Search results for: nuclear lattice
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1248

Search results for: nuclear lattice

1128 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 308
1127 Effects of Roughness Elements on Heat Transfer During Natural Convection

Authors: M. Yousaf, S. Usman

Abstract:

The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using a numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behavior was studied using a computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar natural convection in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to the maximum decrease in the heat transfer as 7% to 17% respectively compared to the smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms, and streamlines.

Keywords: natural convection, Rayleigh number, surface roughness, Nusselt number, Lattice Boltzmann method

Procedia PDF Downloads 540
1126 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary

Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet

Abstract:

The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.

Keywords: dry conservation, optimization, sizing, water station

Procedia PDF Downloads 262
1125 Seismic Analysis of Structurally Hybrid Wind Mill Tower

Authors: Atul K. Desai, Hemal J. Shah

Abstract:

The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.

Keywords: dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history

Procedia PDF Downloads 150
1124 Evaluated Nuclear Data Based Photon Induced Nuclear Reaction Model of GEANT4

Authors: Jae Won Shin

Abstract:

We develop an evaluated nuclear data based photonuclear reaction model of GEANT4 for a more accurate simulation of photon-induced neutron production. The evaluated photonuclear data libraries from the ENDF/B-VII.1 are taken as input. Incident photon energies up to 140 MeV which is the threshold energy for the pion production are considered. For checking the validity of the use of the data-based model, we calculate the photoneutron production cross-sections and yields and compared them with experimental data. The results obtained from the developed model are found to be in good agreement with the experimental data for (γ,xn) reactions.

Keywords: ENDF/B-VII.1, GEANT4, photoneutron, photonuclear reaction

Procedia PDF Downloads 275
1123 Finite Element Analysis of the Blanking and Stamping Processes of Nuclear Fuel Spacer Grids

Authors: Rafael Oliveira Santos, Luciano Pessanha Moreira, Marcelo Costa Cardoso

Abstract:

Spacer grid assembly supporting the nuclear fuel rods is an important concern in the design of structural components of a Pressurized Water Reactor (PWR). The spacer grid is composed by springs and dimples which are formed from a strip sheet by means of blanking and stamping processes. In this paper, the blanking process and tooling parameters are evaluated by means of a 2D plane-strain finite element model in order to evaluate the punch load and quality of the sheared edges of Inconel 718 strips used for nuclear spacer grids. A 3D finite element model is also proposed to predict the tooling loads resulting from the stamping process of a preformed Inconel 718 strip and to analyse the residual stress effects upon the spring and dimple design geometries of a nuclear spacer grid.

Keywords: blanking process, damage model, finite element modelling, inconel 718, spacer grids, stamping process

Procedia PDF Downloads 344
1122 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices

Authors: František Včelař, Zuzana Pátíková

Abstract:

Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.

Keywords: fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity

Procedia PDF Downloads 279
1121 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 107
1120 Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories

Authors: Mustafa Arda, Metin Aydogdu

Abstract:

Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics.

Keywords: torsional vibration, carbon nanotubes, nonlocal gradient theory, stress, strain

Procedia PDF Downloads 389
1119 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation

Procedia PDF Downloads 291
1118 Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree

Authors: Annunziata D’Orazio, Arash Karimipour, Iman Moradi

Abstract:

The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased.

Keywords: lattice boltzmann method, heat transfer, porous media, pore-scale, porosity, tortuosity

Procedia PDF Downloads 86
1117 Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet

Authors: Jan Schmidt, Pierre Köhring

Abstract:

Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material.

Keywords: analytical model, eddy current, losses, lattice network, permanent magnet

Procedia PDF Downloads 420
1116 The SBO/LOCA Analysis of TRACE/SNAP for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, H. T. Lin, Y. Chiang, H. C. Chen, C. Shih

Abstract:

Kuosheng Nuclear Power Plant (NPP) is located on the northern coast of Taiwan. Its nuclear steam supply system is a type of BWR/6 designed and built by General Electric on a twin unit concept. First, the methodology of Kuosheng NPP SPU (Stretch Power Uprate) safety analysis TRACE/SNAP model was developed in this research. Then, in order to estimate the safety of Kuosheng NPP under the more severe condition, the SBO (Station Blackout) + LOCA (Loss-of-Coolant Accident) transient analysis of Kuosheng NPP SPU TRACE/SNAP model was performed. Besides, the animation model of Kuosheng NPP was presented using the animation function of SNAP with TRACE/SNAP analysis results.

Keywords: TRACE, safety analysis, BWR/6, severe accident

Procedia PDF Downloads 714
1115 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source

Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka

Abstract:

After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.

Keywords: neutron source, neutron resonance, nuclear debris, time of flight

Procedia PDF Downloads 238
1114 Sanction Influences and Reconstruction Strategies for Iran Oil Market in Post-Sanctions

Authors: Mehrdad HassanZadeh Dugoori, Iman Mohammadali Tajrishi

Abstract:

Since Iran's nuclear program became public in 2002, the International Atomic Energy Agency (IAEA) has been unable to confirm Tehran's assertions that its nuclear activities are exclusively for peaceful purposes and that it has not sought to develop nuclear weapons. The United Nations Security Council has adopted six resolutions since 2006 requiring Iran to stop enriching uranium - which can be used for civilian purposes, but also to build nuclear bombs, which Iran never follow this strategy- and co-operate with the IAEA. Four resolutions have included progressively expansive sanctions to persuade Tehran to comply. The US and EU have imposed additional sanctions on Iranian oil exports and banks since 2012. In this article we reassess the sanction dimensions of Iran and the influences. Then according to the last agreement between P5+1 and Iran in 15 July 2015, we mention reconstruction strategies for oil export markets of Iran and the operational program for one million barrel of crude oil sales per day. These strategies are the conclusion of focus group and brain storming with Iran's oil and gas managers during content analysis.

Keywords: post-sanction, oil market, reconstruction, marketing, strategy

Procedia PDF Downloads 456
1113 Robotic Solution for Nuclear Facility Safety and Monitoring System

Authors: Altab Hossain, Shakerul Islam, Golamur R. Khan, Abu Zafar M. Salahuddin

Abstract:

An effective identification of breakdowns is of premier importance for the safe and reliable operation of Nuclear Power Plants (NPP) and its associated facilities. A great number of monitoring and diagnosis methodologies are applied and used worldwide in areas such as industry, automobiles, hospitals, and power plant to detect and reduce human disasters. The potential consequences of several hazardous activities may harm the society using nuclear and its associated facilities. Hence, one of the most popular and effective methods to ensure safety and monitor the entire nuclear facility and imply risk-free operation without human interference during the hazardous situation is using a robot. Therefore, in this study, an advanced autonomous robot has been designed and developed that can monitor several parameters in the NPP to ensure the safety and do some risky job in case of nuclear disaster. The robot consisted of autonomous track following unit, data processing and transmitting unit can follow a straight line and take turn as the bank greater than 90 degrees. The developed robot can analyze various parameters such as temperature, altitude, radiation, obstacle, humidity, detecting fire, measuring distance, ultrasonic scan and taking the heat of any particular object. It has an ability to broadcast live stream and can record the document to its own server memory. There is a separate control unit constructed with a baseboard which processes the recorded data and a transmitter which transmits the processed data. To make the robot user-friendly, the code is developed such a way that a user can control any of robotic arm as per types of work. To control at any place and without the track, there is an advanced code has been developed to take manual overwrite. Through this process, administrator who has logged in permission to Dynamic Host Client Protocol (DHCP) can make the handover of the control of the robot. In this process, this robot is provided maximum nuclear security from being hacked. Not only NPP, this robot can be used to maximize the real-time monitoring system of any nuclear facility as well as nuclear material transportation and decomposition system.

Keywords: nuclear power plant, radiation, dynamic host client protocol, nuclear security

Procedia PDF Downloads 209
1112 Pool Fire Tests of Dual Purpose Casks for Spent Nuclear Fuel

Authors: K. S. Bang, S. H. Yu, J. C. Lee, K. S. Seo, S. H. Lee

Abstract:

Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. Therefore, they satisfy the requirements prescribed in the Korea NSSC Act 2013-27, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package, and state that a Type B package must be able to withstand a temperature of 800°C for a period of 30 min. Therefore, a fire test was conducted using a one-sixth slice of a real cask to estimate the thermal integrity of the dual purpose cask at a temperature of 800°C. The neutron shield reached a maximum temperature of 183°C, which indicates that dual purpose cask was properly insulated from the heat of the flames. The temperature rise of the basket during the fire test was 29°C. Therefore, the integrity of a spent nuclear fuel is estimated to be maintained. The temperature was lower when a cooling pin was installed. The neutron shielding was therefore protected adequately by cooling pin. As a result, the thermal integrity of the dual purpose cask was maintained and the cask is judged to be sufficiently safe for temperatures under 800°C.

Keywords: dual purpose cask, spent nuclear fuel, pool fire test, integrity

Procedia PDF Downloads 461
1111 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 158
1110 Multiscale Simulation of Ink Seepage into Fibrous Structures through a Mesoscopic Variational Model

Authors: Athmane Bakhta, Sebastien Leclaire, David Vidal, Francois Bertrand, Mohamed Cheriet

Abstract:

This work presents a new three-dimensional variational model proposed for the simulation of ink seepage into paper sheets at the fiber level. The model, inspired by the Hising model, takes into account a finite volume of ink and describes the system state through gravity, cohesion, and adhesion force interactions. At the mesoscopic scale, the paper substrate is modeled using a discretized fiber structure generated using a numerical deposition procedure. A modified Monte Carlo method is introduced for the simulation of the ink dynamics. Besides, a multiphase lattice Boltzmann method is suggested to fine-tune the mesoscopic variational model parameters, and it is shown that the ink seepage behaviors predicted by the proposed model can resemble those predicted by a method relying on first principles.

Keywords: fibrous media, lattice Boltzmann, modelling and simulation, Monte Carlo, variational model

Procedia PDF Downloads 147
1109 Nuclear Energy: The Reorientations of the French Public Perception

Authors: Aurélia Jandot

Abstract:

With the oil and economic crises which began in the 1970’s, it has progressively appeared necessary to convince the French “general public“ that a use of new energy sources was essential. In this field, nuclear energy represented the future and concentrated lots of hopes. However, the discourse about nuclear energy has progressively seen negative arguments growing in the French media. The gradual changes in the perception of nuclear energy will be studied here through the arguments given in the main French weekly newsmagazines, which had a great impact on the readers, thus on the “general public“, from the 1970’s to the end of the 1980’s. Indeed, to understand better these changes will be taken into account the major international events, the reorientations of the French domestic policy, and the evolutions of the nuclear technology. As this represents a considerable amount of copies and thus of information, will be selected here the main articles which emphasize the “mental images“ aiming to direct the thought of the readers, and which have led the public awareness and acceptance to evolve. From the 1970’s to the end of the 1980’s, two dichotomous trends are in confrontation : one is promoting the perception of the nuclear energy, the other is discrediting it. Moreover, these two trends are organized in two axes. The first axis is about the engineerings evolutions, such as the main French media represent them, with its approximations, its exaggerations, its fictions sometimes. Is added the will to make accessible to the “general public“ some concepts which are quite difficult to understand for the largest number. The second axis rests on the way the major accidents of the period are approached, including those of Three Mile Island and Chernobyl. Thanks to these accidents and because of the international relations evolutions, the ecologist movements and their impacts have progressively grown, with evident consequences on the public perception of nuclear energy and on the way the successive governments can implement new power plants in France. Then, in both cases, over the period considered, the language has changed, as the perceptible objectives of the communication, allowing to discern the deepest intentions of the newsmagazines editing. This is all these changes that will be emphasized, over a period where the nuclear energy technology, to there a field for specialists, bearing mystery and secret, has become a social issue seemingly open to all.

Keywords: social issues, public acceptance, mediatization, discourse changes

Procedia PDF Downloads 291
1108 Nuclear Decay Data Evaluation for 217Po

Authors: S. S. Nafee, A. M. Al-Ramady, S. A. Shaheen

Abstract:

Evaluated nuclear decay data for the 217Po nuclide ispresented in the present work. These data include recommended values for the half-life T1/2, α-, β--, and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons has been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.

Keywords: nuclear decay data evaluation, mass evaluation, total converison coefficients, atomic mass evaluation

Procedia PDF Downloads 433
1107 The Role of Deformation Strain and Annealing Temperature on Grain Boundary Engineering and Texture Evolution of Haynes 230

Authors: Mohsen Sanayei, Jerzy Szpunar

Abstract:

The present study investigates the effects of deformation strain and annealing temperature on the formation of twin boundaries, deformation and recrystallization texture evolution and grain boundary networks and connectivity. The resulting microstructures were characterized using Electron Backscatter Diffraction (EBSD) and X-Ray Diffraction (XRD) both immediately following small amount of deformation and after short time annealing at high temperature to correlate the micro and macro texture evolution of these alloys. Furthermore, this study showed that the process of grain boundary engineering, consisting cycles of deformation and annealing, is found to substantially reduce the mass and size of random boundaries and increase the proportion of low Coincidence Site Lattice (CSL) grain boundaries.

Keywords: coincidence site lattice, grain boundary engineering, electron backscatter diffraction, texture, x-ray diffraction

Procedia PDF Downloads 311
1106 InP Nanocrystals Core and Surface Electronic Structure from Ab Initio Calculations

Authors: Hamad R. Jappor, Zeyad Adnan Saleh, Mudar A. Abdulsattar

Abstract:

The ab initio restricted Hartree-Fock method is used to simulate the electronic structure of indium phosphide (InP) nanocrystals (NCs) (216-738 atoms) with sizes ranging up to about 2.5 nm in diameter. The calculations are divided into two parts, surface, and core. The oxygenated (001)-(1×1) facet that expands with larger sizes of nanocrystals is investigated to determine the rule of the surface in nanocrystals electronic structure. Results show that lattice constant and ionicity of the core part show decreasing order as nanocrystals grow up in size. The smallest investigated nanocrystal is 1.6% larger in lattice constant and 131.05% larger in ionicity than the converged value of largest investigated nanocrystal. Increasing nanocrystals size also resulted in an increase of core cohesive energy (absolute value), increase of core energy gap, and increase of core valence. The surface states are found mostly non-degenerated because of the effect of surface discontinuity and oxygen atoms. Valence bandwidth is wider on the surface due to splitting and oxygen atoms. The method also shows fluctuations in the converged energy gap, valence bandwidth and cohesive energy of core part of nanocrystals duo to shape variation. The present work suggests the addition of ionicity and lattice constant to the quantities that are affected by quantum confinement phenomenon. The method of the present model has threefold results; it can be used to approach the electronic structure of crystals bulk, surface, and nanocrystals.

Keywords: InP, nanocrystals core, ionicity, Hartree-Fock method, large unit cell

Procedia PDF Downloads 399
1105 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials

Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi

Abstract:

Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.

Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance

Procedia PDF Downloads 367
1104 Structural and Electronic Properties of Cd0.75V0.25S Alloy

Authors: H. Baltache, M. El Amine. Monir, R. Khenata, D. Rached, T. Seddik

Abstract:

The first principles calculations based on the density functional theory (DFT) by using the full-potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) in order to investigate the structural and electronic properties of Cd1-xVxS alloy at x = 0.25 in zincblende structure. For the structural properties, we have calculated the equilibrium lattice parameters, such as lattice constant, bulk modulus and first pressure derivatives of the bulk modulus. From the electronic structure, we obtain that Cd0.75V0.25S alloy is nearly half-metallic. The analysis of the density of states (DOS) curves allow to evaluate the spin-exchange splitting energies Δx(d) and Δx(pd) that are generated by V-3d states, where the effective potential for spin-down case is attractive than for spin-up case. Calculations of the exchange constants N0α (valence band) and N0β (conduction band) are served to describe the magnetic behavior of the compounds.

Keywords: first-principles calculations, structural properties, electronic properties

Procedia PDF Downloads 365
1103 Quantitative Analysis of Orphan Nuclear Receptors in Insulin Resistant C2C12 Skeletal Muscle Cells

Authors: Masocorro Gawned, Stephen Myers, Guat Siew Chew

Abstract:

Nuclear Receptors (NR) are a super family of transcription factors that play a major role in lipid and glucose metabolism in skeletal muscle. Recently, pharmacological evidence supports the view that stimulation of nuclear receptors alleviates Type 2 Diabetes (T2D). The orphan nuclear receptors (ONR) are members of the nuclear receptor (NR) superfamily whose ligands and physiological functions remain unknown. To date, no systematic studies have been carried out to screen for ONRs expressed in insulin resistant (IR) skeletal muscle cells. Therefore, in this study, we have established a model for IR by treating C2C12 skeletal muscle cells with insulin (10nM) for 48 hours. Western Blot analysis of phosphorylated AKT confirmed IR. Real-time quantitative polymerase chain reaction (qPCR) results highlighted key ONRs including NUR77 (NR4A1), NURR1 (NR4A2) and NOR1 (NR4A3) which have been associated with fatty acid oxidation regulation and glucose homeostasis. Increased mRNA expression levels of estrogen-related receptors (ERRs), REV-ERBα, NUR77, NURR1, NOR1, in insulin resistant C2C12 skeletal muscle cells, indicated that these ONRs could potentially play a pivotal regulatory role of insulin secretion in lipid metabolism. Taken together, this study has successfully contributed to the complete analysis of ONR in IR, and has filled in an important void in the study and treatment of T2D.

Keywords: type 2 diabetes, orphan nuclear receptors, transcription receptors, quantitative mRNA expression

Procedia PDF Downloads 426
1102 EGFR Signal Induced-Nuclear Translocation of Beta-catenin and PKM2 Promotes HCC Malignancy and Indicates Early Recurrence After Curative Resection

Authors: Fangtian Fan, Zhaoguo Liu, Yin Lu

Abstract:

Early recurrence (ER) (< 1 year) after liver resection is one of the most important factors that impacts the prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms and predictive indexes of ER after curative resection remain largely unknown. The present study aimed to exploit the role of EGFR signaling in EMT and early recurrence of HCC after curative resection and elucidate the molecular mechanisms. Our results showed that nuclear beta-catenin / PKM2 was a independent predictor of early recurrence after curative resection in EGFR-overexpressed HCC. Mechanistic investigation indicated that nuclear accumulation of beta-catenin and PKM2 induced by EGFR signal promoted HCC cell invasion and proliferation, which were required for early recurrence of HCC. These effects were mediated by PI3K/AKT and ERK pathways rather than the canonical Wnt signaling. In conclusions, EGFR signal induced-nuclear translocation of beta-catenin and PKM2 promotes HCC malignancy and indicates early recurrence after curative resection.

Keywords: beta-catenin, early recurrence, hepatocellular carcinoma, malignancy, PKM2

Procedia PDF Downloads 357
1101 Fast Robust Switching Control Scheme for PWR-Type Nuclear Power Plants

Authors: Piyush V. Surjagade, Jiamei Deng, Paul Doney, S. R. Shimjith, A. John Arul

Abstract:

In sophisticated and complex systems such as nuclear power plants, maintaining the system's stability in the presence of uncertainties and disturbances and obtaining a fast dynamic response are the most challenging problems. Thus, to ensure the satisfactory and safe operation of nuclear power plants, this work proposes a new fast, robust optimal switching control strategy for pressurized water reactor-type nuclear power plants. The proposed control strategy guarantees a substantial degree of robustness, fast dynamic response over the entire operational envelope, and optimal performance during the nominal operation of the plant. To improve the robustness, obtain a fast dynamic response, and make the system optimal, a bank of controllers is designed. Various controllers, like a baseline proportional-integral-derivative controller, an optimal linear quadratic Gaussian controller, and a robust adaptive L1 controller, are designed to perform distinct tasks in a specific situation. At any instant of time, the most suitable controller from the bank of controllers is selected using the switching logic unit that designates the controller by monitoring the health of the nuclear power plant or transients. The proposed switching control strategy optimizes the overall performance and increases operational safety and efficiency. Simulation studies have been performed considering various uncertainties and disturbances that demonstrate the applicability and effectiveness of the proposed switching control strategy over some conventional control techniques.

Keywords: switching control, robust control, optimal control, nuclear power control

Procedia PDF Downloads 134
1100 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering

Authors: Emre Kara, Ali Kurşun, Halil Aykul

Abstract:

The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.

Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application

Procedia PDF Downloads 340
1099 Investigating the Influence of Potassium Ion Doping on Lithium-Ion Battery Performance

Authors: Liyew Yizengaw Yitayih

Abstract:

This nanotechnology study focuses on how potassium ions (K+) affect lithium-ion (Li-ion) battery performance. By adding potassium ions (K+) to the lithium tin oxide (LiSnO) anode and employing styrene-butadiene rubber (SBR) as a binder, the doping of K+ was specifically studied. The methods employed in this study include computer modeling and simulation, material fabrication, and electrochemical characterization. The potassium ions (Li+) were successfully doped into the LiSnO lattice during charge/discharge cycles, which increased the lithium-ion diffusivity and electrical conductivity within the anode. However, it was found that internal doping of potassium ions (K+) into the LiSnO lattice occurred at high potassium ion concentrations (>16.6%), which hampered lithium ion transfer because of repulsion and physical blockage. The electrochemical efficiency of lithium-ion batteries was improved by this comprehensive study's presentation of potassium ions' (K+) potential advantages when present in the appropriate concentrations in electrode materials.

Keywords: lithium-ion battery, LiSnO anode, potassium doping, lithium-ion diffusivity, electronic conductivity

Procedia PDF Downloads 65