Search results for: satellite interferometry (InSAR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 798

Search results for: satellite interferometry (InSAR)

678 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues

Authors: Ali Ben Abbes, Imed Riadh Farah

Abstract:

Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.

Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban

Procedia PDF Downloads 354
677 New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images

Authors: Suruchi

Abstract:

This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives.

Keywords: pollution, GIS, FOG, satellie, atmospheric deposition

Procedia PDF Downloads 22
676 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code

Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader

Abstract:

In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.

Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset

Procedia PDF Downloads 130
675 Simultaneous Measurement of Displacement and Roll Angle of Object

Authors: R. Furutani, K. Ishii

Abstract:

Laser interferometers are now widely used for length and displacement measurement. In conventional methods, the optical path difference between two mirrors, one of which is a reference mirror and the other is a target mirror, is measured, as in Michelson interferometry, or two target mirrors are set up and the optical path difference between the two targets is measured, as in differential interferometry. In these interferometers, the two laser beams pass through different optical elements so that the measurement result is affected by the vibration and other effects in the optical paths. In addition, it is difficult to measure the roll angle around the optical axis. The proposed interferometer simultaneously measures both the translational motion along the optical axis and the roll motion around it by combining the retroreflective principle of the ball lens (BL) and the polarization. This interferometer detects the interferogram by the two beams traveling along the identical optical path from the beam source to BL. This principle is expected to reduce external influences by using the interferogram between the two lasers in an identical optical path. The proposed interferometer uses a BL so that the reflected light from the lens travels on the identical optical path as the incident light. After reaching the aperture of the He-Ne laser oscillator, the reflected light is reflected by a mirror with a very high reflectivity installed in the aperture and is irradiated back toward the BL. Both the first laser beam that enters the BL and the second laser beam that enters the BL after the round trip interferes with each other, enabling the measurement of displacement along the optical axis. In addition, for the measurement of the roll motion, a quarter-wave plate is installed on the optical path to change the polarization state of the laser. The polarization states of the first laser beam and second laser beam are different by the roll angle of the target. As a result, this system can measure the displacement and the roll angle of BL simultaneously. It was verified by the simulation and the experiment that the proposed optical system could measure the displacement and the roll angle simultaneously.

Keywords: common path interferometer, displacement measurement, laser interferometer, simultaneous measurement, roll angle measurement

Procedia PDF Downloads 89
674 Urban Change Detection and Pattern Analysis Using Satellite Data

Authors: Shivani Jha, Klaus Baier, Rafiq Azzam, Ramakar Jha

Abstract:

In India, generally people migrate from rural area to the urban area for better infra-structural facilities, high standard of living, good job opportunities and advanced transport/communication availability. In fact, unplanned urban development due to migration of people causes seriou damage to the land use, water pollution and available water resources. In the present work, an attempt has been made to use satellite data of different years for urban change detection of Chennai metropolitan city along with pattern analysis to generate future scenario of urban development using buffer zoning in GIS environment. In the analysis, SRTM (30m) elevation data and IRS-1C satellite data for the years 1990, 2000, and 2014, are used. The flow accumulation, aspect, flow direction and slope maps developed using SRTM 30 m data are very useful for finding suitable urban locations for industrial setup and urban settlements. Normalized difference vegetation index (NDVI) and Principal Component Analysis (PCA) have been used in ERDAS imagine software for change detection in land use of Chennai metropolitan city. It has been observed that the urban area has increased exponentially in Chennai metropolitan city with significant decrease in agriculture and barren lands. However, the water bodies located in the study regions are protected and being used as freshwater for drinking purposes. Using buffer zone analysis in GIS environment, it has been observed that the development has taken place in south west direction significantly and will do so in future.

Keywords: urban change, satellite data, the Chennai metropolis, change detection

Procedia PDF Downloads 408
673 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 366
672 Empirical Prediction of the Effect of Rain Drops on Dbs System Operating in Ku-Band (Case Study of Abuja)

Authors: Tonga Agadi Danladi, Ajao Wasiu Bamidele, Terdue Dyeko

Abstract:

Recent advancement in microwave communications technologies especially in telecommunications and broadcasting have resulted in congestion on the frequencies below 10GHz. This has forced microwave designers to look for high frequencies. Unfortunately for frequencies greater than 10GHz rain becomes one of the main factors of attenuation in signal strength. At frequencies from 10GHz upwards, rain drop sizes leads to outages that compromises the availability and quality of service this making it a critical factor in satellite link budget design. Rain rate and rain attenuation predictions are vital steps to be considered when designing microwave satellite communication link operating at Ku-band frequencies (112-18GHz). Unreliable rain rates data in the tropical regions of the world like Nigeria from radio communication group of the international Telecommunication Union (ITU-R) makes it difficult for microwave engineers to determine a realistic rain margin that needs to be accommodated in satellite link budget design in such region. This work presents an empirical tool for predicting the amount of signal due to rain on DBS signal operating at the Ku-band.

Keywords: attenuation, Ku-Band, microwave communication, rain rates

Procedia PDF Downloads 485
671 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 104
670 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model

Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf

Abstract:

Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.

Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV

Procedia PDF Downloads 126
669 Acoustic Induced Vibration Response Analysis of Honeycomb Panel

Authors: Po-Yuan Tung, Jen-Chueh Kuo, Chia-Ray Chen, Chien-Hsing Li, Kuo-Liang Pan

Abstract:

The main-body structure of satellite is mainly constructed by lightweight material, it should be able to withstand certain vibration load during launches. Since various kinds of change possibility in the space, it is an extremely important work to study the random vibration response of satellite structure. This paper based on the reciprocity relationship between sound and structure response and it will try to evaluate the dynamic response of satellite main body under random acoustic load excitation. This paper will study the technical process and verify the feasibility of sonic-borne vibration analysis. One simple plate exposed to the uniform acoustic field is utilized to take some important parameters and to validate the acoustics field model of the reverberation chamber. Then import both structure and acoustic field chamber models into the vibro-acoustic coupling analysis software to predict the structure response. During the modeling process, experiment verification is performed to make sure the quality of numerical models. Finally, the surface vibration level can be calculated through the modal participation factor, and the analysis results are presented in PSD spectrum.

Keywords: vibration, acoustic, modal, honeycomb panel

Procedia PDF Downloads 555
668 Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation

Authors: A. A. Abid

Abstract:

The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before

Keywords: EMIC waves, temperature anisotropy of hot protons, energization of the cold proton, magnetospheric multiscale (MMS) satellite observations

Procedia PDF Downloads 122
667 Some Aspects on Formation Initialization and Its Maintenance of Leo Satellites

Authors: Y. Johnson

Abstract:

Study of multi-satellite formation flight systems has drawn wide attention recently due to so many potential advantages. The present work aims to model the relative motion dynamics in terms of change in classical orbital parameters between the two satellites-chief and deputy- under Earth’s oblateness effect. The required impulsive thrust control is calculated to minimize these orbital parameter changes. The formation configuration is initialized by selecting a set of orbital parameters for the chief and deputy satellites such that bounded motion is maintained for a long time in a J_2-invariant relative non-circular orbit between the satellites. The solution of J_2-modified Hill’s equations is also derived in this paper.

Keywords: satellite, formation flight, j2 effect, control

Procedia PDF Downloads 273
666 The Design and Analysis of a Novel Type High Gain Microstrip Patch Antenna System for the Satellite Communication

Authors: Shahid M. Ali, Zakiullah

Abstract:

An individual feed, smooth and smart, completely new shaped, dual band microstrip patch antenna has been proposed in this manuscript. Right here three triangular shape slots are usually presented in the 3 edges on the patch and along with a small feed line has utilized another edge on the patch to find out the dual band. The antenna carries a condensed framework wherever patch is around about 8.5mm by means of 7.96mm by means of 1.905mm leading to excellent bandwidths covering 13. 15 GHz to 13. 72 GHz in addition to 16.04 GHz to 16.58GHz. The return loss(RL) decrease in -19. 00dB and will be attained in the first resonant frequency at 13. 61 GHz and -28.69dB is at second resonance frequency at 16.33GHz. The stable average peak gain that may be observed along the operating band in lower and higher frequency is actually three. 53dB in addition to 5.562dB correspondingly. The radiation designs usually are omni directional along with moderate gain within equally most of these functioning bands. Accomplishment is proven within double frequencies at 13.62GHz since downlink in addition to 16.33GHz since uplink. This kind of low and simple configuration of the proposed antenna shows simplest fabrication and make it ensure that it is adaptable for your application within instant in satellite and as well as for the wireless communication system.

Keywords: dual band, microstrip patch antenna, HFSS, Ku band, satellite

Procedia PDF Downloads 361
665 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements

Authors: Andrey Kupriyanov

Abstract:

In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.

Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)

Procedia PDF Downloads 181
664 Satellite Solutions for Koshi Floods

Authors: Sujan Tyata, Alison Shilpakar, Nayan Bakhadyo, Kushal K. C., Abhas Maskey

Abstract:

The Koshi River, acknowledged as the "Sorrow of Bihar," poses intricate challenges characterized by recurrent flooding. Within the Koshi Basin, floods have historically inflicted damage on infrastructure, agriculture, and settlements. The Koshi River exhibits a highly braided pattern across a 48 km stretch to the south of Chatara. The devastating flood from the Koshi River, which began in Nepal's Sunsari District in 2008, led to significant casualties and the destruction of agricultural areas.The catastrophe was exacerbated by a levee breach, underscoring the vulnerability of the region's flood defenses. A comprehensive understanding of environmental changes in the area is unveiled through satellite imagery analysis. This analysis facilitates the identification of high-risk zones and their contributing factors. Employing remote sensing, the analysis specifically pinpoints locations vulnerable to levee breaches. Topographical features of the area along with longitudinal and cross sectional profiles of the river and levee obtained from digital elevation model are used in the hydrological analysis for assessment of flood. To mitigate the impact of floods, the strategy involves the establishment of reservoirs upstream. Leveraging satellite data, optimal locations for water storage are identified. This approach presents a dual opportunity to not only alleviate flood risks but also catalyze the implementation of pumped storage hydropower initiatives. This holistic approach addresses environmental challenges while championing sustainable energy solutions.

Keywords: flood mitigation, levee, remote sensing, satellite imagery analysis, sustainable energy solutions

Procedia PDF Downloads 64
663 A Scheme Cooperating with Cryptography to Enhance Security in Satellite Communications

Authors: Chieh-Fu Chang, Wan-Hsin Hsieh

Abstract:

We have proposed a novel scheme— iterative word-extension (IWE) to enhance the cliff effect of Reed-Solomon codes regarding the error performance at a specific Eb/N0. The scheme can be readily extended to block codes and the important properties of IWE are further investigated here. In order to select proper block codes specifying the desired cliff Eb/N0, the associated features of IWE are explored. These properties and features grant IWE ability to enhance security regarding the received Eb/N0 in physical layer so that IWE scheme can cooperate with the traditional presentation layer approach — cryptography, to meet the secure requirements in diverse applications. The features and feasibility of IWE scheme in satellite communication are finally discussed.

Keywords: security, IWE, cliff effect, space communications

Procedia PDF Downloads 425
662 Satellite Multispectral Remote Sensing of Ozone Pollution

Authors: Juan Cuesta

Abstract:

Satellite observation is a fundamental component of air pollution monitoring systems, such as the large-scale Copernicus Programme. Next-generation satellite sensors, in orbit or programmed in the future, offer great potential to observe major air pollutants, such as tropospheric ozone, with unprecedented spatial and temporal coverage. However, satellite approaches developed for remote sensing of tropospheric ozone are based solely on measurements from a single instrument in a specific spectral range, either thermal infrared or ultraviolet. These methods offer sensitivity to tropospheric ozone located at the lowest at 3 or 4 km altitude above the surface, thus limiting their applications for ozone pollution analysis. Indeed, no current observation of a single spectral domain provides enough information to accurately measure ozone in the atmospheric boundary layer. To overcome this limitation, we have developed a multispectral synergism approach, called "IASI+GOME2", at the Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) laboratory. This method is based on the synergy of thermal infrared and ultraviolet observations of respectively the Infrared Atmospheric Sounding Interferometer (IASI) and the Global Ozone Monitoring Experiment-2 (GOME-2) sensors embedded in MetOp satellites that have been in orbit since 2007. IASI+GOME2 allowed the first satellite observation of ozone plumes located between the surface and 3 km of altitude (what we call the lowermost troposphere), as it offers significant sensitivity in this layer. This represents a major advance for the observation of ozone in the lowermost troposphere and its application to air quality analysis. The ozone abundance derived by IASI+GOME2 shows a good agreement with respect to independent observations of ozone based on ozone sondes (a low mean bias, a linear correlation larger than 0.8 and a mean precision of about 16 %) around the world during all seasons. Using IASI+GOME2, lowermost tropospheric ozone pollution plumes are quantified both in terms of concentrations and also in the amounts of ozone photo-chemically produced along transport and also enabling the characterization of the ozone pollution, such as what occurred during the lockdowns linked to the COVID-19 pandemic. The current paper will show the IASI+GOME2 multispectral approach to observe the lowermost tropospheric ozone from space and an overview of several applications on different continents and at a global scale.

Keywords: ozone pollution, multispectral synergism, satellite, air quality

Procedia PDF Downloads 81
661 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa

Authors: Samy A. Khalil, U. Ali Rahoma

Abstract:

The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.

Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa

Procedia PDF Downloads 98
660 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring

Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra

Abstract:

Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.

Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application

Procedia PDF Downloads 100
659 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)

Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves

Abstract:

The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.

Keywords: 3D models, environment, matching, pleiades

Procedia PDF Downloads 330
658 Satellite-Based Drought Monitoring in Korea: Methodologies and Merits

Authors: Joo-Heon Lee, Seo-Yeon Park, Chanyang Sur, Ho-Won Jang

Abstract:

Satellite-based remote sensing technique has been widely used in the area of drought and environmental monitoring to overcome the weakness of in-situ based monitoring. There are many advantages of remote sensing for drought watch in terms of data accessibility, monitoring resolution and types of available hydro-meteorological data including environmental areas. This study was focused on the applicability of drought monitoring based on satellite imageries by applying to the historical drought events, which had a huge impact on meteorological, agricultural, and hydrological drought. Satellite-based drought indices, the Standardized Precipitation Index (SPI) using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM); Vegetation Health Index (VHI) using MODIS based Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI); and Scaled Drought Condition Index (SDCI) were evaluated to assess its capability to analyze the complex topography of the Korean peninsula. While the VHI was accurate when capturing moderate drought conditions in agricultural drought-damaged areas, the SDCI was relatively well monitored in hydrological drought-damaged areas. In addition, this study found correlations among various drought indices and applicability using Receiver Operating Characteristic (ROC) method, which will expand our understanding of the relationships between hydro-meteorological variables and drought events at global scale. The results of this research are expected to assist decision makers in taking timely and appropriate action in order to save millions of lives in drought-damaged areas.

Keywords: drought monitoring, moderate resolution imaging spectroradiometer (MODIS), remote sensing, receiver operating characteristic (ROC)

Procedia PDF Downloads 329
657 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: interferometry, MIMO RADAR, SAR, tomography

Procedia PDF Downloads 195
656 Comparative Study of Conventional and Satellite Based Agriculture Information System

Authors: Rafia Hassan, Ali Rizwan, Sadaf Farhan, Bushra Sabir

Abstract:

The purpose of this study is to compare the conventional crop monitoring system with the satellite based crop monitoring system in Pakistan. This study is conducted for SUPARCO (Space and Upper Atmosphere Research Commission). The study focused on the wheat crop, as it is the main cash crop of Pakistan and province of Punjab. This study will answer the following: Which system is better in terms of cost, time and man power? The man power calculated for Punjab CRS is: 1,418 personnel and for SUPARCO: 26 personnel. The total cost calculated for SUPARCO is almost 13.35 million and CRS is 47.705 million. The man hours calculated for CRS (Crop Reporting Service) are 1,543,200 hrs (136 days) and man hours for SUPARCO are 8, 320hrs (40 days). It means that SUPARCO workers finish their work 96 days earlier than CRS workers. The results show that the satellite based crop monitoring system is efficient in terms of manpower, cost and time as compared to the conventional system, and also generates early crop forecasts and estimations. The research instruments used included: Interviews, physical visits, group discussions, questionnaires, study of reports and work flows. A total of 93 employees were selected using Yamane’s formula for data collection, which is done with the help questionnaires and interviews. Comparative graphing is used for the analysis of data to formulate the results of the research. The research findings also demonstrate that although conventional methods have a strong impact still in Pakistan (for crop monitoring) but it is the time to bring a change through technology, so that our agriculture will also be developed along modern lines.

Keywords: area frame, crop reporting service, CRS, sample frame, SRS/GIS, satellite remote sensing/ geographic information system

Procedia PDF Downloads 291
655 Evaluation of High Temperature Wear Performance of as Cladded and Tig Re-Melting Stellite 6 Cladded Overlay on Aisi-304L Using SMAW Process

Authors: Manjit Singha, Sandeep Singh Sandhu, A. S. Shahi

Abstract:

Stellite 6 is cobalt based superalloy used for protective coatings. It is used to improve the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This paper reports the high temperature wear analysis of satellite 6 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiment was carried out by varying current and electrode manipulation techniques to optimize the dilution and hardness. 80 Amp current and weaving technique was found to be the optimum set of parameters for overlaying which were further used for multipass multilayer cladding on two plates of AISI 304 L substrate. On the first plate, seven layers seven passes of stellite 6 was overlaid which was used in as cladded form and the second plate was overlaid with five layers five passes of satellite 6 with further TIG remelting. The wear performance was examined for normal temperature environmental condition and harsh temperature environmental condition. The satellite 6 coating with TIG remelting was found to be better in both the conditions even with lesser metal deposition due to its finer grain structure.

Keywords: surfacing, stellite 6, dilution, overlay, SMAW, high-temperature frictional wear, micro-structure, micro-hardness

Procedia PDF Downloads 293
654 Wireless Network and Its Application

Authors: Henok Mezemr Besfat, Haftom Gebreslassie Gebregwergs

Abstract:

wireless network is one of the most important mediums of transmission of information from one device to another devices. Wireless communication has a broad range of applications, including mobile communications through cell phones and satellites, Internet of Things (IoT) connecting several devices, wireless sensor networks for traffic management and environmental monitoring, satellite communication for weather forecasting and TV without requiring any cable or wire or other electronic conductors, by using electromagnetic waves like IR, RF, satellite, etc. This paper summarizes different wireless network technologies, applications of different wireless technologies and different types of wireless networks. Generally, wireless technology will further enhance operations and experiences across sectors with continued innovation. This paper suggests different strategies that can improve wireless networks and technologies.

Keywords: wireless senser, wireless technology, wireless network, internet of things

Procedia PDF Downloads 53
653 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm

Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar

Abstract:

The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations

Procedia PDF Downloads 415
652 SisGeo: Support System for the Research of Georeferenced Comparisons Applied to Professional and Academic Devices

Authors: Bruno D. Souza, Gerson G. Cunha, Michael O. Ferreira, Roberto Rosenhaim, Robson C. Santos, Sergio O. Santos

Abstract:

Devices and applications that use satellite-based positioning are becoming more popular day-by-day. Thus, evolution and improvement in this technology are mandatory. Accordingly, satellite georeferenced systems need to accomplish the same evolution rhythm. Either GPS (Global Positioning System) or its similar Russian GLONASS (Global Navigation Satellite System) are system samples that offer us powerful tools to plot coordinates on the earth surface. The development of this research aims the study of several aspects related to use of GPS and GLONASS technologies, given its application and collected data improvement during geodetic data acquisition. So, both relevant theoretic and practical aspects are considered. In this context, at the theoretical part, the main systems' characteristics are shown, observing its similarities and differences. At the practical part, a series of experiences are performed and obtained data packages are compared in order to demonstrate equivalence or differences among them. The evaluation methodology targets both quantitative and qualitative analysis provided by GPS and GPS/GLONASS receptors. Meanwhile, a specific collected data storage system was developed to better compare and analyze them (SisGeo - Georeferenced Research Comparison Support System).

Keywords: satellites, systems, applications, experiments, receivers

Procedia PDF Downloads 255
651 Preparation and Structural Analysis of Nano-Ciprofloxacin by Fourier Transform X-Ray Diffraction, Infra-Red Spectroscopy, and Semi Electron Microscope (SEM)

Authors: Shahriar Ghammamy, Mehrnoosh Saboony

Abstract:

Purpose: To evaluate the spectral specification (IR-XRD and SEM) of nano-ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and its characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation enhances the antibacterial property of nano-ciprofloxacin in comparison to ciprofloxacin. IR spectrum of nano-ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano-ciprofloxacin were sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano-ciprofloxacin shows the diameter of particles equal to 90.9nm. (on the basis of Scherer Equation). SEM image shows the global shape for nano-ciprofloxacin.

Keywords: antibiotic, ciprofloxacin, nano, IR, XRD, SEM

Procedia PDF Downloads 514
650 Preparation and Structural Analysis of Nano Ciprofloxacin by Fourier Transform Infra-Red Spectroscopy, X-Ray Diffraction and Semi Electron Microscope (SEM)

Authors: Shahriar Ghammamy, Mehrnoosh Saboony

Abstract:

Purpose: to evaluate the spectral specification(IR-XRD and SEM) of nano ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and it,s characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation: to enhance the antibacterial property of nano ciprofloxacin in comparison to ciprofloxacin.IR spectrum of nano ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano ciprofloxacin was sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano ciprofloxacin showes the diameter of particles equal to 90.9 nm (on the basis of scherrer equation). SEM image showes the global shape for nano ciprofloxacin.

Keywords: antibiotic, ciprofloxacin, nano, IR, XRD, SEM

Procedia PDF Downloads 410
649 Stability Assessment of Chamshir Dam Based on DEM, South West Zagros

Authors: Rezvan Khavari

Abstract:

The Zagros fold-thrust belt in SW Iran is a part of the Alpine-Himalayan system which consists of a variety of structures with different sizes or geometries. The study area is Chamshir Dam, which is located on the Zohreh River, 20 km southeast of Gachsaran City (southwest Iran). The satellite images are valuable means available to geologists for locating geological or geomorphological features expressing regional fault or fracture systems, therefore, the satellite images were used for structural analysis of the Chamshir dam area. As well, using the DEM and geological maps, 3D Models of the area have been constructed. Then, based on these models, all the acquired fracture traces data were integrated in Geographic Information System (GIS) environment by using Arc GIS software. Based on field investigation and DEM model, main structures in the area consist of Cham Shir syncline and two fault sets, the main thrust faults with NW-SE direction and small normal faults in NE-SW direction. There are three joint sets in the study area, both of them (J1 and J3) are the main large fractures around the Chamshir dam. These fractures indeed consist with the normal faults in NE-SW direction. The third joint set in NW-SE is normal to the others. In general, according to topography, geomorphology and structural geology evidences, Chamshir dam has a potential for sliding in some parts of Gachsaran formation.

Keywords: DEM, chamshir dam, zohreh river, satellite images

Procedia PDF Downloads 482