Search results for: recycled asphalt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 547

Search results for: recycled asphalt

427 Construction Sustainability Improvement through Using Recycled Aggregates in Concrete Production

Authors: Zhiqiang Zhu, Khalegh Barati, Xuesong Shen

Abstract:

Due to the energy consumption caused by the construction industry, the public is paying more and more attention to the sustainability of the buildings. With the advancement of research on recycled aggregates, it has become possible to replace natural aggregates with recycled aggregates and to achieve a reduction in energy consumption of materials during construction. The purpose of this paper is to quantitatively compare the emergy consumption of natural aggregate concrete (NAC) and recycled aggregate concrete (RAC). To do so, the emergy analysis method is adopted. Using this technique, it can effectively analyze different forms of energy and substance. The main analysis object is the direct and indirect emergy consumption of the stages in concrete production. Therefore, for indirect energy, consumption of production machinery and transportation vehicle also need to be considered. Finally, the emergy values required to produce the two concrete types are compared to analyze whether the RAC can reduce emergy consumption.

Keywords: sustainable construction, NAC, RAC, emergy, concrete

Procedia PDF Downloads 148
426 Use Of Cold In-Place Asphalt Mixtures Technique In Road Maintenance In Egypt

Authors: Mohammed Mamdouh Mohammed Hussein, Ali Zain Elabdeen Heikal, Hassan Abdel Zaher Hassan Mahdy, Sherif Masoud Ahmed El Badawy

Abstract:

The main purpose of this research is to assess the effectiveness of the Cold In-Place Recycling (CIR) technique in asphalt maintenance by analyzing performance outcomes. To achieve this, fifteen CIR mixtures were prepared using slow-setting emulsified asphalt as the recycling agent, with percentages ranging from 2% to 4% in 0.5% increments. Additionally, pure water was incorporated in percentages ranging from 2% to 4% in 1% increments, and Portland cement was added at a constant content of 1%. The components were mixed at room temperature and subsequently compacted using a gyratory compactor with 150 gyrations. Prior to testing, the samples underwent a two-stage treatment process: initially, they were placed in an oven at 60°C for 48 hours, followed by a 24-hour period of air curing. The Hamburg wheel tracking test was performed to evaluate the samples’ resistance to rutting. Additionally, the Indirect Tensile Strength (ITS) test and the Semi-Circular Beam (SCB) test were conducted to assess their resistance to cracking. Upon analyzing the test results, it was observed that the samples’ resistance to rutting decreased with higher asphalt and moisture content. In contrast, ITS and SCB tests revealed that the samples’ resistance to cracking initially increased with higher asphalt and moisture content, peaking at a certain point, and then decreased, forming a bell-curve pattern.

Keywords: cold in-place, indirect tensile strength, recycling, emulsified asphalt, semi-circular beam

Procedia PDF Downloads 4
425 Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate

Authors: Yeşim Tosun, Remzi Şahin

Abstract:

This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate particle sizes were selected as 16 mm, 22,4 mm and 31,5 mm; and 0,06%, 0,13% and 0,20% of air-entraining agent (AEA) were used in mixtures. Fly ash and superplasticizer were used as a mineral and chemical admixture, respectively. The same type (CEM I 42.5) and constant dosage of cement were used in the study. Water/cement ratio was kept constant as 0.53 for all mixture. It was concluded that capillary water absorption, compressive strength, and density of concrete decreased with increasing RCA ratio. Increasing in maximum aggregate particle size and amount of AEA also affect the properties of concrete significantly.

Keywords: capillary water absorption, compressive strength, recycled concrete aggregates

Procedia PDF Downloads 310
424 Acoustic and Thermal Isolation Performance Comparison between Recycled and Ceramic Roof Tiles Using Digital Holographic Interferometry

Authors: A. Araceli Sánchez, I. Manuel H. De la Torre, S. Fernando Mendoza, R. Cesar Tavera, R. Manuel de J. Briones

Abstract:

Recycling, as part of any sustainable environment, is continuously evolving and impacting on new materials in manufacturing. One example of this is the recycled solid waste of Tetra Pak ™ packaging, which is a highly pollutant waste as it is not biodegradable since it is manufactured with different materials. The Tetra Pak ™ container consists of thermally joined layers of paper, aluminum and polyethylene. Once disposed, this packaging is recycled by completely separating the paperboard from the rest of the materials. The aluminum and the polyethylene remain together and are used to create the poly-aluminum, which is widely used to manufacture roof tiles. These recycled tiles have different thermal and acoustic properties compared with traditional manufactured ceramic and cement tiles. In this work, we compare a group of tiles using nondestructive optical testing to measure the superficial micro deformations of the tiles under well controlled experiments. The results of the acoustic and thermal tests show remarkable differences between the recycled tile and the traditional ones. These results help to determine which tile could be better suited to the specific environmental conditions in countries where extreme climates, ranging from tropical, desert-like, to very cold are experienced throughout the year.

Keywords: acoustic, digital holographic interferometry, isolation, recycled, roof tiles, sustainable, thermal

Procedia PDF Downloads 464
423 Recycled Aggregates from Construction and Demolition Waste Suitable for Concrete Production

Authors: Vladimira Vytlacilova

Abstract:

This study presents the latest research trend in the discipline of construction and demolition (C&D) waste management in Czech Republic. The results of research interest exhibit an increasing research interest in C&D waste management practices in recent years. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills, for reclamation or landscaping all the time. The quality of recycled aggregates for use in concrete construction depends on recycling practices. Classifications, composition and contaminants influence the mechanical-physical properties as well as environmental risks related to its utilization. The second part of contribution describes properties of fibre reinforced concrete with the full replacement of natural aggregate by recycled one (concrete or masonry rubble).

Keywords: construction and demolition waste, fibre reinforced concrete, recycled aggregate, recycling, waste management

Procedia PDF Downloads 307
422 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 566
421 XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder

Authors: Hyeonuk Shin, Hun Song, Yongsik Chu, Jongkyu Lee, Dongcheon Park

Abstract:

Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement.

Keywords: Low carbon type cement, Waste cementitious powder, Waste recycling

Procedia PDF Downloads 463
420 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt

Authors: Lee P. Leon, Raymond Charles

Abstract:

This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.

Keywords: aggregate angularity, asphalt concrete, permanent deformation, rutting prediction

Procedia PDF Downloads 403
419 Evaluation Performance of Transport Vehicle on Different Surfaces

Authors: Hussein Abbas Jebur, Yasir Abd Ulrazzaq

Abstract:

This study was carried out at the farm of El-Gemmaiza Agriculture Research Station, El-Garbia Governorate Egypt, to determine the performance characteristics of an agricultural transport. The performance of this transportation was compared between three surfaces (asphalt, dusty and field). The study was concentrated on the rate of drawbar pull, slip ratio, tractive efficiency and specific energy per unit area. The comparison was made under three different surfaces (asphalt, dusty and field), different traveling speeds from (3.38 to 6.55 km/h) and variable weights (0 and 300 kg). The results showed that the highest value of the tractive efficiency 60.20% was obtained at traveling speed 4.00 km/h with weight on the rear wheel on the asphalt surface. The highest value of specific energy 1.93 kW.h/ton during use of ballast on rear tractor wheels at traveling speed 3.38 km/h on the field surface.

Keywords: tractor, energy, transportation, weight, power

Procedia PDF Downloads 287
418 Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil

Authors: D. Sarkar, M. Pal, A. K. Sarkar

Abstract:

Asphaltic concrete for pavement construction in India are produced by using crushed stone, gravels etc. as aggregate. In north-Eastern region of India, there is a scarcity o f stone aggregate. Therefore the road engineers are always in search of an optional material as aggregate which can replace the regularly used material. The purpose of this work was to evaluate the utilization of substandard or marginal aggregates in flexible pavement construction. The investigation was undertaken to evaluate the effects of using lower quality aggregates such as over burnt brick aggregate on the preparation of asphalt concrete for flexible pavements. The scope of this work included a review of available literature and existing data, a laboratory evaluation organized to determine the effects of marginal aggregates and potential techniques to upgrade these substandard materials, and a laboratory evaluation of these upgraded marginal aggregate asphalt mixtures. Over burnt brick aggregates are water susceptible and can leads to moisture damage. Moisture damage is the progressive loss of functionality of the material owing to loss of the adhesion bond between the asphalt binder and the aggregate surface. Hence, zycosoil as an anti striping additive were evaluated in this study. This study summarizes the results of the laboratory evaluation carried out to investigate the properties of asphalt concrete prepared with zycosoil modified over burnt brick aggregate. Marshall specimen were prepared with stone aggregate, zycosoil modified stone aggregate, over burnt brick aggregate and zycosoil modified over burnt brick aggregate. Results show that addition of zycosoil with stone aggregate increased stability by 6% and addition of zycosoil with over burnt brick aggregate increased stability by 30%.

Keywords: asphalt concrete, over burnt brick aggregate, marshall stability, zycosoil

Procedia PDF Downloads 356
417 Improvement of Recycled Aggregate Concrete Properties by Controlling the Water Flow in the Interfacial Transition Zone

Authors: M. Eckert, M. Oliveira, A. Bettencourt Ribeiro

Abstract:

The intensive use of natural aggregate, near the towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and take up space for noblest purposes. The main problem of recycled aggregate lies in its high water absorption, what is due to the porosity of the materials which constitute this type of aggregate. When the aggregates are dry, water flows from the inside to the engaging cement paste matrix, and when they are saturated an inverse process occurs. This water flow breaks the aggregate-cement paste bonds and the greater water concentration, in the inter-facial transition zone, degrades the concrete properties in its fresh and hardened state. Based on the water absorption over time, it was optimized an staged mixing method, to regulate the said flow and manufacture recycled aggregate concrete with levels of work-ability, strength and shrinkage equivalent to those of conventional concrete.The physical, mechanical and geometrical properties of the aggregates where related to the properties of concrete in its fresh and hardened state. Three types of commercial recycled aggregates and two types of natural aggregates where evaluated. Six compositions with different percentages of recycled coarse aggregate where tested.

Keywords: recycled aggregate, water absorption, interfacial transition zone, compressive-strength, shrinkage

Procedia PDF Downloads 449
416 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach

Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin

Abstract:

Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.

Keywords: reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions

Procedia PDF Downloads 352
415 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber

Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He

Abstract:

As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.

Keywords: 3D printed, carbon fiber, fiber content, recycling

Procedia PDF Downloads 188
414 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding

Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed

Abstract:

The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.

Keywords: bleeding, asphalt film thickness differential, Anfis Modeling

Procedia PDF Downloads 269
413 Quality Assessment and Classification of Recycled Aggregates from CandDW According to the European Standards

Authors: M. Eckert, D. Mendes, J P. Gonçalves, C. Moço, M. Oliveira

Abstract:

The intensive extraction of natural aggregates leads to both depletion of natural resources and unwanted environmental impacts. On the other hand, uncontrolled disposal of Construction and Demolition Wastes (C&DW) causes the lifetime reduction of landfills. It is known that the European Union produces, each year, about 850 million tons of C&DW. For all the member States of the European Union, one of the milestones to be reached by 2020, according to the Resource Efficiency Roadmap (COM (2011) 571) of the European Commission, is to recycle 70% of the C&DW. In this work, properties of different types of recycled C&DW aggregates and natural aggregates were compared. Assays were performed according to European Standards (EN 13285; EN 13242+A1; EN 12457-4; EN 12620; EN 13139) for the characterization of there: physical, mechanical and chemical properties. Not standardized tests such as water absorption over time, mass stability and post compaction sieve analysis were also carried out. The tested recycled C&DW aggregates were classified according to the requirements of the European Standards regarding there potential use in concrete, mortar, unbound layers of road pavements and embankments. The results of the physical and mechanical properties of recycled C&DW aggregates indicated, in general, lower quality properties when compared to natural aggregates, particularly, for concrete preparation and unbound layers of road pavements. The results of the chemical properties attested that the C&DW aggregates constitute no environmental risk. It was concluded that recycled aggregates produced from C&DW have the potential to be used in many applications.

Keywords: recycled aggregate, sustainability, aggregate properties, European Standard Classification

Procedia PDF Downloads 670
412 Creep Behaviour of Asphalt Modified by Waste Polystyrene and Its Hybrids with Crumb Rubber and Low-Density Polyethylene

Authors: Soheil Heydari, Ailar Hajimohammadi, Nasser Khalili

Abstract:

Polystyrene, being made from a monomer called styrene, is a rigid and easy-to mould polymer that is widely used for many applications, from foam packaging to disposable containers. Considering that the degradation of waste polystyrene takes up to 500 years, there is an urgent need for a sustainable application for waste polystyrene. This study evaluates the application of waste polystyrene as an asphalt modifier. The inclusion of waste plastics in asphalt is either practised by the dry process or the wet process. In the dry process, plastics are added straight into the asphalt mixture and in the wet process, they are mixed and digested into bitumen. In this article, polystyrene was used as an asphalt modifier in a dry process. However, the mixing process is precisely designed to make sure that the polymer is melted and modified in the binder. It was expected that, due to the rigidity of polystyrene, it will have positive effects on the permanent deformation of the asphalt mixture. Therefore, different mixtures were manufactured with different contents of polystyrene and Marshall specimens were manufactured, and dynamic creep tests were conducted to evaluate the permanent deformation of the modification. This is a commonly repeated loading test conducted at different stress levels and temperatures. Loading cycles are applied to the AC specimen until failure occurs; with the amount of deformation constantly recorded the cumulative, permanent strain is determined and reported as a function of the number of cycles. Also, to our best knowledge, hybrid mixes of polystyrene with crumb rubber and low-density polyethylene were made and compared with a polystyrene-modified mixture. The test results of this study showed that the hybrid mix of polystyrene and low-density polyethylene has the highest resistance against permanent deformation. However, the polystyrene-modified mixture outperformed the hybrid mix of polystyrene and crumb rubber, and both demonstrated way lower permanent deformation than the unmodified specimen.

Keywords: permanent deformation, waste plastics, polystyrene, hybrid plastics, hybrid mix, hybrid modification, dry process

Procedia PDF Downloads 104
411 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 139
410 Use of Recycled PVB as a Protection against Carbonation

Authors: Michael Tupý, Vít Petránek

Abstract:

The paper is focused on testing of the poly(vinyl butyral) (PVB) layer which had the function of a CO2 insulating protection against concrete and mortar carbonation. The barrier efficiency of PVB was verified by the measurement of diffusion characteristics. Two different types of PVB were tested; original extruded PVB sheet and PVB sheet made from PVB dispersion which was obtained from recycled windshields. The work deals with the testing CO2 diffusion when polymer sheets were exposed to a CO2 atmosphere (10% v/v CO2) with 0% RH. The excellent barrier capability against CO2 permeability of original and also recycled types of PVB layers was observed. This application of PVB waste can bring advantageous use in civil engineering and significant environmental contribution.

Keywords: windshield, poly(vinyl butyral), mortar, diffusion, carbonatation, polymer waste

Procedia PDF Downloads 422
409 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer

Authors: Fouzieh Rouzmehr, Mehdi Mousavi

Abstract:

Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results.

Keywords: flexible pavement, asphalt, FEM, viscoelastic, elastic, ANSYS, modeling

Procedia PDF Downloads 129
408 Cost Effectiveness and Performance Study of Perpetual Pavement Using ABAQUS

Authors: Mansour Fakhri, Monire Zokaei

Abstract:

Where there are many demolitions on conventional asphalt pavements, heavy costs are paid to repair and reconstruct the pavement roads annually. Recently some research has been done in order to increase the pavement life. Perpetual pavement is regarded as one of them which can improve the pavement life and minimize the maintenance activity and cost. In this research, ABAQUS which is a finite element software is implemented for analyzing and simulation of perpetual pavement. Viscoelastic model of material is used and loading wheel is considered to be dynamic. Effect of different parameters on pavement function has been considered. Because of high primary cost these pavements are not widely used. In this regard, life cost analysis was also carried out to compare perpetual pavement to conventional asphalt concrete pavement. It was concluded that although the initial cost of perpetual pavement is higher than that of conventional asphalt pavement, life cycle cost analysis during 50 years of service life showed that the performance of this pavement is better and the whole life cost of that is less.

Keywords: ABAQUS, lifecycle cost analysis, mechanistic empirical, perpetual pavement

Procedia PDF Downloads 380
407 Pavement Quality Evaluation Using Intelligent Compaction Technology: Overview of Some Case Studies in Oklahoma

Authors: Sagar Ghos, Andrew E. Elaryan, Syed Ashik Ali, Musharraf Zaman, Mohammed Ashiqur Rahman

Abstract:

Achieving desired density during construction is an important indicator of pavement quality. Insufficient compaction often compromises pavement performance and service life. Intelligent compaction (IC) is an emerging technology for monitoring compaction quality during the construction of asphalt pavements. This paper aims to provide an overview of findings from four case studies in Oklahoma involving the compaction quality of asphalt pavements, namely SE 44th St project (Project 1) and EOC Turnpike project (Project 2), Highway 92 project (Project 3), and 108th Avenue project (Project 4). For this purpose, an IC technology, the intelligent compaction analyzer (ICA), developed at the University of Oklahoma, was used to evaluate compaction quality. Collected data include GPS locations, roller vibrations, roller speed, the direction of movement, and temperature of the asphalt mat. The collected data were analyzed using a widely used software, VETA. The average densities for Projects 1, 2, 3 and 4, were found as 89.8%, 91.50%, 90.7% and 87.5%, respectively. The maximum densities were found as 94.6%, 95.8%, 95.9%, and 89.7% for Projects 1, 2, 3, and 4, respectively. It was observed that the ICA estimated densities correlated well with the field core densities. The ICA results indicated that at least 90% of the asphalt mats were subjected to at least two roller passes. However, the number of passes required to achieve the desired density (94% to 97%) differed from project to project depending on the underlying layer. The results of these case studies show both opportunities and challenges in using IC for monitoring compaction quality during construction in real-time.

Keywords: asphalt pavement construction, density, intelligent compaction, intelligent compaction analyzer, intelligent compaction measure value

Procedia PDF Downloads 155
406 Using Recyclable Steel Material in Tall Buildings

Authors: O. Eren, L. Zakar

Abstract:

Recycling steel building components is key to the sustainability of a structure’s end-of-life, as it is the most economical solution. In this paper the effects of usage of recycled steel material in tall buildings aspects are investigated.

Keywords: building, recycled material, steel, structure

Procedia PDF Downloads 381
405 Moisture Impact on the Utilization of Recycled Concrete Fine Aggregate to Produce Mortar

Authors: Rahimullah Habibzai

Abstract:

To achieve a sustainable concrete industry, reduce exploitation of the natural aggregate resources, and mitigate waste concrete environmental burden, one way is to use recycled concrete aggregate. The utilization of low-quality fine aggregate inclusively recycled concrete sand that is produced from crushing waste concrete recently has become a popular and challenging topic among researchers nowadays. This study provides a scientific base for promoting the application of concrete waste as fine aggregate in producing concrete by conducting a comprehensive laboratory program. The mechanical properties of mortar made from recycled concrete fine aggregate (RCFA), that is produced by pulse power crushing concrete waste are satisfactory and capable of being utilized in the construction industry. A better treatment of RCFA particles and enhancing its quality will make it possible to be utilized in producing structural concrete. Pulse power discharge technology is proposed in this research to produce RCFA, which is a more effective and promising technique compared to other recycling methods to generate medium to high-quality recycled concrete fine aggregate with a reduced amount of powder, mitigate the environmental burden, and save more space.

Keywords: construction and demolition waste, concrete waste recycle fine aggregate, pulse power discharge

Procedia PDF Downloads 153
404 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks

Authors: Juan A. Ferriz-Papi, Simon Thomas

Abstract:

The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.

Keywords: aggregates, concrete, concrete block, construction and demolition waste, recycling

Procedia PDF Downloads 297
403 Evaluating the Use of Swedish by-Product Foundry Sand in Asphalt Mixtures

Authors: Dina Kuttah

Abstract:

It is well known that recycling of by-product materials saves natural resources, reduces by-product volumes, and reduces the need for virgin materials. The steel industry produces a myriad of metal components for industrial chains, which in turn generates mineral discarded sand molds. Although these sands are clean before their use, after casting, they may contain contaminants. Therefore, huge quantities of excess by-product foundry sand (BFS) end up occupying large volumes in landfills. In Sweden, approximately 200000 tonnes of excess BFS end up in landfills. The transportation and construction industries have the greatest potential for reuse by-products because they use vast quantities of earthen materials annually. Accordingly, experimental work has been undertaken to evaluate the possible use of two chosen BFS from two Swedish foundries in a conventional Swedish asphalt mixture. The experimental procedure of this research has focused on the dosage, environmental and technical properties of the same mixture type ABT 11 and the same bitumen (160/220) but at different replacement proportions of the conventional fine sand with the two BFS. The environmental requirements, in addition to the technical requirements, namely, void ratio, static indirect tensile strength ratio, and resilient modulus before and after moisture-induced sensitivity tests of the asphalt mixtures, have been investigated in the current study. The test results demonstrated that the BFS from both foundries can be incorporated in the selected asphalt mixture at specified replacement proportions of the conventional fine sand fraction 0-2 mm, as discussed in the paper.

Keywords: asphalt mixtures, by-product foundry sand, indirect tensile strength, moisture induced sensitivity tests, resilient modulus

Procedia PDF Downloads 134
402 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar

Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi

Abstract:

With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study introduces a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.

Keywords: structural integrity, highways, pavement evaluation, asphalt concrete pavement

Procedia PDF Downloads 67
401 Assessment of Physical and Mechanical Properties of Perlite Mortars with Recycled Cement

Authors: Saca Nastasia, Radu Lidia, Dobre Daniela, Calotă Razvan

Abstract:

In order to achieve the European Union's sustainable and circular economy goals, strategies for reducing raw material consumption, reusing waste, and lowering CO₂ emissions have been developed. In this study, expanded perlite mortars with recycled cement (RC) were obtained and characterized. The recycled cement was obtained from demolition concrete waste. The concrete waste was crushed in a jaw and grinded in a horizontal ball mill to reduce the material's average grain size. Finally, the fine particles were sieved through a 125 µm sieve. The recycled cement was prepared by heating demolition concrete waste at 550°C for 3 hours. At this temperature, the decarbonization does not occur. The utilization of recycled cement can minimize the negative environmental effects of demolished concrete landfills as well as the demand for natural resources used in cement manufacturing. Commercial cement CEM II/A-LL 42.5R was substituted by 10%, 20%, and 30% recycled cement. By substituting reference cement (CEM II/A-LL 42.5R) by RC, a decrease in cement aqueous suspension pH, electrical conductivity, and Ca²⁺ concentration was observed for all measurements (2 hours, 6 hours, 24 hours, 4 days, and 7 days). After 2 hours, pH value was 12.42 for reference and conductivity of 2220 µS/cm and decreased to 12.27, respectively 1570 µS/cm for 30% RC. The concentration of Ca²⁺ estimated by complexometric titration was 20% lower in suspension with 30% RC in comparison to reference for 2 hours. The difference significantly diminishes over time. The mortars have cement: expanded perlite volume ratio of 1:3 and consistency between 140 mm and 200 mm. The density of fresh mortar was about 1400 kg/m3. The density, flexural and compressive strengths, water absorption, and thermal conductivity of hardened mortars were tested. Due to its properties, expanded perlite mortar is a good thermal insulation material.

Keywords: concrete waste, expanded perlite, mortar, recycled cement, thermal conductivity, mechanical strength

Procedia PDF Downloads 87
400 Structural Performance Evaluation of Concrete Beams Reinforced with Recycled and Virgin Plastic Fibres

Authors: Vighnesh Daas, David B. Tann, Mahmood Datoo

Abstract:

The incorporation of recycled plastic fibres in concrete as reinforcement is a potential sustainable alternative for replacement of ordinary steel bars. It provides a scope for waste reduction and re-use of plastics in the construction industry on a large scale. Structural use of fibre reinforced concrete is limited to short span members and low reliability classes. In this study, recycled carpet fibres made of 95% polypropylene with length of 45mm were used for experimental investigations. The performance of recycled polypropylene fibres under structural loading has been compared with commercially available virgin fibres at low volume fractions of less than 1%. A series of 100 mm cubes and 125x200x2000 mm beams were used to conduct strength tests in bending and compression to measure the influence of type and volume of fibres on the structural behaviour of fibre reinforced concrete beams. The workability of the concrete mix decreased as a function of fibre content and resulted in a modification of the mix design. The beams failed in a pseudo-ductile manner with an enhanced bending capacity. The specimens showed significant improvement in the post-cracking behaviour and load carrying ability as compared to conventional reinforced concrete members. This was associated to the binding properties of the fibres in the concrete matrix. With the inclusion of fibres at low volumes of 0-0.5%, there was reduction in crack sizes and deflection. This study indicates that the inclusion of recycled polypropylene fibres at low volumes augments the structural behaviour of concrete as compared to conventional reinforced concrete as well as virgin fibre reinforced concrete.

Keywords: fibre reinforced concrete, polypropylene, recycled, strength

Procedia PDF Downloads 244
399 Concrete Performance Evaluation of Coarse Aggregate Replacement by Civil Construction Waste

Authors: Juliane P. De Oliveira, Carlos H. Dos Santos, Marcia Shoji, Maria E. C. Ferreira, Natalia U. Yamaguchi

Abstract:

The construction sector is considered a major generator of environmental impacts due to the high consumption of natural resources and waste generation. Thus, this article aims to evaluate the performance of a concrete produced by the partial and total replacement of natural coarse aggregate by recycled coarse aggregate, derived from the concrete residue of buildings and demolitions. The study was made by comparing the compressive strength and absorption of three different concrete traces, keeping the water/cement factor of 0.60 and changing only the proportions of recycled coarse aggregate between 0%, 50% and 100%. Traces 50% and 100% obtained good results by comparing the actual specific mass, because the material used is lighter to the natural coarse aggregate. It was concluded that the concrete produced with recycled aggregates, even with inferior results, can be used where it is not needed a structural function, giving an adequate destination to the construction and demolition waste and consequently reducing the extraction and consumption of natural resources.

Keywords: green concrete, recycled aggregate, recycling, sustainable development

Procedia PDF Downloads 150
398 Incorporation of Foundry Sand in Asphalt Pavement

Authors: L. P. Nascimento, M. Soares, N. Valério, A. Ribeiro, J. R. M. Oliveira, J. Araújo, C. Vilarinho, J. Carvalho

Abstract:

With the growing need to save natural resources and value waste that was previously worthless, waste recycling becomes imperative. Thus, with the techno-scientific growth and in the perspective of sustainability, it is observed that waste has the potential to replace significant percentages of materials considered “virgin”. An example is the replacement of crushed aggregates with foundry sand. In this work, a mix design study of two asphalt mixes, a base mix (AC 20) and a surface mix (AC14) was carried out to evaluate the maximum amount of foundry sand residue that could be used. Water sensitivity tests were performed to evaluate the mechanical behavior of these mixtures. For the superficial mixture with foundry sand (AC14FS), the maximum of sand used was 5%, with satisfactory results of sensitivity to water. In the base mixture with sand (AC20FS), the maximum of sand used was 12%, which had less satisfactory results. However, from an environmental point of view, the re-incorporation of this residue in the pavement is beneficial because it prevents it from being deposited in landfills.

Keywords: foundry sand, hot mix asphalt, industrial waste, waste valorization, sustainability

Procedia PDF Downloads 109