Search results for: modified method of pin-in-plaster
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20662

Search results for: modified method of pin-in-plaster

20542 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm

Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj

Abstract:

In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.

Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation

Procedia PDF Downloads 434
20541 Quantitative Analysis of Caffeine in Pharmaceutical Formulations Using a Cost-Effective Electrochemical Sensor

Authors: Y. T. Gebreslassie, Abrha Tadesse, R. C. Saini, Rishi Pal

Abstract:

Caffeine, known chemically as 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, is a naturally occurring alkaloid classified as an N-methyl derivative of xanthine. Given its widespread use in coffee and other caffeine-containing products, it is the most commonly consumed psychoactive substance in everyday human life. This research aimed to develop a cost-effective, sensitive, and easily manufacturable sensor for the detection of caffeine. Antraquinone-modified carbon paste electrode (AQMCPE) was fabricated, and the electrochemical behavior of caffeine on this electrode was investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in a solution of 0.1M perchloric acid at pH 0.56. The modified electrode displayed enhanced electrocatalytic activity towards caffeine oxidation, exhibiting a two-fold increase in peak current and an 82 mV shift of the peak potential in the negative direction compared to an unmodified carbon paste electrode (UMCPE). Exploiting the electrocatalytic properties of the modified electrode, SWV was employed for the quantitative determination of caffeine. Under optimized experimental conditions, a linear relationship between peak current and concentration was observed within the range of 2.0 x 10⁻⁶ to 1.0× 10⁻⁴ M, with a correlation coefficient of 0.998 and a detection limit of 1.47× 10⁻⁷ M (signal-to-noise ratio = 3). Finally, the proposed method was successfully applied to the quantitative analysis of caffeine in pharmaceutical formulations, yielding recovery percentages ranging from 95.27% to 106.75%.

Keywords: antraquinone-modified carbon paste electrode, caffeine, detection, electrochemical sensor, quantitative analysis

Procedia PDF Downloads 67
20540 Synthesis and Characterization of Iron Modified Geopolymer and Its Resistance against Chloride and Sulphate

Authors: Noor-ul-Amin, Lubna Nawab, Sabiha Sultana

Abstract:

Geopolymer with different silica to alumina ratio with iron have been synthesized using sodium silicate, aluminum, and iron salts as a source of silica, alumina and iron source, and sodium/potassium hydroxide as an alkaline medium. The iron source will be taken from iron (III) salts and laterite clay samples. Laterite has been used as a natural source of iron in modified geopolymer. The synthesized iron modified geopolymer was submitted to the different aggressive environment, including chloride and sulphate solutions in different concentration. Different experimental techniques, including XRF, XRD, and FTIR, were used to study the bonding nature and effect of aggressive environment on geopolymer. The major phases formed during geopolymerization are sodalite (Na₄Al₃Si₃O₁₂Cl), albite (NaAlSi₃O₈), hematite (Fe₂O₃), and chabazite as confirmed from the XRD results. The resulting geopolymer showed greater resistance to sulphate and chloride as compared to the normal geopolymer.

Keywords: modified geopolymer, laterite, chloride, sulphate

Procedia PDF Downloads 156
20539 Cloning, Expression and N-Terminal Pegylation of Human Interferon Alpha-2b Analogs and Their Cytotoxic Evaluation against Cancer Cell Lines

Authors: Syeda Kiran Shahzadi, Nasir Mahmood, Muhammad Abdul Qadir

Abstract:

In the current research, three recombinant human interferon alpha-2b proteins (two modified and one normal form) were produced and Pegylated with an aim to produce more effective drugs against viral infections and cancers. The modified recombinant human interferon alpha-2b proteins were produced by site-directed modifications of interferon alpha 2b gene, targeting the amino acids at positions ‘R23’ and ‘H34’. The resulting chemically modified and unmodified forms of human interferon alpha 2b were conjugated with methoxy-polyethylene glycol propanealdehyde (400 KDa) and methoxy-polyethylene glycol succinimidyl succinate (400 KDa). Pegylation of normal and modified forms of Interferon alpha-2b prolong their release time and enhance their efficacy. The conjugation of PEG with modified and unmodified human interferon alpha 2b protein drugs was also characterized with 1H-NMR, HPLC, and SDS-PAGE. Antiproliferative assays of modified and unmodified forms of drugs were performed in cell based bioassays using MDBK cell lines. The results indicated that experimentally produced recombinant human interferon alpha-2b proteins were biologically active and resulted in significant inhibition of cell growth.

Keywords: protein refolding, antiproliferative activities, biomedical applications, human interferon alpha-2b, pegylation, mPEG-propionaldehyde, site directed mutagenesis, E. coli expression

Procedia PDF Downloads 177
20538 Development of Soil Test Kits to Determine Organic Matter Available Phosphorus and Exchangeable Potassium in Thailand

Authors: Charirat Kusonwiriyawong, Supha Photichan, Wannarut Chutibutr

Abstract:

Soil test kits for rapid analysis of the organic matter, available phosphorus and exchangeable potassium were developed to drive a low-cost field testing kit to farmers. The objective was to provide a decision tool for improving soil fertility. One aspect of soil test kit development was ease of use which is a time requirement for completing organic matter, available phosphorus and exchangeable potassium test in one soil sample. This testing kit required only two extractions and utilized no filtration consuming approximately 15 minutes per sample. Organic matter was principally created by oxidizing carbon KMnO₄ using the standard color chart. In addition, modified single extractant (Mehlich I) was applied to extract available phosphorus and exchangeable potassium. Molybdenum blue method and turbidimetric method using standard color chart were adapted to analyze available phosphorus and exchangeable potassium, respectively. Modified single extractant using in soil test kits were highly significant matching with analytical laboratory results (r=0.959** and 0.945** for available phosphorus and exchangeable potassium, respectively). Linear regressions were statistically calculated between modified single extractant and standard laboratory analysis (y=0.9581x-12.973 for available phosphorus and y=0.5372x+15.283 for exchangeable potassium, respectively). These equations were calibrated to formulate a fertilizer rate recommendation for specific corps. To validate quality, soil test kits were distributed to farmers and extension workers. We found that the accuracy of soil test kits were 71.0%, 63.9% and 65.5% for organic matter, available phosphorus, and exchangeable potassium, respectively. The quantitative survey was also conducted in order to assess their satisfaction with soil test kits. The survey showed that more than 85% of respondents said these testing kits were more convenient, economical and reliable than the other commercial soil test kits. Based upon the finding of this study, soil test kits can be another alternative for providing soil analysis and fertility recommendations when a soil testing laboratory is not available.

Keywords: available phosphorus, exchangeable potassium, modified single extractant, organic matter, soil test kits

Procedia PDF Downloads 148
20537 Perception Differences in Children Learning to Golf with Traditional versus Modified (Scaled) Equipment

Authors: Lindsey D. Sams, Dean R. Gorman, Cathy D. Lirgg, Steve W. Dittmore, Jack C. Kern

Abstract:

Golf is a lifetime sport that provides numerous physical and psychological benefits. The game has struggled with attrition and retention within minority groups and this has exposed the lack of a modified introduction to the game that is uniformly accessible and developmentally appropriate. Factors that have been related to sport participatory behaviors include perceived competence, enjoyment and intention. The purpose of this study was to examine self-reported perception differences in competence and enjoyment between learners using modified and traditional equipment as well as the potential effects these factors could have on intent for future participation. For this study, SNAG Golf was chosen to serve as the scaled equipment used by the modified equipment group. The participants in this study were 99 children (24 traditional equipment users/ 75 modified equipment users) located across the U.S. with ages ranging from 7 to 12 years (2nd-5th grade). Utilizing a convenience sampling method, data was obtained on a voluntary basis through surveys measuring children’s golf participation and self-perceptions concerning perceived competence, enjoyment and intention to continue participation. The scales used for perceived competence and enjoyment included Susan Harter’s Self-Perception Profile for Children (SPPC) along with the Physical Activity Enjoyment Scale (PACES). Analysis revealed no significant differences for enjoyment, perceived competence or intention between children learning with traditional golf equipment and modified golf equipment. This was true even though traditional equipment users reported significantly higher experience levels than that of modified users. Intention was regressed on the enjoyment and perceived competence variables. Congruent with current literature, enjoyment was a strong predictor of intention to continue participation, for both groups. Modified equipment users demonstrated significantly lower experience levels but reported similar levels of competence, enjoyment and intent to continue participation as reported by the more experienced, and potentially more skilled, traditional users. The ability to immediately generate these positive affects suggests the potential adoption of a more effective way to learn golf and a method that is conducive to participatory behaviors related to attrition and retention. These implications in turn, highlight an equipment candidate ideal for inception into physical education programs where new learners are introduced to various sports in safe and developmentally appropriate environments. A major goal of this study was to provide foundational research that instigates the further examination of golf’s introductory teaching methodologies, as there is a lack of its presence in current literature. Future research recommendations range from improvements in the current research design to expansive approaches related to the topic, such as progressive skill development, knowledge of the game’s tactical and strategic concepts, playing ability and teaching effectiveness when utilizing modified versus traditional equipment.

Keywords: adaptive sports, enjoyment, golf participation, modified equipment, perceived competence, SNAG golf

Procedia PDF Downloads 341
20536 Development of Ecofriendly Ionic Liquid Modified Reverse Phase Liquid Chromatography Method for Simultaneous Determination of Anti-Hyperlipidemic Drugs

Authors: Hassan M. Albishri, Fatimah Al-Shehri, Deia Abd El-Hady

Abstract:

Among the analytical techniques, reverse phase liquid chromatography (RPLC) is currently used in pharmaceutical industry. Ecofriendly analytical chemistry offers the advantages of decreasing the environmental impact with the advantage of increasing operator safety which constituted a topic of industrial interest. Recently, ionic liquids have been successfully used to reduce or eliminate the conventional organic toxic solvents. In the current work, a simple and ecofriendly ionic liquid modified RPLC (IL-RPLC) method has been firstly developed and compared with RPLC under acidic and neutral mobile phase conditions for simultaneous determination of atorvastatin-calcium, rosuvastatin and simvastatin. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by mixing ILs with ethanol as a mobile phase under neutral conditions at 1 mL/min flow rate on C18 column. The developed IL-RPLC method has been validated for the quantitative determination of drugs in pharmaceutical formulations. The method showed excellent linearity for analytes in a wide range of concentrations with acceptable precise and accurate data. The current IL-RPLC technique could have vast applications particularly under neutral conditions for simple and greener (bio)analytical applications of pharmaceuticals.

Keywords: ionic liquid, RPLC, anti-hyperlipidemic drugs, ecofriendly

Procedia PDF Downloads 257
20535 A Modified QuEChERS Method Using Activated Carbon Fibers as r-DSPE Sorbent for Sample Cleanup: Application to Pesticides Residues Analysis in Food Commodities Using GC-MS/MS

Authors: Anshuman Srivastava, Shiv Singh, Sheelendra Pratap Singh

Abstract:

A simple, sensitive and effective gas chromatography tandem mass spectrometry (GC-MS/MS) method was developed for simultaneous analysis of multi pesticide residues (organophosphate, organochlorines, synthetic pyrethroids and herbicides) in food commodities using phenolic resin based activated carbon fibers (ACFs) as reversed-dispersive solid phase extraction (r-DSPE) sorbent in modified QuEChERS (Quick Easy Cheap Effective Rugged Safe) method. The acetonitrile-based QuEChERS technique was used for the extraction of the analytes from food matrices followed by sample cleanup with ACFs instead of traditionally used primary secondary amine (PSA). Different physico-chemical characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and Brunauer-Emmet-Teller surface area analysis were employed to investigate the engineering and structural properties of ACFs. The recovery of pesticides and herbicides was tested at concentration levels of 0.02 and 0.2 mg/kg in different commodities such as cauliflower, cucumber, banana, apple, wheat and black gram. The recoveries of all twenty-six pesticides and herbicides were found in acceptable limit (70-120%) according to SANCO guideline with relative standard deviation value < 15%. The limit of detection and limit of quantification of the method was in the range of 0.38-3.69 ng/mL and 1.26 -12.19 ng/mL, respectively. In traditional QuEChERS method, PSA used as r-DSPE sorbent plays a vital role in sample clean-up process and demonstrates good recoveries for multiclass pesticides. This study reports that ACFs are better in terms of removal of co-extractives in comparison of PSA without compromising the recoveries of multi pesticides from food matrices. Further, ACF replaces the need of charcoal in addition to the PSA from traditional QuEChERS method which is used to remove pigments. The developed method will be cost effective because the ACFs are significantly cheaper than the PSA. So the proposed modified QuEChERS method is more robust, effective and has better sample cleanup efficiency for multiclass multi pesticide residues analysis in different food matrices such as vegetables, grains and fruits.

Keywords: QuEChERS, activated carbon fibers, primary secondary amine, pesticides, sample preparation, carbon nanomaterials

Procedia PDF Downloads 275
20534 Comparative Studies of Modified Clay/Polyaniline Nanocomposites

Authors: Fatima Zohra Zeggai, Benjamin Carbonnier, Aïcha Hachemaoui, Ahmed Yahiaoui, Samia Mahouche-Chergui, Zakaria Salmi

Abstract:

A series of polyaniline (PANI)/modified Montmorillonite (MMT) Clay nanocomposite materials have been successfully prepared by In-Situ polymerization in the presence of modified MMT-Clay or Diazonium-MMT-Clay. The obtained nanocomposites were characterized and compared by various physicochemical techniques. The presence of physicochemical interaction, probably hydrogen bonding, between clay and polyaniline, which was confirmed by FTIR, UV-Vis Spectroscopy. The electrical conductivity of neat PANI and a series of the obtained nanocomposites were also studied by cyclic voltammograms.

Keywords: polyaniline, clay, nanocomposites, in-situ polymerization, polymers conductors, diazonium salt

Procedia PDF Downloads 474
20533 Fe-Doped Graphene Nanoparticles for Gas Sensing Applications

Authors: Shivani A. Singh, Pravin S. More

Abstract:

In the present inspection, we indicate the falsification of Fe-doped graphene nanoparticles by modified Hummers method. Structural and physiochemical properties of the resulting pallets were explored with the help of ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), Photoluminescence spectroscopy (PL) for graphene sample exhibits absorption peaks ~248nm. Pure graphene shows PL peak at 348 nm. After doping of Fe with graphene the PL peak shifted from 348 nm to 332 nm. The oxidation degree, i.e. the relative amount of oxygen functional groups was estimated from the relative intensities of the oxygen related bands (ORB) in the FTIR measurements. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.

Keywords: chemical doping, graphene, gas sensing, sensing

Procedia PDF Downloads 218
20532 Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

Authors: Meareg Amare, Senait Aklog

Abstract:

Lignin film was deposited at the surface of the glassy carbon electrode potential-statically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at the modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10⁻⁶ to 100 × 10⁻⁶ mol L⁻¹ with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10⁻⁷ mol L⁻¹, respectively, supplemented by recovery results of 93.79–102.17%, validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected, confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

Keywords: electrochemical, lignin, caffeine, electrode

Procedia PDF Downloads 119
20531 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 462
20530 A New Reliability Allocation Method Based on Fuzzy Numbers

Authors: Peng Li, Chuanri Li, Tao Li

Abstract:

Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.

Keywords: reliability allocation, fuzzy arithmetic, allocation weight, linear programming

Procedia PDF Downloads 344
20529 An Improved Amplified Sway Method for Semi-Rigidly Jointed Sway Frames

Authors: Abdul Hakim Chikho

Abstract:

A simple method of calculating satisfactory of the effect of instability on the distribution of in-plane bending moments in unbraced semi-rigidly multistory steel framed structures is presented in this paper. This method, which is a modified form of the current amplified sway method of BS5950: part1:2000, uses an approximate load factor at elastic instability in each storey of a frame which in turn dependent up on the axial loads acting in the columns. The calculated factors are then used to represent the geometrical deformations due to the presence of axial loads, acting in that storey. Only a first order elastic analysis is required to accomplish the calculation. Comparison of the prediction of the proposed method and the current BS5950 amplified sway method with an accurate second order elastic computation shows that the proposed method leads to predictions which are markedly more accurate than the current approach of BS5950.

Keywords: improved amplified sway method, steel frames, semi-rigid connections, secondary effects

Procedia PDF Downloads 87
20528 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks

Authors: Hyunsun Lee, Yi Zhu

Abstract:

Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.

Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles

Procedia PDF Downloads 125
20527 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors

Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber

Abstract:

The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.

Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode

Procedia PDF Downloads 469
20526 Chemical Modification of Biosorbent for Prconcentation of Cadmium in Water Sample

Authors: Homayon Ahmad Panahi, Niusha Mohseni Darabi, Elham Moniri

Abstract:

A new biosorbent is prepared by coupling a cibacron blue to yeast cells. The modified yeast cells with cibacron blue has been characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis and applied for the preconcentration and solid phase extraction of trace cadmium ion from water samples. The optimum pH value for sorption of the cadmium ions by yeast cells- cibacron blue was 5.5. The sorption capacity of modified biosorbent was 45 mg. g−1. A recovery of 98.2% was obtained for Cd(II) when eluted with 0.5 M nitric acid. The method was applied for Cd(II) preconcentration and determination in sea water sample.

Keywords: solid phase extraction, yeast cells, Nickl, isotherm study

Procedia PDF Downloads 264
20525 Physical, Morphological, and Rheological Properties of Polypropylene Modified Bitumen

Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili

Abstract:

The common method to improve the performance of asphalt binders is through modification. The utilization of recycled plastics for asphalt modification has been the subject of research studies due to their environmental and economic benefits over using commercial polymers. Polypropylene (PP) is one of the most available recycled plastics in Australia. Unlike other plastics, its contamination with other plastics during the recycling process is negligible. Therefore, the quality of recycled plastic is high, which makes it a good candidate for road construction applications. To assess its effectiveness for bitumen modification, three different grades of PP were selected. The PP grades were compared for blendability with bitumen, and the best suitable grade was chosen for further studies. The PP-modified bitumen and the base bitumen were then compared through physical and rheological properties. The stability of the PP-modified bitumen at elevated temperatures was measured, and the morphology of the samples before and after the storage stability was characterized by fluorescent microscopy. The results showed that PP had a significant influence on reducing the penetration and increasing the viscosity and the rutting resistance of the virgin bitumen. Storage stability test results indicated that the difference between the softening point of the top and bottom section of the tube sample is below the defined limit, which means the PP-modified bitumen is storage stable. However, the fluorescence microscopy results showed that the distribution of the PP particles in the bitumen matrix in the top and bottom sections of the tube are significantly different, which is an indicator of poor storage stability.

Keywords: polypropylene, waste plastic, bitumen, road pavements, storage stability, fluorescent microscopy, morphology

Procedia PDF Downloads 79
20524 Effect of Modifiers (Sr/Sb) and Heat Treatment on the Microstructures and Wear Properties of Al-11Si-3Cu-0.5Mg Alloys

Authors: Sheng-Long Lee, Tse-An Pan

Abstract:

In this study, an optical microscope (OM), electron microscope (SEM), electrical conductivity meter (% IACS), hardness test, and wear test were subjected to analyze the microstructure of the wrought Al-11Si-3Cu-0.5Mg alloys. The effect of eutectic silicon morphology and alloy hardness on wear properties was investigated. The results showed that in the cast state, the morphology of eutectic silicon modified by strontium and antimony is lamellar and finer fibrous structure. After homogenization, the eutectic Si modified by Sr coarsened, and the eutectic Si modified by Sb refined due to fragmentation. The addition of modifiers, hot rolling, and solution aging treatment can control eutectic silicon morphology and hardness. The finer eutectic silicon and higher hardness have better wear resistance. During the wearing process, a protective oxide layer, also known as Mechanical Mixed Layer (MML), is formed on the surface of the alloy. The MML has higher stability and cracking resistance in Sr-modified alloys than in Sb-modified alloys. The study found that the wearing behavior of Al-11Si-3Cu-0.5Mg alloy was enhanced by the combination of adding Sr with lower solution time and T6 peak aging.

Keywords: Al-Si-Cu-Mg alloy, eutectic silicon, heat treatment, wear property

Procedia PDF Downloads 79
20523 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method

Procedia PDF Downloads 484
20522 Laboratory Evaluation of Gilsonite Modified Bituminous Mixes

Authors: R. Vishnu, K. S. Reddy, Amrendra Kumar

Abstract:

The present guideline for the construction of flexible pavement in India, IRC 37: 2012 recommends to use viscous grade VG 40 bitumen in both wearing and binder bituminous layers. However, most of the bitumen production plants in India are unable to produce the air-blown VG40 grade bitumen. This requires plant’s air-blowing technique modification, and often the manufactures finds it as uneconomical. In this context, stiffer grade bitumen can be produced if bitumen is modified. Gilsonite, which is naturally occurring asphalt have been found to be used for increasing the stiffness of binders. The present study evaluates the physical, rheological characteristics of Gilsonite modified binders and the performance characteristics of these binders when used in the mix.

Keywords: bitumen, gilsonite, stiffness, laboratory evaluation

Procedia PDF Downloads 465
20521 A Review on Higher-Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques

Authors: Maryam Khazaei Pool, Lori Lewis

Abstract:

This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method, Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper, we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions, including Burgers equation, spline functions, and B-spline functions, are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided, and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.

Keywords: Burgers’ equation, Septic B-spline, modified cubic B-spline differential quadrature method, exponential cubic B-spline technique, B-spline Galerkin method, quintic B-spline Galerkin method

Procedia PDF Downloads 127
20520 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 99
20519 Experimental Investigations of a Modified Taylor-Couette Flow

Authors: Ahmed Esmael, Ali El Shrif

Abstract:

In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow.

Keywords: hydrodynamic instability, Modified Taylor-Couette Flow, turbulence, Taylor vortices

Procedia PDF Downloads 433
20518 Application of the Extended Kantorovich Method to Size-Dependent Vibrational Analysis of Fully Clamped Rectangular Micro-Plates

Authors: Amir R. Askari, Masoud Tahani

Abstract:

The objective of the present paper is to investigate the effect of size on the vibrational behavior of fully clamped rectangular micro-plates based on the modified couple stress theory (MCST). To this end, a size-dependent Kirchhoff plate model is considered and the equation of motion which accounts for the effect of residual and couple stress components is derived using the Hamilton's principle. The eigenvalue problem associated with the free vibrations of fully clamped micro-plates is extracted and solved analytically using the extended Kantorovich method (EKM). The present findings are compared and validated by available results in the literature and an excellent agreement between them is observed. A parametric study is also conducted to show the significant effects of couple stress components on natural frequencies of fully clamped micro-plates. It is found that the ratio of MCST natural frequencies to those obtained by the classical theory (CT) only depends on the Poisson's ratio of the plate and is totally independent of plate's aspect ratio for cases with no residual stresses.

Keywords: vibrational analysis, modified couple stress theory, fully clamped rectangular micro-plates, extended Kantorovich method.

Procedia PDF Downloads 389
20517 Common Fixed Point Results and Stability of a Modified Jungck Iterative Scheme

Authors: Hudson Akewe

Abstract:

In this study, we introduce a modified Jungck (Dual Jungck) iterative scheme and use the scheme to approximate the unique common fixed point of a pair of generalized contractive-like operators in a Banach space. The iterative scheme is also shown to be stable with respect to the maps (S,T). An example is taken to justify the convergence of the scheme. Our result is a generalization and improvement of several results in the literature on single map T.

Keywords: generalized contractive-like operators, modified Jungck iterative scheme, stability results, weakly compatible maps, unique common fixed point

Procedia PDF Downloads 349
20516 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis

Procedia PDF Downloads 136
20515 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device

Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang

Abstract:

This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.

Keywords: CFD modeling, validation, microsphere generation, modified T-junction

Procedia PDF Downloads 707
20514 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 203
20513 Vertical Distribution of Heavy Metals and Enrichment in Core Marine Sediments of East Malaysia by INAA and ICP-MS

Authors: Ahmadreza Ashraf, Elias Saion, Elham Gharib Shahi, Chee Kong Yap, Mohd Suhaimi Hamzah

Abstract:

Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia was analyzed for heavy metals using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectroscopy. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42 to 4.26, 0.50 to 2.34, 0.31 to 0.82, 0.20 to 0.61, 0.91 to 1.92, 0.23 to 1.52, and 0.90 to 1.28 respectively, with the modified degree of contamination values below 0.6. Comparative data show that coastal East Malaysia is of low levels of contamination.

Keywords: coastal East Malaysia, core marine sediments, enrichment factor, heavy metals, INAA and ICP method, modified degree of contamination

Procedia PDF Downloads 335