube by sliding horizontally. In this study, the pipe-soil interaction is accurately simulated, so that one can examine the large displacements and strains, nonlinear material behavior and contact and friction conditions of soil and pipe. The results can be used for designing buried pipes and determining the amount of fault displacement that causes the failure of the buried pipes.

Keywords: pipe lines , earthquake , fault , soil-fault interaction

Procedia PDF Downloads 428
674 Eliminating Injury in the Work Place and Realizing Vision Zero Using Accident Investigation and Analysis as Method: A Case Study

Authors: Ramesh Kumar Behera, Md. Izhar Hassan

Abstract:

Accident investigation and analysis are useful to identify deficiencies in plant, process, and management practices and formulate preventive strategies for injury elimination. In India and other parts of the world, industrial accidents are investigated to know the causes and also to fulfill legal compliances. However, findings of investigation are seldom used appropriately to strengthen Occupational Safety and Health (OSH) in expected lines. The mineral rich state of Odisha in eastern coast of India; known as a hub for Iron and Steel industries, witnessed frequent accidents during 2005-2009. This article based on study of 982 fatal ‘factory-accidents’ occurred in Odisha during the period 2001-2016, discusses the ‘turnaround-story’ resulting in reduction of fatal accident from 122 in 2009 to 45 in 2016. This paper examines various factors causing incidents; accident pattern in steel and chemical sector; role of climate and harsh weather conditions on accident causation. Software such as R, SQL, MS-Excel and Tableau were used for analysis of data. It is found that maximum fatality is caused due to ‘fall from height’ (24%); steel industries are relatively more accident prone; harsh weather conditions of summer increase chances of accident by 20%. Further, the study suggests that enforcement of partial work-restriction around lunch time during peak summer, screening and training of employees reduce accidents due to fall from height. The study indicates that learning from accident investigation and analysis can be used as a method to reduce work related accidents in the journey towards ‘Vision Zero’.

Keywords: accident investigation and analysis, fatal accidents in India, fall from height, vision zero

Procedia PDF Downloads 128
673 Comparative Analysis of Residual Shear Depiction and Grain Distribution Characteristics of Slide Soil Profile Sections

Authors: Ephrem Getahun, Shengwen Qi, Songfeng Guo, Yu Zou, Melesse Alemayehu

Abstract:

Residual shear characteristics of slide soil profile sections (SSPS) were examined using ring shear tests to know the relative residual shear behaviors among the sections of slide soil. The multistage-multiphase shearing techniques were employed to perform the experiment for each soil specimen continuously towards large displacements. The grain distribution analysis of SSPS samples was characterized by coarsening upward from bottom slip to the top sections; however, the slip surface was considered as a sheared zone that endorses their low shear resistance for failure. There is an average range of 1-2.5 mm axial displacement on each stage of loadings and phases of shearing that depicts the significant effect of dilation and compression of soil specimen. The middle section has the largest consolidation percentage (10-29%), and vertical displacement compared to other sections and showed high shear strengthening behavior having maximum shear stress of 189kPa at 240kPa loading compared to basal and top sections. It is found that the middle section of SSPS has relatively high shear resistance behavior for large displacement shearing. The residual shear assessment indicates that there is a significant influence of large displacement and rate on the friction coefficient behaviors; it resulted in shear weakening effect to attain their residual condition.

Keywords: comparison, displacements, residual shear stress, shear behavior, slide soils

Procedia PDF Downloads 125
672 Analytical Solution for End Depth Ratio in Rectangular Channels

Authors: Abdulrahman Abdulrahman, Abir Abdulrahman

Abstract:

Free over-fall is an instrument for measuring discharge in open channels by measuring end depth. A comprehensive researchers investigated theoretically and experimentally brink phenomenon with various approaches for different cross-sectional shapes. Anderson's method, based on Boussinq's approximation and energy approach was used to derive a pressure distribution factor at end depth. Applying the one-dimensional momentum equation and the principles of limit slope analysis, a relevant analytical solution may be derived for brink depth ratio (EDR) in prismatic rectangular channel. Also relationships between end depth ratio and slope ratio for a given non-dimensional normal or critical depth with upstream supercritical flow regime are presented. Simple indirect procedure is used to estimate the end depth discharge ratio (EDD) for subcritical and supercritical flow using measured end depth. The comparison of this analysis with all previous theoretical and experimental studies showed an excellent agreement.

Keywords: analytical solution, brink depth, end depth, flow measurement, free over fall, hydraulics, rectangular channel

Procedia PDF Downloads 153
671 Prevalence of Malocclusion and Assessment of Orthodontic Treatment Needs in Malay Transfusion-Dependent Thalassemia Patients

Authors: Mohamed H. Kosba, Heba A. Ibrahim, H. Rozita

Abstract:

Statement of the Problem: The life expectancy for transfusion-dependent thalassemia patients has increased dramatically with iron-chelation therapy and other modern management modalities. In these patients, the most dominant maxillofacial manifestations are protrusion of zygomatic bones and premaxilla due to the hyperplasia of bone marrow. The purpose of this study is to determine the prevalence of malocclusion and orthodontic treatment needs according to the Dental Aesthetic Index (DAI) among Malay transfusion-dependent thalassemia patients. Orientation: This is a cross-sectional study consist of 43 Malay transfusion-dependent thalassemia patients, 22 males, and 19 females with the mean age of 15.9 years old (SD 3.58). The subjects were selected randomly from patients attending Paediatrics and Internal Medicine Clinic at Hospital USM and Hospital Sultana Bahiyah. The subjects were assessed for malocclusion according to Angle’s classification, and orthodontic treatment needs using DAI. The results show that 22 of the subjects (51.1%) have class II malocclusion, 12 subjects (28%) have class І, while 9 subjects (20.9%) have class Ⅲ. The assessment of orthodontic treatment needs to reveal 22 cases (51.1%) fall in the normal/minor needs category, 12 subjects (28%) fall in the severe and very severe category, while 9 subjects (20.9%) fall in the definite category. Conclusion & Significance: Half of Malay transfusion-dependent thalassemia patients have Class Ⅱmalocclusion. About 28% had malocclusion and required orthodontic treatment. This research shows that Malay transfusion-dependent thalassemia may require orthodontic management; earlier intervention to reduce the complexity of the treatment later, suggesting functional appliance as a suitable treatment option for them, a twin block appliance together with headgear to restrict maxillary growth suggested for management. The current protocol implemented by the Malaysian Ministry of Health for the management of these patients seems to be sufficient since the result shows that about 28% require orthodontic treatment need, according to DAI.

Keywords: prevalence, DAI, thalassaemia, angle classification

Procedia PDF Downloads 115
670 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation

Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie

Abstract:

Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.

Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)

Procedia PDF Downloads 108
669 A Surgical Correction and Innovative Splint for Swan Neck Deformity in Hypermobility Syndrome

Authors: Deepak Ganjiwale, Karthik Vishwanathan

Abstract:

Objective: Splinting is a great domain of occupational therapy profession.Making a splint for the patient would depend upon the need or requirement of the problems and deformities. Swan neck deformity is not very common in finger it may occur after any disease. Conservative treatment of the swan neck deformity is available by using different static splints only. There are very few reports of surgical correction of swan-neck deformity in benign hypermobility syndrome. Method: This case report describes the result of surgical intervention and hand splint in a twenty year old lady with past history of cardiovascular stroke with no residual neurological deficit. She presented with correctable swan neck deformity and failed to improve with static ring splints to correct the deformity. She was noted to have hyperlaxity (EhlerDanlos type) as per modified Beighton’s score of 5/9. She underwent volar plate plication of the proximal interphalangeal joint of the left ring finger along with hemitenodesis of ulnar slip of flexor digitorum superficialis (FDS) tendon whereby, the ulnar slip of FDS was passed through a small surgically created rent in A2 pulley and sutured back to itself. Result: Postoperatively, the patient was referred to occupational therapy for splinting with the instruction that the splint would work some time for as static and some time as dynamic for positional and correction of the finger. Conclusion: After occupational therapy intervention and splinting, the patient had a full correction of the swan-neck deformity with near full flexion of the operated finger and is able to work independently.

Keywords: swan neck, finger, deformity, splint, hypermobility

Procedia PDF Downloads 227
668 Dynamic Conformal Arc versus Intensity Modulated Radiotherapy for Image Guided Stereotactic Radiotherapy of Cranial Lesion

Authors: Chor Yi Ng, Christine Kong, Loretta Teo, Stephen Yau, FC Cheung, TL Poon, Francis Lee

Abstract:

Purpose: Dynamic conformal arc (DCA) and intensity modulated radiotherapy (IMRT) are two treatment techniques commonly used for stereotactic radiosurgery/radiotherapy of cranial lesions. IMRT plans usually give better dose conformity while DCA plans have better dose fall off. Rapid dose fall off is preferred for radiotherapy of cranial lesions, but dose conformity is also important. For certain lesions, DCA plans have good conformity, while for some lesions, the conformity is just unacceptable with DCA plans, and IMRT has to be used. The choice between the two may not be apparent until each plan is prepared and dose indices compared. We described a deviation index (DI) which is a measurement of the deviation of the target shape from a sphere, and test its functionality to choose between the two techniques. Method and Materials: From May 2015 to May 2017, our institute has performed stereotactic radiotherapy for 105 patients treating a total of 115 lesions (64 DCA plans and 51 IMRT plans). Patients were treated with the Varian Clinac iX with HDMLC. Brainlab Exactrac system was used for patient setup. Treatment planning was done with Brainlab iPlan RT Dose (Version 4.5.4). DCA plans were found to give better dose fall off in terms of R50% (R50% (DCA) = 4.75 Vs R50% (IMRT) = 5.242) while IMRT plans have better conformity in terms of treatment volume ratio (TVR) (TVR(DCA) = 1.273 Vs TVR(IMRT) = 1.222). Deviation Index (DI) is proposed to better facilitate the choice between the two techniques. DI is the ratio of the volume of a 1 mm shell of the PTV and the volume of a 1 mm shell of a sphere of identical volume. DI will be close to 1 for a near spherical PTV while a large DI will imply a more irregular PTV. To study the functionality of DI, 23 cases were chosen with PTV volume ranged from 1.149 cc to 29.83 cc, and DI ranged from 1.059 to 3.202. For each case, we did a nine field IMRT plan with one pass optimization and a five arc DCA plan. Then the TVR and R50% of each case were compared and correlated with the DI. Results: For the 23 cases, TVRs and R50% of the DCA and IMRT plans were examined. The conformity for IMRT plans are better than DCA plans, with majority of the TVR(DCA)/TVR(IMRT) ratios > 1, values ranging from 0.877 to1.538. While the dose fall off is better for DCA plans, with majority of the R50%(DCA)/ R50%(IMRT) ratios < 1. Their correlations with DI were also studied. A strong positive correlation was found between the ratio of TVRs and DI (correlation coefficient = 0.839), while the correlation between the ratio of R50%s and DI was insignificant (correlation coefficient = -0.190). Conclusion: The results suggest DI can be used as a guide for choosing the planning technique. For DI greater than a certain value, we can expect the conformity for DCA plans to become unacceptably great, and IMRT will be the technique of choice.

Keywords: cranial lesions, dynamic conformal arc, IMRT, image guided radiotherapy, stereotactic radiotherapy

Procedia PDF Downloads 212
667 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain

Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas

Abstract:

Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.

Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot

Procedia PDF Downloads 145
666 Design Study on a Contactless Material Feeding Device for Electro Conductive Workpieces

Authors: Oliver Commichau, Richard Krimm, Bernd-Arno Behrens

Abstract:

A growing demand on the production rate of modern presses leads to higher stroke rates. Commonly used material feeding devices for presses like grippers and roll-feeding systems can only achieve high stroke rates along with high gripper forces, to avoid stick-slip. These forces are limited by the sensibility of the surfaces of the workpieces. Stick-slip leads to scratches on the surface and false positioning of the workpiece. In this paper, a new contactless feeding device is presented, which develops higher feeding force without damaging the surface of the workpiece through gripping forces. It is based on the principle of the linear induction motor. A primary part creates a magnetic field and induces eddy currents in the electrically conductive material. A Lorentz-Force applies to the workpiece in feeding direction as a mutual reaction between the eddy-currents and the magnetic induction. In this study, the FEA model of this approach is shown. The calculation of this model was used to identify the influence of various design parameters on the performance of the feeder and thus showing the promising capabilities and limits of this technology. In order to validate the study, a prototype of the feeding device has been built. An experimental setup was used to measure pulling forces and placement accuracy of the experimental feeder in order to give an outlook of a potential industrial application of this approach.

Keywords: conductive material, contactless feeding, linear induction, Lorentz-Force

Procedia PDF Downloads 160
665 Numerical Simulation of Seismic Process Accompanying the Formation of Shear-Type Fault Zone in Chuya-Kuray Depressions

Authors: Mikhail O. Eremin

Abstract:

Seismic activity around the world is clearly a threat to people's lives, as well as infrastructure and capital construction. It is the instability of the latter to powerful earthquakes that most often causes human casualties. Therefore, during construction it is necessary to take into account the risks of large-scale natural disasters. The task of assessing the risks of natural disasters is one of the most urgent at the present time. The final goal of any study of earthquakes is forecasting. This is especially important for seismically active regions of the planet where earthquakes occur frequently. Gorni Altai is one of such regions. In work, we developed the physical-mathematical model of stress-strain state evolution of loaded geomedium with the purpose of numerical simulation of seismic process accompanying the formation of Chuya-Kuray fault zone Gorni Altay, Russia. We build a structural model on the base of seismotectonic and paleoseismogeological investigations, as well as SRTM-data. Base of mathematical model is the system of equations of solid mechanics which includes the fundamental conservation laws and constitutive equations for elastic (Hooke's law) and inelastic deformation (modified model of Drucker-Prager-Nikolaevskii). An initial stress state of the model correspond to gravitational. Then we simulate an activation of a buried dextral strike-slip paleo-fault located in the basement of the model. We obtain the stages of formation and the structure of Chuya-Kuray fault zone. It is shown that results of numerical simulation are in good agreement with field observations in statistical sense. Simulated seismic process is strongly bound to the faults - lineaments with high degree of inelastic strain localization. Fault zone represents en-echelon system of dextral strike-slips according to the Riedel model. The system of surface lineaments is represented with R-, R'-shear bands, X- and Y-shears, T-fractures. Simulated seismic process obeys the laws of Gutenberg-Richter and Omori. Thus, the model describes a self-similar character of deformation and fracture of rocks and geomedia. We also modified the algorithm of determination of separate slip events in the model due to the features of strain rates dependence vs time.

Keywords: Drucker-Prager model, fault zone, numerical simulation, Riedel bands, seismic process, strike-slip fault

Procedia PDF Downloads 115
664 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 100
663 The Three-Zone Composite Productivity Model of Multi-Fractured Horizontal Wells under Different Diffusion Coefficients in a Shale Gas Reservoir

Authors: Weiyao Zhu, Qian Qi, Ming Yue, Dongxu Ma

Abstract:

Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interference of the fractures. In regard to the fractured horizontal wells, the free gas was found to majorly contribute to the productivity, while the contribution of the desorption increased with the increased pressure differences.

Keywords: multi-scale, fracture network, composite model, productivity

Procedia PDF Downloads 250
662 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions

Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang

Abstract:

Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.

Keywords: computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity

Procedia PDF Downloads 113
661 Hemp Defoliation Technology and Management before Harvesting

Authors: Rataya Yanaphan, Saksiri Kuppatarat, Sarita Pinmanee

Abstract:

Hemp (Cannabis sativa L. ssp. Sativa) cultivation for fiber is limited by extremely high labor cost, especially for the removal of the leaves before harvest. This study evaluated chemical defoliants as a means to remove the leaves of hemp before harvest, in an effort to reduce labor expenditures in the production on hemp fiber. This study was conducted by spraying the leaves of hemp with five different treatments: saline solution, Urea (CH4N2O), Ethephon, copper Sulphate (CuSO4) and water (control) before harvesting. The largest percentage of leaf loss 6 days after spraying was with saline solution (43%), followed by Ethephon (32%). However, saline solution also caused drying of the stems but Ethephon did not. Thus, Ethephon was evaluated in the second experiment by spraying with Ethephon concentrations of 0, 10, 15 and 20 ml per 1 liter of water at 7 days before harvest. Spraying with 0.5% Ethephon resulted in 13.6% leaf fall. Spraying with 1.5% and 2% Ethephon resulted in 82.2% and 82.3 % leaf fall, respectively. In addition, using Ethephon to defoliate hemp had no detrimental effect the yield. Therefore, Ethephon concentration at 15 ml per 1 liter of water will be recommended for use in removing hemp leaves by spraying at 7 days before harvest to lower labor cost.

Keywords: defoliation technology, ethephon, hemp cultivation, saline solution

Procedia PDF Downloads 192
660 Affect of Reservoir Fluctuations on an Active Landslide in the Xiangjiaba Reservoir Area, Southwest China

Authors: Javed Iqbal

Abstract:

Filling of Xiangjiaba Reservoir Lake in Southwest China triggered and re-activated numerous landslides due to water fluctuation. In order to understand the relationship between reservoirs and slope instability, a typical reservoir landslide (Dasha landslide) at right bank of Jinsha River was selected as a case study for in-depth investigations. The detailed field investigations were carried out in order to identify the landslide with respect to its surroundings and to find out the slip-surface. Boreholes were drilled in order to find out the subsurface lithology and the depth of failure of Dasha landslide. The in-situ geotechnical tests were performed, and the soil samples from exposed slip surface were retrieved for geotechnical laboratory analysis. Finally, stability analysis was done using 3D strength reduction method under different conditions of reservoir water level fluctuations and rainfall conditions. The in-depth investigations show that the Dasha landslide is a bedding rockslide which was once activated in 1986. The topography of Dasha landslide is relatively flat, while the back scarp and local terrain are relatively steep. The landslide area is about 29 × 104 m², and the maximum thickness of the landslide deposits revealed by drilling is about 40 m with the average thickness being about 20 m, and the volume is thus estimated being about 580 × 10⁴ m³. Bedrock in the landslide area is composed of Suining Formation of Jurassic age. The main rock type is silty mudstone with sandstone, and bedding orientation is 300~310° ∠ 7~22°. The factor of safety (FOS) of Dasha landslide obtained by 3D strength reduction cannot meet the minimum safety requirement under the working condition of reservoir level fluctuation as designed, with effect of rainfall and rapid drawdown.

Keywords: Dasha landslide, Xiangjiaba reservoir, strength reduction method, bedding rockslide

Procedia PDF Downloads 142
659 The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface

Authors: M. Bazrafshan, M. B. de Rooij, D. J. Schipper

Abstract:

Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed.

Keywords: boundary element model, frictional hysteresis, adhesion, roughness, pre-sliding

Procedia PDF Downloads 147
658 A Methodology for Seismic Performance Enhancement of RC Structures Equipped with Friction Energy Dissipation Devices

Authors: Neda Nabid

Abstract:

Friction-based supplemental devices have been extensively used for seismic protection and strengthening of structures, however, the conventional use of these dampers may not necessarily lead to an efficient structural performance. Conventionally designed friction dampers follow a uniform height-wise distribution pattern of slip load values for more practical simplicity. This can lead to localizing structural damage in certain story levels, while the other stories accommodate a negligible amount of relative displacement demand. A practical performance-based optimization methodology is developed to tackle with structural damage localization of RC frame buildings with friction energy dissipation devices under severe earthquakes. The proposed methodology is based on the concept of uniform damage distribution theory. According to this theory, the slip load values of the friction dampers redistribute and shift from stories with lower relative displacement demand to the stories with higher inter-story drifts to narrow down the discrepancy between the structural damage levels in different stories. In this study, the efficacy of the proposed design methodology is evaluated through the seismic performance of five different low to high-rise RC frames equipped with friction wall dampers under six real spectrum-compatible design earthquakes. The results indicate that compared to the conventional design, using the suggested methodology to design friction wall systems can lead to, by average, up to 40% reduction of maximum inter-story drift; and incredibly more uniform height-wise distribution of relative displacement demands under the design earthquakes.

Keywords: friction damper, nonlinear dynamic analysis, RC structures, seismic performance, structural damage

Procedia PDF Downloads 202
657 The Structure and Function Investigation and Analysis of the Automatic Spin Regulator (ASR) in the Powertrain System of Construction and Mining Machines with the Focus on Dump Trucks

Authors: Amir Mirzaei

Abstract:

The powertrain system is one of the most basic and essential components in a machine. The occurrence of motion is practically impossible without the presence of this system. When power is generated by the engine, it is transmitted by the powertrain system to the wheels, which are the last parts of the system. Powertrain system has different components according to the type of use and design. When the force generated by the engine reaches to the wheels, the amount of frictional force between the tire and the ground determines the amount of traction and non-slip or the amount of slip. At various levels, such as icy, muddy, and snow-covered ground, the amount of friction coefficient between the tire and the ground decreases dramatically and considerably, which in turn increases the amount of force loss and the vehicle traction decreases drastically. This condition is caused by the phenomenon of slipping, which, in addition to the waste of energy produced, causes the premature wear of driving tires. It also causes the temperature of the transmission oil to rise too much, as a result, causes a reduction in the quality and become dirty to oil and also reduces the useful life of the clutches disk and plates inside the transmission. this issue is much more important in road construction and mining machinery than passenger vehicles and is always one of the most important and significant issues in the design discussion, in order to overcome. One of these methods is the automatic spin regulator system which is abbreviated as ASR. The importance of this method and its structure and function have solved one of the biggest challenges of the powertrain system in the field of construction and mining machinery. That this research is examined.

Keywords: automatic spin regulator, ASR, methods of reducing slipping, methods of preventing the reduction of the useful life of clutches disk and plate, methods of preventing the premature dirtiness of transmission oil, method of preventing the reduction of the useful life of tires

Procedia PDF Downloads 54
656 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network

Authors: Jui-Chen Huang, Shou-Hsiung Cheng

Abstract:

This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.

Keywords: fall, fuzzy neural network, health belief model, telecare, willingness

Procedia PDF Downloads 161
655 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines

Authors: Arun Goel

Abstract:

The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free over-fall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, support vector machine (Polynomial and rbf) models, and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free over-fall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.

Keywords: air entrainment rate, dissolved oxygen, weir, SVM, regression

Procedia PDF Downloads 406