Search results for: quantum confinement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 727

Search results for: quantum confinement

607 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4

Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh

Abstract:

Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.

Keywords: ZnO, nanorods, hydrothermal, KMnO4

Procedia PDF Downloads 399
606 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm

Authors: Tomasz Robert Kuczerski

Abstract:

The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.

Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator

Procedia PDF Downloads 91
605 Disclosure Extension of Oil and Gas Reserve Quantum

Authors: Ali Alsawayeh, Ibrahim Eldanfour

Abstract:

This paper examines the extent of disclosure of oil and gas reserve quantum in annual reports of international oil and gas exploration and production companies, particularly companies in untested international markets, such as Canada, the UK and the US, and seeks to determine the underlying factors that affect the level of disclosure on oil reserve quantum. The study is concerned with the usefulness of disclosure of oil and gas reserves quantum to investors and other users. Given the primacy of the annual report (10-k) as a source of supplemental reserves data about the company and as the channel through which companies disseminate information about their performance, the annual reports for one year (2009) were the central focus of the study. This comparative study seeks to establish whether differences exist between the sample companies, based on new disclosure requirements by the Securities and Exchange Commission (SEC) in respect of reserves classification and definition. The extent of disclosure of reserve is provided and compared among the selected companies. Statistical analysis is performed to determine whether any differences exist in the extent of disclosure of reserve under the determinant variables. This study shows that some factors would affect the extent of disclosure of reserve quantum in the above-mentioned countries, namely: company’s size, leverage and quality of auditor. Companies that provide reserves quantum in detail appear to display higher size. The findings also show that the level of leverage has affected companies’ reserves quantum disclosure. Indeed, companies that provide detailed reserves quantum disclosure tend to employ a ‘high-quality auditor’. In addition, the study found significant independent variable such as Profit Sharing Contracts (PSC). This factor could explain variations in the level of disclosure of oil reserve quantum between the contractor and host governments. The implementation of SEC oil and gas reporting requirements do not enhance companies’ valuation because the new rules are based only on past and present reserves information (proven reserves); hence, future valuation of oil and gas companies is missing for the market.

Keywords: comparison, company characteristics, disclosure, reserve quantum, regulation

Procedia PDF Downloads 404
604 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: optimal control, stochastic systems, quantum systems, stabilization

Procedia PDF Downloads 458
603 Characteristics of Photoluminescence in Resonant Quasiperiodic Double-period Quantum Wells

Authors: C. H. Chang, R. Z. Qiu, C. W. Tsao, Y. H. Cheng, C. H. Chen, W. J. Hsueh

Abstract:

Characteristics of photoluminescence (PL) in a resonant quasi-periodic double-period quantum wells (DPQW) are demonstrated. The maximum PL intensity in the DPQW is remarkably greater than that in a traditional periodic QW (PQW) under the Bragg or anti-Bragg conditions. The optimal PL spectrum in the DPQW has an asymmetrical form instead of the symmetrical form in the PQW. Moreover, there are two large values of PL intensity in the DPQW, which also differs from the PQW.

Keywords: Photoluminescence, quantum wells, quasiperiodic structure

Procedia PDF Downloads 718
602 Free and Encapsulated (TiO2)2 Dimers into Carbon Nanotubes

Authors: S. Dargouthi, S. Boughdiri, B. Tangour

Abstract:

This work invoked two complementary parts. In the first, we performed a theoretical study of various dimers of molecular of titanium dioxide. Five structures were examined. Three among them, the (T), (C) and (T/P) isomers, may be considered as stable compounds because they represent absolute minima on their potential energy surfaces. (T) and (C) may coexist because they are separted by only 6.5 kcal mol-1 but (T/P) dimer is in a metastable state from an energetic point of view. Non bonded dimer (P) transforms into its homologue (O) which has been considered as transitory specie with low lifetime which evolves to (T) structure. In the second part, we highlight the possible stabilization of (T), (C) and (P) dimers by encapsulation in carbon nanotubes. This indicates the probable role that plays this transitory specie the polymerization process of molecular TiO2. Confinement is suitable to control the fast evolution process and could towards the synthesis of new titanium dioxide nanostructured materials. An alternative description of TiO2 polymorphs (Rutie, anatase et Brookite) is proposed from (T), (C) and (T/P) dimmers motifs.

Keywords: titanium dioxide, carbon nanotube, confinement. encapsulation, transitory specie

Procedia PDF Downloads 290
601 Biocompatibility and Sensing Ability of Highly Luminescent Synthesized Core-Shell Quantum Dots

Authors: Mohan Singh Mehata, R. K. Ratnesh

Abstract:

CdSe, CdSe/ZnS, and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm were developed by using chemical route and following successive ion layer adsorption and reaction (SILAR) methods. The prepared QDs have been examined by using X-ray diffraction, high-resolution electron microscopy and optical spectroscopy. The photoluminescence (PL) quantum yield (QY) of core-shell QDs increases with respect to the core, indicating that the radiative rate increases by the formation of shell around core, as evident by the measurement of PL lifetime. Further, the PL of bovine serum albumin is quenched strongly by the presence of core-shall QDs and follow the Stern-Volmer (S-V) relation, whereas the lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among all the QDs, the CdSe/ZnS QDs shows the least cytotoxicity hence most biocompatibility.

Keywords: biocompatibility, core-shell quantum dots, photoluminescence and lifetime, sensing ability

Procedia PDF Downloads 235
600 Two-Photon Fluorescence in N-Doped Graphene Quantum Dots

Authors: Chi Man Luk, Ming Kiu Tsang, Chi Fan Chan, Shu Ping Lau

Abstract:

Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing.

Keywords: graphene quantum dots, nitrogen doping, photoluminescence, two-photon fluorescence

Procedia PDF Downloads 631
599 Aerodynamics of Spherical Combat Platform Levitation

Authors: Aelina Franz

Abstract:

In recent years, the scientific community has witnessed a paradigm shift in the exploration of unconventional levitation methods, particularly in the domain of spherical combat platforms. This paper explores aerodynamics and levitational dynamics inherent in these spheres by examining interactions at the quantum level. Our research unravels the nuanced aerodynamic phenomena governing the levitation of spherical combat platforms. Through an analysis of the quantum fluid dynamics surrounding these spheres, we reveal the crucial interactions between air resistance, surface irregularities, and the quantum fluctuations that influence their levitational behavior. Our findings challenge conventional understanding, providing a perspective on the aerodynamic forces at play during the levitation of spherical combat platforms. Furthermore, we propose design modifications and control strategies informed by both classical aerodynamics and quantum information processing principles. These advancements not only enhance the stability and maneuverability of the combat platforms but also open new avenues for exploration in the interdisciplinary realm of engineering and quantum information sciences. This paper aims to contribute to levitation technologies and their applications in the field of spherical combat platforms. We anticipate that our work will stimulate further research to create a deeper understanding of aerodynamics and quantum phenomena in unconventional levitation systems.

Keywords: spherical combat platforms, levitation technologies, aerodynamics, maneuverable platforms

Procedia PDF Downloads 56
598 Berry Phase and Quantum Skyrmions: A Loop Tour in Physics

Authors: Sinuhé Perea Puente

Abstract:

In several physics systems the whole can be obtained as an exact copy of each of its parts, which facilitates the study of a complex system by looking carefully at its elements, separately. Reducionism offers simplified models which makes the problems easier, but “there’s plenty of room...at the mesoscopic scale”. Here we present a tour for two of its representants: Berry phase and skyrmions, studying some of its basic definitions and properties, and two cases in which both arise together, to finish constraining the scale for our mesoscopic system in the quest of quantum skyrmions, discovering which properties are conserved and which others may be destroyed.

Keywords: condensed mattter, quantum physics, skyrmions, topological defects

Procedia PDF Downloads 141
597 Characterization of InP Semiconductor Quantum Dot Laser Diode after Am-Be Neutron Irradiation

Authors: Abdulmalek Marwan Rajkhan, M. S. Al Ghamdi, Mohammed Damoum, Essam Banoqitah

Abstract:

This paper is about the Am-Be neutron source irradiation of the InP Quantum Dot Laser diode. A QD LD was irradiated for 24 hours and 48 hours. The laser underwent IV characterization experiments before and after the first and second irradiations. A computer simulation using GAMOS helped in analyzing the given results from IV curves. The results showed an improvement in the QD LD series resistance, current density, and overall ideality factor at all measured temperatures. This is explained by the activation of the QD LD Indium composition to Strontium, ionization of the compound QD LD materials, and the energy deposited to the QD LD.

Keywords: quantum dot laser diode irradiation, effect of radiation on QD LD, Am-Be irradiation effect on SC QD LD

Procedia PDF Downloads 60
596 Steady State Charge Transport in Quantum Dots: Nonequilibrium Green's Function (NEGF) vs. Single Electron Analysis

Authors: Mahesh Koti

Abstract:

In this paper, we present a quantum transport study of a quantum dot in steady state in the presence of static gate potential. We consider a quantum dot coupled to the two metallic leads. The quantum dot under study is modeled through Anderson Impurity Model (AIM) with hopping parameter modulated through voltage drop between leads and the central dot region. Based on the Landauer's formula derived from Nonequilibrium Green's Function and Single Electron Theory, the essential ingredients of transport properties are revealed. We show that the results out of two approaches closely agree with each other. We demonstrate that Landauer current response derived from single electron approach converges with non-zero interaction through gate potential whereas Landauer current response derived from Nonequilibrium Green's Function (NEGF) hits a pole.

Keywords: Anderson impurity model (AIM), nonequilibrium Green's function (NEGF), Landauer's formula, single electron analysis

Procedia PDF Downloads 470
595 Engineering a Band Gap Opening in Dirac Cones on Graphene/Tellurium Heterostructures

Authors: Beatriz Muñiz Cano, J. Ripoll Sau, D. Pacile, P. M. Sheverdyaeva, P. Moras, J. Camarero, R. Miranda, M. Garnica, M. A. Valbuena

Abstract:

Graphene, in its pristine state, is a semiconductor with a zero band gap and massless Dirac fermions carriers, which conducts electrons like a metal. Nevertheless, the absence of a bandgap makes it impossible to control the material’s electrons, something that is essential to perform on-off switching operations in transistors. Therefore, it is necessary to generate a finite gap in the energy dispersion at the Dirac point. Intense research has been developed to engineer band gaps while preserving the exceptional properties of graphene, and different strategies have been proposed, among them, quantum confinement of 1D nanoribbons or the introduction of super periodic potential in graphene. Besides, in the context of developing new 2D materials and Van der Waals heterostructures, with new exciting emerging properties, as 2D transition metal chalcogenides monolayers, it is fundamental to know any possible interaction between chalcogenide atoms and graphene-supporting substrates. In this work, we report on a combined Scanning Tunneling Microscopy (STM), Low Energy Electron Diffraction (LEED), and Angle-Resolved Photoemission Spectroscopy (ARPES) study on a new superstructure when Te is evaporated (and intercalated) onto graphene over Ir(111). This new superstructure leads to the electronic doping of the Dirac cone while the linear dispersion of massless Dirac fermions is preserved. Very interestingly, our ARPES measurements evidence a large band gap (~400 meV) at the Dirac point of graphene Dirac cones below but close to the Fermi level. We have also observed signatures of the Dirac point binding energy being tuned (upwards or downwards) as a function of Te coverage.

Keywords: angle resolved photoemission spectroscopy, ARPES, graphene, spintronics, spin-orbitronics, 2D materials, transition metal dichalcogenides, TMDCs, TMDs, LEED, STM, quantum materials

Procedia PDF Downloads 79
594 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 128
593 Quantum Fisher Information of Bound Entangled W-Like States

Authors: Fatih Ozaydin

Abstract:

Quantum Fisher information (QFI) is a multipartite entanglement witness and recently it has been studied extensively with separability and entanglement in the focus. On the other hand, bound entanglement is a special phenomena observed in mixed entangled states. In this work, we study the QFI of W states under a four-dimensional entanglement binding channel. Starting with initally pure W states of several qubits, we find how the QFI decreases as two qubits of the W state is subject to entanglement binding. We also show that as the size of the W state increases, the effect of entanglement binding is decreased.

Keywords: Quantum Fisher information, W states, bound entanglement, entanglement binding

Procedia PDF Downloads 481
592 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 225
591 Quantum Mechanics as A Limiting Case of Relativistic Mechanics

Authors: Ahmad Almajid

Abstract:

The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation.

Keywords: lorentz quantum factor, new, planck’s energy as a limiting case of einstein’s energy, real quantum mechanics, new equations for quantum mechanics

Procedia PDF Downloads 76
590 Confinement of Concrete Filled Steel Tubular Beams Using U-Links

Authors: Madiha Z. Ammari, Abdul Qader AlNajmi

Abstract:

A new system of U-links was used in this study to confine the concrete core in concrete-filled steel beams. This system aims to employ the separation expected between the steel tube and the concrete core in the compression side of the section in the plastic hinge zone. A total of six rectangular CFT beam specimens were tested under flexure using different D/t ratios and different diameters for the U-links to examine their effect on the flexural behavior of these beams. The ultimate flexural strength of the CFT beam specimens with U-links showed an increase of strength about 47% of the specimen with D/t ratio equals 37.5 above standard CFT beam specimen without U-links inside. State of concrete inside the tubes has shown no crushing of concrete when those beams were cut open at the location of the plastic hinge. Strain measurements revealed that the compressive strain of concrete was 5-6 times the concrete crushing strain.

Keywords: concrete-filled tubes, U-links, plated studies, beams, flexural strength, concrete, confinement

Procedia PDF Downloads 341
589 Isolated Iterating Fractal Independently Corresponds with Light and Foundational Quantum Problems

Authors: Blair D. Macdonald

Abstract:

After nearly one hundred years of its origin, foundational quantum mechanics remains one of the greatest unexplained mysteries in physicists today. Within this time, chaos theory and its geometry, the fractal, has developed. In this paper, the propagation behaviour with an iteration of a simple fractal, the Koch Snowflake, was described and analysed. From an arbitrary observation point within the fractal set, the fractal propagates forward by oscillation—the focus of this study and retrospectively behind by exponential growth from a point beginning. It propagates a potentially infinite exponential oscillating sinusoidal wave of discrete triangle bits sharing many characteristics of light and quantum entities. The model's wave speed is potentially constant, offering insights into the perception and a direction of time where, to an observer, when travelling at the frontier of propagation, time may slow to a stop. In isolation, the fractal is a superposition of component bits where position and scale present a problem of location. In reality, this problem is experienced within fractal landscapes or fields where 'position' is only 'known' by the addition of information or markers. The quantum' measurement problem', 'uncertainty principle,' 'entanglement,' and the classical-quantum interface are addressed; these are a problem of scale invariance associated with isolated fractality. Dual forward and retrospective perspectives of the fractal model offer the opportunity for unification between quantum mechanics and cosmological mathematics, observations, and conjectures. Quantum and cosmological problems may be different aspects of the one fractal geometry.

Keywords: measurement problem, observer, entanglement, unification

Procedia PDF Downloads 89
588 FPGA Implementation of the BB84 Protocol

Authors: Jaouadi Ikram, Machhout Mohsen

Abstract:

The development of a quantum key distribution (QKD) system on a field-programmable gate array (FPGA) platform is the subject of this paper. A quantum cryptographic protocol is designed based on the properties of quantum information and the characteristics of FPGAs. The proposed protocol performs key extraction, reconciliation, error correction, and privacy amplification tasks to generate a perfectly secret final key. We modeled the presence of the spy in our system with a strategy to reveal some of the exchanged information without being noticed. Using an FPGA card with a 100 MHz clock frequency, we have demonstrated the evolution of the error rate as well as the amounts of mutual information (between the two interlocutors and that of the spy) passing from one step to another in the key generation process.

Keywords: QKD, BB84, protocol, cryptography, FPGA, key, security, communication

Procedia PDF Downloads 182
587 Microwave Single Photon Source Using Landau-Zener Transitions

Authors: Siddhi Khaire, Samarth Hawaldar, Baladitya Suri

Abstract:

As efforts towards quantum communication advance, the need for single photon sources becomes imminent. Due to the extremely low energy of a single microwave photon, efforts to build single photon sources and detectors in the microwave range are relatively recent. We plan to use a Cooper Pair Box (CPB) that has a ‘sweet-spot’ where the two energy levels have minimal separation. Moreover, these qubits have fairly large anharmonicity making them close to ideal two-level systems. If the external gate voltage of these qubits is varied rapidly while passing through the sweet-spot, due to Landau-Zener effect, the qubit can be excited almost deterministically. The rapid change of the gate control voltage through the sweet spot induces a non-adiabatic population transfer from the ground to the excited state. The qubit eventually decays into the emission line emitting a single photon. The advantage of this setup is that the qubit can be excited without any coherent microwave excitation, thereby effectively increasing the usable source efficiency due to the absence of control pulse microwave photons. Since the probability of a Landau-Zener transition can be made almost close to unity by the appropriate design of parameters, this source behaves as an on-demand source of single microwave photons. The large anharmonicity of the CPB also ensures that only one excited state is involved in the transition and multiple photon output is highly improbable. Such a system has so far not been implemented and would find many applications in the areas of quantum optics, quantum computation as well as quantum communication.

Keywords: quantum computing, quantum communication, quantum optics, superconducting qubits, flux qubit, charge qubit, microwave single photon source, quantum information processing

Procedia PDF Downloads 97
586 Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties

Authors: Abdelkader Nouri, M’hamed Bouslama, Faouzi Saidi, Hassan Maaref, Michel Gendry

Abstract:

Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape.

Keywords: AFM, InAs QDs, PL, SSMBE

Procedia PDF Downloads 685
585 Breeding Performance and Egg Quality of Red Jungle Fowl (Gallus Gallus L.) Mated with Native Hens (Gallus galus domesticus) in Selected Areas of Leyte under Confinement System

Authors: Francisco F. Buctot Jr.

Abstract:

This study was conducted to assess the breeding performance and egg quality traits of Red Jungle Fowls in selected areas of Leyte mated to Native hens under confinement system. A total of six Red Jungle Fowl roosters, two native roosters and 16 native hens were randomly assigned to four treatments with eight replications; each composed of one rooster and two hens randomly laid out in a Randomized Complete Block Design set up. Result on egg weight showed highly significant difference at p<0.01 and revealed heaviest weight (39.0 g) and lightest weight (35.75 g) on Native x Native and Baybay RJF x Native, respectively. While comparable number of eggs per clutch, fertility and hatchability rates, yolk and albumen weights, shell weight, egg length and width, egg shape index and yolk color score were obtained.

Keywords: egg clutch, egg shape index, native chicken, hatchability rate

Procedia PDF Downloads 366
584 Characterization of InGaAsP/InP Quantum Well Lasers

Authors: K. Melouk, M. Dellakrachaï

Abstract:

Analytical formula for the optical gain based on a simple parabolic-band by introducing theoretical expressions for the quantized energy is presented. The model used in this treatment take into account the effects of intraband relaxation. It is shown, as a result, that the gain for the TE mode is larger than that for TM mode and the presence of acceptor impurity increase the peak gain.

Keywords: InGaAsP, laser, quantum well, semiconductor

Procedia PDF Downloads 373
583 Control of Asthma in Children with Asthma during the Containment Period following the Covid-19 Pandemic

Authors: Meryam Labyad, Karima Fakiri, Widad Lahmini, Ghizlane Draiss, Mohamed Bouskraoui, Nadia Ouzennou

Abstract:

Background: Asthma is the most common chronic disease in children, affecting nearly 235 million people worldwide (OMS). In Morocco, asthma is much more common in children than in adults; the prevalence rate in children between 13 and 14 years of age is 20%.1 This pathology is marked by high morbidity, a significant impact on the quality of life and development of children 2 This requires a rigorous management strategy in order to achieve clinical control and reduce any risk to the patient 3 A search for aggravating factors is mandatory if a child has difficulty maintaining good asthma control. The objective of the present study is to describe asthma control during this confinement period in children aged 4 to 11 years followed by a pneumo-paediatric consultation. For children whose asthma is not controlled, a search for associations with promoting factors and adherence to treatment is also among the objectives of the study. Knowing the level of asthma control and influencing factors is a therapeutic priority in order to reduce hospitalizations and emergency care use. Objective: To assess asthma control and determine the factors influencing asthma levels in children with asthma during confinement following the COVID 19 pandemic. Method: Prospective cross-sectional study by questionnaire and structured interview among 66 asthmatic children followed in pediatric pneumology consultation at the CHU MED VI of Marrakech from 13/06/2020 to 13/07/2020, asthma control was assessed by the Childhood Asthma Control Test (C-ACT). Results: 66 children and their parents were included (mean age is 7.5 years), asthma was associated with allergic rhinitis (13.5% of cases), conjunctivitis (9% of cases), eczema (12% of cases), occurrence of infection (10.5% of cases). The period of confinement was marked by a decrease in the number of asthma attacks translated by a decrease in the number of emergency room visits (7.5%) of these asthmatic children, control was well controlled in 71% of the children, this control was significantly associated with good adherence to treatment (p<0.001), no infection (p<0.001) and no conjunctivitis (p=002) or rhinitis (p<0.001). This improvement in asthma control during confinement can be explained by the measures taken in the Kingdom to prevent the spread of COVID 19 (school closures, reduction in industrial activity, fewer means of transport, etc.), leading to a decrease in children's exposure to triggers, which justifies the decrease in the number of children having had an infection, allergic rhinitis or conjunctivitis during this period. In addition, the close monitoring of parents resulted in better therapeutic adherence (42.4% were fully observant). Confinement was positively perceived by 68% of the parents; this perception is significantly associated with the level of asthma control (p<0.001). Conclusion: Maintaining good control can be achieved through improved therapeutic adherence and avoidance of triggers, both of which were achieved during the containment period following the VIDOC pandemic 19.

Keywords: Asthma, control , COVID-19 , children

Procedia PDF Downloads 184
582 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression

Authors: Siqi Lin, Yangang Zhao

Abstract:

Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.

Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency

Procedia PDF Downloads 422
581 Digital Material Characterization Using the Quantum Fourier Transform

Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel

Abstract:

The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.

Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises

Procedia PDF Downloads 75
580 Gravitational Frequency Shifts for Photons and Particles

Authors: Jing-Gang Xie

Abstract:

The research, in this case, considers the integration of the Quantum Field Theory and the General Relativity Theory. As two successful models in explaining behaviors of particles, they are incompatible since they work at different masses and scales of energy, with the evidence that regards the description of black holes and universe formation. It is so considering previous efforts in merging the two theories, including the likes of the String Theory, Quantum Gravity models, and others. In a bid to prove an actionable experiment, the paper’s approach starts with the derivations of the existing theories at present. It goes on to test the derivations by applying the same initial assumptions, coupled with several deviations. The resulting equations get similar results to those of classical Newton model, quantum mechanics, and general relativity as long as conditions are normal. However, outcomes are different when conditions are extreme, specifically with no breakdowns even for less than Schwarzschild radius, or at Planck length cases. Even so, it proves the possibilities of integrating the two theories.

Keywords: general relativity theory, particles, photons, Quantum Gravity Model, gravitational frequency shift

Procedia PDF Downloads 359
579 Quantum Mechanism Approach for Non-Ruin Probability and Comparison of Path Integral Method and Stochastic Simulations

Authors: Ahmet Kaya

Abstract:

Quantum mechanism is one of the most important approaches to calculating non-ruin probability. We apply standard Dirac notation to model given Hamiltonians. By using the traditional method and eigenvector basis, non-ruin probability is found for several examples. Also, non-ruin probability is calculated for two different Hamiltonian by using the tensor product. Finally, the path integral method is applied to the examples and comparison is made for stochastic simulations and path integral calculation.

Keywords: quantum physics, Hamiltonian system, path integral, tensor product, ruin probability

Procedia PDF Downloads 334
578 Agegraphic Dark Energy with GUP

Authors: H. R. Fazlollahi

Abstract:

Dark Energy origin is unknown and so describing this mysterious component in large scale structure needs to manipulate our theories in general relativity. Although in most models, dark energy arises from extra terms through modifying Einstein-Hilbert action, maybe its origin traces back to fundamental aspects of ground energy of space-time given in quantum mechanics. Hence, diluting space-time in general relativity with quantum mechanics properties leads to the Karolyhazy relation corresponding energy density of quantum fluctuations of space-time. Through generalized uncertainty principle and an eye to Karolyhazy approach in this study we extend energy density of quantum fluctuations of space-time. Also, the application of this idea is considered in late time evolution and we have shown how extra term in generalized uncertainty principle plays as a plausible interaction term role in suggested model.

Keywords: generalized uncertainty principle, karolyhazy approach, agegraphic dark energy, cosmology

Procedia PDF Downloads 71