Search results for: magnetic biochar
1383 Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording
Authors: P. Tueku, P. Supnithi, R. Wongsathan
Abstract:
Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tb/in2 of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints.Keywords: heat-assisted magnetic recording, thermal Williams-Comstock equation, microtrack model, equalizer
Procedia PDF Downloads 3471382 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids
Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash
Abstract:
The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.Keywords: ferroconvection, magnetic field dependent viscosity, temperature dependent viscosity, throughflow
Procedia PDF Downloads 2631381 A Mini-Review on Effect of Magnetic Field and Material on Combustion Engines
Authors: A. N. Santhosh, Vinay Hegde, S. Vinod Kumar, R. Giria, D. L. Rakesh, M. S. Raghu
Abstract:
At present, research on automobile engineering is in high demand, particularly in the field of fuel combustion. A large number of fossil fuels are being used in combustion, which may get exhausted in the near future and are not economical. To this end, research on the use of magnetic material in combustion engines is in progress to enhance the efficiency of fuel. The present review describes the chemical, physical and mathematical theory behind the magnetic materials along with the working principle of the internal combustion engine. The effect of different magnets like ferrite magnet, Neodymium magnet, and electromagnets was discussed. The effect of magnetic field on the consumption of the fuel, brake thermal efficiency, carbon monoxide, Oxides of Nitrogen, carbon dioxide, and hydrocarbon emission, along with smoke density, have been discussed in detail. Detailed mathematical modelling that shows the effect of magnetic field on fuel combustion is elaborated. Required pictorial representations are included wherever necessary. This review article could serve as a base for studying the effect of magnetic materials on IC engines.Keywords: magnetic field, energizer, fuel conditioner, fuel consumption, emission reduction
Procedia PDF Downloads 1001380 The Effect of Extremely Low Frequency Magnetic Field on Rats Brain
Authors: Omar Abdalla, Abdelfatah Ahmed, Ahmed Mustafa, Abdelazem Eldouma
Abstract:
The purpose of this study is evaluating the effect of extremely low frequency magnetic field on Waster rats brain. The number of rats used in this study were 25, which were divided into five groups, each group containing five rats as follows: Group 1: The control group which was not exposed to energized field; Group 2: Rats were exposed to a magnetic field with an intensity of 0.6 mT (2 hours/day); Group 3: Rats were exposed to a magnetic field of 1.2 mT (2 hours/day); Group4: Rats were exposed to a magnetic field of 1.8 mT (2 hours/day); Group 5: Rats were exposed to a magnetic field of 2.4 mT (2 hours/day) and all groups were exposed for seven days, by designing a maze and calculating the time average for arriving to the decoy at special conditions. We found the time average before exposure for the all groups was G2=330 s, G3=172 s, G4=500 s and G5=174 s, respectively. We exposed all groups to ELF-MF and measured the time and we found: G2=465 s, G3=388 s, G4=501 s, and G5=442 s. It was observed that the time average increased directly with field strength. Histological samples of frontal lop of brain for all groups were taken and we found lesion, atrophy, empty vacuoles and disorder choroid plexus at frontal lope of brain. And finally we observed the disorder of choroid plexus in histological results and Alzheimer's symptoms increase when the magnetic field increases.Keywords: nonionizing radiation, biophysics, magnetic field, shrinkage
Procedia PDF Downloads 5431379 Flow Measurement Using Magnetic Meters in Large Underground Cooling Water Pipelines
Authors: Humanyun Zahir, Irtsam Ghazi
Abstract:
This report outlines the basic installation and operation of magnetic inductive flow velocity sensors on large underground cooling water pipelines. Research on the effects of cathodic protection as well as into other factors that might influence the overall performance of the meter are presented in this paper. The experiments were carried out on an immersion type magnetic meter specially used for flow measurement of cooling water pipeline. An attempt has been made in this paper to outline guidelines that can ensure accurate measurement related to immersion type magnetic meters on underground pipelines.Keywords: magnetic induction, flow meter, Faraday's law, immersion, cathodic protection, anode, cathode, flange, grounding, plant information management system, electrodes
Procedia PDF Downloads 4161378 Microwave Transmission through Metamaterial Based on Permalloy Flakes under Magnetic Resonance and Antiresonance Conditions
Authors: Anatoly B. Rinkevich, Eugeny A. Kuznetsov, Yuri I. Ryabkov
Abstract:
Transmission of electromagnetic waves through a plate of metamaterial based on permalloy flakes and reflection from the plate is investigated. The metamaterial is prepared of permalloy flakes sized from few to 50μ placed into epoxy-amine matrix. Two series of metamaterial samples are under study with the volume portion of permalloy particles 15% and 30%. There is no direct electrical contact between permalloy particles. Microwave measurements have been carried out at frequencies of 12 to 30 GHz in magnetic fields up to 12 kOe. Sharp decrease of transmitted wave is observed under ferromagnetic resonance condition caused by absorption. Under magnetic antiresonance condition, in opposite, maximum of reflection coefficient is observed at frequencies exceeding 30 GHz. For example, for metamaterial sample with the volume portion of permalloy of 30%, the variation of reflection coefficient in magnetic field reaches 300%. These high variations are of interest to develop magnetic field driven microwave devices. Magnetic field variations of refractive index are also estimated.Keywords: ferromagnetic resonance, magnetic antiresonance, microwave metamaterials, permalloy flakes, transmission and reflection coefficients
Procedia PDF Downloads 1381377 Pre-Beneficiation of Low Grade Diasporic Bauxite Ore by Reduction Roasting
Authors: Koksal Yılmaz, Burak Birol, Muhlis Nezihi Saridede, Erdogan Yigit
Abstract:
A bauxite ore can be utilized in Bayer Process, if the mass ratio of Al2O3 to SiO2 is greater than 10. Otherwise, its FexOy and SiO2 content should be removed. On the other hand, removal of TiO2 from the bauxite ore would be beneficial because of both lowering the red mud residue and obtaining a valuable raw material containing TiO2 mineral. In this study, the low grade diasporic bauxite ore of Yalvaç, Isparta, Turkey was roasted under reducing atmosphere and subjected to magnetic separation. According to the experimental results, 800°C for reduction temperature and 20000 Gauss of magnetic intensity were found to be the optimum parameters for removal of iron oxide and rutile from the non-magnetic ore. On the other hand, 600°C and 5000 Gauss were determined to be the optimum parameters for removal of silica from the non-magnetic ore.Keywords: low grade diasporic bauxite, magnetic separation, reduction roasting, separation index
Procedia PDF Downloads 4021376 Effect of Hot Rolling Conditions on Magnetic Properties of Fe-3%Si Non-Grain Oriented Electrical Steels
Authors: Emre Alan, Yusuf Yamanturk, Gokay Bas
Abstract:
Non-grain oriented electrical steels are high silicon containing steels in which the direction of magnetism is intended the same in any direction of the material. Major applications of non-grain-oriented electrical steels are electrical motors, generators, etc. where low magnetic losses are required. Selection of proper hot rolling process parameters is an important factor in order to produce a material that has desired magnetic properties. In this study, the effect of finishing and coiling temperatures on magnetic properties of Fe-3%Si non-grain oriented electrical steels will be investigated. Additionally, the effect of slab reheating temperature at same entry finishing temperature will be investigated by means of reduction in roughing mill pass number from 1-5 to 1-3.Keywords: electrical steels, hot rolling, magnetic properties, roughing mill
Procedia PDF Downloads 3241375 Preparation of Poly(Acrylic Acid) Functionalized Magnetic Graphene Oxide Composite and Its Application for Pb(II) Removal
Authors: Yu Wang, Xibang Chen, Maolin Zhai, Jing Peng, Jiuqiang Li
Abstract:
Poly(acrylic acid) (PAA) functionalized magnetic graphene oxide (GO) composite was synthesized through a two-step process. Magnetic Fe₃O₄/GO was first prepared by a facile hydrothermal method. A radiation-induced grafting technique was used to graft PAA to Fe₃O₄/GO to obtain the Fe₃O₄/GO-g-PAA subsequently. The characteristics results of FTIR, Raman, XRD, SEM, TEM, and VSM showed that Fe₃O₄/GO-g-PAA was successfully prepared. The Fe₃O₄/GO-g-PAA composites were used as sorbents for the removal of Pb(II) ions, and the maximum adsorption capacity for Pb(II) was 176.92 mg/g.Keywords: Fe₃O₄, graphene oxide, magnetic, Pb(II) removal, radiation-induced
Procedia PDF Downloads 1531374 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM
Authors: N. Yogal, C. Lehrmann
Abstract:
The use of Permanent magnet (PM) is increasing in the Permanent magnet synchronous machines (PMSM) to fulfill the requirement of high efficiency machines in modern industry. PMSM is widely used in industrial application, wind power plant and automotive industry. Since the PMSM are used in different environment condition, the long-term effect of NdFeB-based magnets at high temperatures and corrosion behavior has to be studied due to irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in the climatic chamber has been presented. The magnetic moment and magnetic field of the magnet were studied experimentally.Keywords: permanent magnet (PM), NdFeB, corrosion behavior, temperature effect, Permanent magnet synchronous machine (PMSM)
Procedia PDF Downloads 3931373 Synthesis and Magnetic Properties of Six-Lines Ferrihydrite Nanoparticles
Authors: Chandni Rani, S. D. Tiwari
Abstract:
Ferrihydrite is one of the distinct minerals in the family of oxides, hydroxides and oxyhydroxides of iron. It is a nanocrystalline material. It occurs naturally in different sediments, soil systems and also found in the core of ferritin, an iron storage protien. This material can also be synthesized by suitable chemical methods in laboratories. This is known as less crystalline Iron (III) Oxyhydroxide. Due to its poor crystallinity, there are very broad peaks in x-ray diffraction. Depending on the number of peaks in x-ray diffraction pattern, it is classified as two lines and six lines ferrihydrite. The average crystallite size for these two forms is found to be about 2nm to 5nm. The exact crystal structure of this system is still under debate. Out of these two forms, the six lines ferrihydrite is more ordered in comparison to two lines ferrihydrite. The magnetic behavior of two lines ferrihydrite nanoparticles is somewhat well studied. But the magnetic behavior of six lines ferrihydrite nanoparticles could not attract the attention of researchers much. This motivated us to work on the magnetic properties of six lines ferrihydrite nanoparticles. In this work, we present synthesis, structural characterization and magnetic behavior of 5 nm six lines ferrihydrite nanoparticles. X-ray diffraction and transmission electron microscope are used for structural characterization of this system. Magnetization measurements are performed to fit the data at different temperatures. Then the effect of magnetic moment distribution is also found. All these observations are discussed in detail.Keywords: nanoparticles, magnetism, superparamagnetism, magnetic anisotropy
Procedia PDF Downloads 3361372 Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method
Authors: Javier Sánchez, Laura Elena De León Prado, Dora Alicia Cortés Hernández
Abstract:
Magnetic spinel ferrites are materials that possess size, magnetic properties and heating ability adequate for their potential use in biomedical applications. The Mn0.5Ga0.5Fe2O4 magnetic nanoparticles (MNPs) were synthesized by sol-gel method using citric acid as chelating agent of metallic precursors. The synthesized samples were identified by X-Ray Diffraction (XRD) as an inverse spinel structure with no secondary phases. Saturation magnetization (Ms) of crystalline powders was 45.9 emu/g, which was higher than those corresponding to GaFe2O4 (14.2 emu/g) and MnFe2O4 (40.2 emu/g) synthesized under similar conditions, while the coercivity field (Hc) was 27.9 Oe. The average particle size was 18 ± 7 nm. The heating ability of the MNPs was enough to increase the surrounding temperature up to 43.5 °C in 7 min when a quantity of 4.5 mg of MNPs per mL of liquid medium was tested. Cytotoxic effect (hemolysis assay) of MNPs was determined and the results showed hemolytic values below 1% in all tested cases. According to the results obtained, these synthesized nanoparticles can be potentially used as thermoseeds for hyperthermia therapy.Keywords: manganese-gallium ferrite, magnetic hyperthermia, heating ability, cytotoxicity
Procedia PDF Downloads 3911371 Stoner Impurity Model in Nickel Hydride
Authors: Andrea Leon, J. M. Florez, P. Vargas
Abstract:
The effect of hydrogen adsorption on the magnetic properties of fcc Ni has been calculated using the linear-muffin-tin-orbital formalism and using the local-density approximation for the exchange y correlation. The calculations for the ground state show that the sequential addition of hydrogen atoms is found to monotonically reduce the total magnetic moment of the Ni fcc structure, as a result of changes in the exchange-splitting parameter and in the Fermi energy. In order to physically explain the effect of magnetization reduction as the Hydrogen concentration increases, we propose a Stoner impurity model to describe the influence of H impurity on the magnetic properties of Nickel.Keywords: electronic structure, magnetic properties, Nickel hydride, stoner model
Procedia PDF Downloads 4571370 Structural, Magnetic and Magnetocaloric Properties of Iron-Doped Nd₀.₆Sr₀.₄MnO₃ Perovskite
Authors: Ismail Al-Yahmadi, Abbasher Gismelseed, Fatma Al-Mammari, Ahmed Al-Rawas, Ali Yousif, Imaddin Al-Omari, Hisham Widatallah, Mohamed Elzain
Abstract:
The influence of Fe-doping on the structural, magnetic and magnetocaloric properties of Nd₀.₆Sr₀.₄FeₓMn₁₋ₓO₃ (0≤ x ≤0.5) were investigated. The samples were synthesized by auto-combustion Sol-Gel method. The phase purity, crystallinity, and the structural properties for all prepared samples were examined by X-ray diffraction. XRD refinement indicates that the samples are crystallized in the orthorhombic single-phase with Pnma space group. Temperature dependence of magnetization measurements under a magnetic applied field of 0.02 T reveals that the samples with (x=0.0, 0.1, 0.2 and 0.3) exhibit a paramagnetic (PM) to ferromagnetic (FM) transition with decreasing temperature. The Curie temperature decreased with increasing Fe content from 256 K for x =0.0 to 80 K for x =0.3 due to increasing of antiferromagnetic superexchange (SE) interaction coupling. Moreover, the magnetization as a function of applied magnetic field (M-H) curves was measured at 2 K, and 300 K. the results of such measurements confirm the temperature dependence of magnetization measurements. The magnetic entropy change|∆SM | was evaluated using Maxwell's relation. The maximum values of the magnetic entropy change |-∆SMax |for x=0.0, 0.1, 0.2, 0.3 are found to be 15.35, 5.13, 3.36, 1.08 J/kg.K for an applied magnetic field of 9 T. Our result on magnetocaloric properties suggests that the parent sample Nd₀.₆Sr₀.₄MnO₃ could be a good refrigerant for low-temperature magnetic refrigeration.Keywords: manganite perovskite, magnetocaloric effect, X-ray diffraction, relative cooling power
Procedia PDF Downloads 1571369 3D Simulation and Modeling of Magnetic-Sensitive on n-type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DGMOSFET)
Authors: M. Kessi
Abstract:
We investigated the effect of the magnetic field on carrier transport phenomena in the transistor channel region of Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This explores the Lorentz force and basic physical properties of solids exposed to a constant external magnetic field. The magnetic field modulates the electrons and potential distribution in the case of silicon Tunnel FETs. This modulation shows up in the device's external electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), the threshold voltage (VTH), the magneto-transconductance (gm) and the output magneto-conductance (gDS) of Tunnel FET. Moreover, the channel doping concentration and potential distribution are obtained using the numerical method by solving Poisson’s transport equation in 3D modules semiconductor magnetic sensors available in Silvaco TCAD tools. The numerical simulations of the magnetic nano-sensors are relatively new. In this work, we present the results of numerical simulations based on 3D magnetic sensors. The results show excellent accuracy comportment and good agreement compared with that obtained in the experimental study of MOSFETs technology.Keywords: single-gate MOSFET, magnetic field, hall field, Lorentz force
Procedia PDF Downloads 1791368 Magnetic Levitation Control: A Comparative Analysis of Two-Position and Tuned PID Methods Using Arduino Microcontrollers
Authors: Charles Anthony S. Santillan, Jude Noel P. Jarina, Patricia Mae A. Cuevas, Julito B. Añora Jr.
Abstract:
The research examines the effectiveness of Two-Position and Tuned PID controllers in magnetic levitation systems. Magnetic levitation, a crucial technology in diverse industries, depends on meticulous control mechanisms for stability and performance. The study seeks to compare these two control strategies to ascertain their efficacy in practical applications. The paper explores the theoretical foundations of the controllers, presents an experimental methodology emphasizing setup and installation, and examines the results about stability, response time, and susceptibility to disturbances. By interpreting and discussing the findings, the research provides valuable perspectives on the practical ramifications of utilizing Two-Position and Tuned PID controllers in magnetic levitation systems. The conclusion encapsulates significant outcomes and proposes avenues for future research, thereby contributing to the progress of control strategies in magnetic levitation technology.Keywords: arduino, comparative analysis, magnetic levitation, tuned PID controller, two-position controller
Procedia PDF Downloads 661367 Magnetic Treatment of Irrigation Water and Its Effect on Water Salinity
Authors: Muhammad Waqar Ashraf
Abstract:
The influence of magnetic field on the structure of water and aqueous solutions are similar and can alter the physical and chemical properties of water-dispersed systems. With the application of magnetic field, hydration of salt ions and other impurities slides down and improve the possible technological characteristics of the water. Magnetic field can enhance the characteristic of water i.e. better salt solubility, kinetic changes in salt crystallization, accelerated coagulation, etc. Gulf countries are facing critical problem due to depletion of water resources and increasing food demands to cover the human needs; therefore water shortage is being increasingly accepted as a major limitation for increased agricultural production and food security. In arid and semi-arid regions sustainable agricultural development is influenced to a great extent by water quality that might be used economically and effectively in developing agriculture programs. In the present study, the possibility of using magnetized water to desalinate the soil is accounted for the enhanced dissolving capacity of the magnetized water. Magnetic field has been applied to treat brackish water. The study showed that the impact of magnetic field on saline water is sustained up to three hours (with and without shaking). These results suggest that even low magnetic field can decrease the electrical conductivity and total dissolved solids which are good for the removal of salinity from the irrigated land by using magnetized water.Keywords: magnetic treatment, saline water, hardness of water, removal of salinity
Procedia PDF Downloads 4941366 Application of Nanoparticles in Biomedical and MRI
Authors: Raziyeh Mohammadi
Abstract:
At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible.Keywords: nanoparticles, MRI, biomedical, iron oxide, spions
Procedia PDF Downloads 2131365 Theoretical Investigation on Electronic and Magnetic Properties of Cubic PrMnO3 Perovskite
Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Abbad, T. Lantri, A. Zitouni
Abstract:
The purpose of this study was to investigate the structural,electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3. It includes our calculations based on the use of the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, The spin polarized electronic band structures and densities of states as well as the integer value of the magnetic moment of the unit cell (6 μB) illustrate that PrMnO3 is half-metallic ferromagnetic. The study prove that the compound is half-metallic ferromagnetic however the results obtained, make the cubic PrMnO3 a promising candidate for application in spintronics.Keywords: cubic, DFT, electronic properties, magnetic moment, spintronics
Procedia PDF Downloads 4621364 Development of Imprinting and Replica Molding of Soft Mold Curved Surface
Authors: Yung-Jin Weng, Chia-Chi Chang, Chun-Yu Tsai
Abstract:
This paper is focused on the research of imprinting and replica molding of quasi-grey scale soft mold curved surface microstructure mold. In this paper, a magnetic photocuring forming system is first developed and built independently, then the magnetic curved surface microstructure soft mode is created; moreover, the magnetic performance of the magnetic curved surface at different heights is tested and recorded, and through experimentation and simulation, the magnetic curved surface microstructure soft mold is used in the research of quasi-grey scale soft mold curved surface microstructure imprinting and replica molding. The experimental results show that, under different surface curvatures and voltage control conditions, different quasi-grey scale array microstructures take shape. In addition, this paper conducts research on the imprinting and replica molding of photoresist composite magnetic powder in order to discuss the forming performance of magnetic photoresist, and finally, the experimental result is compared with the simulation to obtain more accurate prediction and results. This research is predicted to provide microstructure component preparation technology with heterogeneity and controllability, and is a kind of valid shaping quasi-grey scale microstructure manufacturing technology method.Keywords: soft mold, magnetic, microstructure, curved surface
Procedia PDF Downloads 3241363 High Voltage Magnetic Pulse Generation Using Capacitor Discharge Technique
Authors: Mohamed Adel Abdallah
Abstract:
A high voltage magnetic pulse is designed by applying an electrical pulse to the coil. Capacitor banks are developed to generate a pulse current. Switching circuit consisting of DPDT switches, thyristor, and triggering circuit is built and tested. The coil current is measured using a Hall-effect current sensor. The magnetic pulse created is measured and tabulated in the graph. Simulation using FEMM is done to compare the results obtained between experiment and simulation. This technology can be applied to area such as medical equipment, measuring instrument, and military equipment.Keywords: high voltage, magnetic pulse, capacitor discharge, coil
Procedia PDF Downloads 6781362 Robust Half-Metallicity and Magnetic Properties of Cubic PrMnO3 Perovskite
Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Abbad, T. Lantri, A. Zitouni
Abstract:
The purpose of this study was to investigate the structural,electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3. It includes our calculations based on the use of the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, The spin polarized electronic band structures and densities of states aswellas the integer value of the magnetic moment of the unit cell (6 μB) illustrate that PrMnO3 is half-metallic ferromagnetic. The study shows that the robust half-metallicity makes the cubic PrMnO3 a promising candidate for application in spintronics.Keywords: Perovskite, DFT, electronic properties, Magnetic moment, half-metallic
Procedia PDF Downloads 4551361 First-Principles Modeling of Nanoparticle Magnetization, Chaining, and Motion
Authors: Pierce Radecki, Pulkit Malik, Bharath Ramaswamy, Ben Shapiro
Abstract:
The ability to effectively design and test magnetic nanoparticles for controlled movement has been an elusive goal in the design of these particles. Magnetic nanoparticles of various characteristics have been created for use towards therapeutic effects, however the challenge of designing for controlled movement remains unmet. A step towards design in this aspect is a first principles model that captures and predicts the behaviors of particles in a magnetic field. The model is governed by four forces acting on the particles, the magnetic gradient, the dipole-dipole forces, the steric forces, and the viscous drag force. The particles are multi-core or single core, and incorporate a preferred magnetization axis. Particles exhibit behaviors, such as chaining, in simulations that are similar to those witnessed through experimentation. Currently, experimental results are being compared to the modeling results for verification of the model, through the analysis of chaining behaviors. This modeling system will be used in designing magnetic nanoparticles for specific chaining and movement behaviors.Keywords: controlled movement, modeling, magnetic nanoparticles, nanoparticle design
Procedia PDF Downloads 3031360 Spin-Polarized Structural, Electronic and Magnetic Properties of Intermetallic Dy2Ni2Pb from Computational Study
Authors: O. Arbouche, Y. Benallou, K. Amara
Abstract:
We report a first-principles study of structural, electronic and magnetic properties of ternary plumbides (rare earth-transition metal-Plumb) Dy2Ni2Pb crystallizes with the orthorhombic structure of the Mn2AlB2 type (space group Cmmm), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbital method within the frame work of spin-polarized density functional theory (SP-DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA). We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, total densities of states and magnetic properties. The calculated total magnetic moment is found to be equal to 9.52 μB.Keywords: spin-polarized, magnetic properties, Dy2Ni2Pb, Density functional theory
Procedia PDF Downloads 2991359 Annular Axi-Symmetric Stagnation Flow of Electrically Conducting Fluid on a Moving Cylinder in the Presence of Axial Magnetic Field
Authors: Deva Kanta Phukan
Abstract:
An attempt is made where an electrically conducting fluid is injected from a fixed outer cylindrical casing onto an inner moving cylindrical rod. A magnetic field is applied parallel to the axis of the cylindrical rod. The basic governing set of partial differential equations for conservation of mass and momentum are reduced to a set of non-linear ordinary differential equation by introducing similarity transformation, which are integrated numerically. A perturbation solution for the case of large magnetic parameter is derived for constant Reynolds number.Keywords: annular axi-symmetric stagnation flow, conducting fluid, magnetic field, moving cylinder
Procedia PDF Downloads 3981358 The Study of Magnetic and Transport Properties in Normal State Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ
Authors: Risdiana, D. Suhendar, S. Pratiwi, W. A. Somantri, T. Saragi
Abstract:
Superconductor is a promising material for future applications especially for energy saving because of their advantages properties such as zero electrical resistivity when they are cooled down to sufficiently low temperatures. However, the mechanism describing the role of physical properties in superconductor is far from being understood clearly, so that the application of this material for wider benefit in various industries is very limited. Most of superconductors are cuprate compounds, which has CuO2 as a conducting plane in their crystal structures. The study of physical properties through the partially substitution of impurity for Cu in superconducting cuprates has been one of great interests in relation to the mechanism of superconductivity. Different behaviors between the substitution of nonmagnetic impurity and magnetic impurity for Cu are observed. For examples, the superconductivity and Cu-spin fluctuations in the electron-doped system are suppressed through the substitution of magnetic Ni for Cu more markedly than through the substitution of nonmagnetic Zn for Cu, which is contrary to the result in the hole-doped system. Here, we reported the effect of partially substitution of magnetic impurity Fe for Cu to the magnetic and transport properties in electron-doped superconducting cuprates of Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ (ECCFO) with y = 0.01, 0.02, and 0.05, in order to investigate the mechanism of magnetic and transport properties of ECCFO in normal-state. Magnetic properties are investigated by DC magnetic-susceptibility measurements that carried out at low temperatures down to 2 K using a standard SQUID magnetometer in a magnetic field of 5 Oe on field cooling. Transport properties addressed to electron mobility, are extracted from radius of electron localization calculated from temperature dependence of resistivity. For y = 0, temperature dependence of dc magnetic-susceptibility indicated the change of magnetic behavior from paramagnetic to diamagnetic below 15 K. Above 15 K, all samples show paramagnetic behavior with the values of magnetic moment in every volume unit increased with increasing y. Electron mobility decreased with increasing y. Some reasons for these results will be discussed.Keywords: DC magnetic-susceptibility, electron mobility, Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ, normal state
Procedia PDF Downloads 3461357 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode
Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan
Abstract:
Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.Keywords: cathode spot, vacuum arc discharge, transverse magnetic field, random walk
Procedia PDF Downloads 4311356 Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys
Authors: Mst Nazmunnahar, Juan del Val, Alena Vimmrova, Blanca Hernando, Julian González
Abstract:
We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms = 336K , Mf = 328K, As = 335K and Af = 343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms.Keywords: as-cast ribbon, Heusler alloys, magnetic properties, structural transformation
Procedia PDF Downloads 4531355 Study of Magnetic Nanoparticles’ Endocytosis in a Single Cell Level
Authors: Jefunnie Matahum, Yu-Chi Kuo, Chao-Ming Su, Tzong-Rong Ger
Abstract:
Magnetic cell labeling is of great importance in various applications in biomedical fields such as cell separation and cell sorting. Since analytical methods for quantification of cell uptake of magnetic nanoparticles (MNPs) are already well established, image analysis on single cell level still needs more characterization. This study reports an alternative non-destructive quantification methods of single-cell uptake of positively charged MNPs. Magnetophoresis experiments were performed to calculate the number of MNPs in a single cell. Mobility of magnetic cells and the area of intracellular MNP stained by Prussian blue were quantified by image processing software. ICP-MS experiments were also performed to confirm the internalization of MNPs to cells. Initial results showed that the magnetic cells incubated at 100 µg and 50 µg MNPs/mL concentration move at 18.3 and 16.7 µm/sec, respectively. There is also an increasing trend in the number and area of intracellular MNP with increasing concentration. These results could be useful in assessing the nanoparticle uptake in a single cell level.Keywords: magnetic nanoparticles, single cell, magnetophoresis, image analysis
Procedia PDF Downloads 3321354 Effects of Magnetic Field on 4H-SiC P-N Junctions
Authors: Khimmatali Nomozovich Juraev
Abstract:
Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiCKeywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics
Procedia PDF Downloads 95