Search results for: isolated word recognition
3856 Multi-Modal Feature Fusion Network for Speaker Recognition Task
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.Keywords: feature fusion, memory network, multimodal input, speaker recognition
Procedia PDF Downloads 323855 Advanced Mouse Cursor Control and Speech Recognition Module
Authors: Prasad Kalagura, B. Veeresh kumar
Abstract:
We constructed an interface system that would allow a similarly paralyzed user to interact with a computer with almost full functional capability. A real-time tracking algorithm is implemented based on adaptive skin detection and motion analysis. The clicking of the mouse is activated by the user's eye blinking through a sensor. The keyboard function is implemented by voice recognition kit.Keywords: embedded ARM7 processor, mouse pointer control, voice recognition
Procedia PDF Downloads 5783854 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences
Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui
Abstract:
The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.Keywords: recognition of shape, generalized hough transformation, histogram, spatiogram, learning
Procedia PDF Downloads 1583853 Utilization of the Compendium on Contextualized Story Word Problems in Mathematics
Authors: Rex C. Apillanes, Ana Rubi L. Sereño, Ellen Joy L. Palangan
Abstract:
The main objective of this action research is to know the effectiveness of the compendium on Contextualized Story Word Problem in Mathematics used as an intervention material to enhance the comprehension and problem-solving skills of Grade 4 pupils. This also addresses the competencies outlined in the curriculum guide while, at the same time, providing instructional material which the pupils can work on and practice solving word problems. The twelve randomly selected grade four pupils of Mantuyom Elementary School have been chosen as respondents for this action research in consideration of their consent and approval. A Pre-Test and a Post-test have been given to the pupils to determine their baseline proficiency level in four fundamental operations. The data has been statistically treated using a T-test to determine their difference. At a mean score of 13.42 and 16.83 for pre and post-tests, respectively, the p-value of 0.000620816 reflects a highly significant difference for the pre-test and post-test. This is lesser than the 0.05 level of significance (p≤0.05). Therefore, it is found that the compendium of contextualized story word problems is an efficient instructional material for Mathematics 4, yet; it is recommended that a Parents’ User Guide shall be developed to assist the parents in the conduct of the Remediation, Reinforcement and Enhancement (RRE).Keywords: action research, compendium, contextualized, story, word problem, research, intervention
Procedia PDF Downloads 993852 Real Time Multi Person Action Recognition Using Pose Estimates
Authors: Aishrith Rao
Abstract:
Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks
Procedia PDF Downloads 1413851 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information
Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung
Abstract:
The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.Keywords: color moments, visual thing recognition system, SIFT, color SIFT
Procedia PDF Downloads 4673850 Diplomatic Public Relations Techniques for Official Recognition of Palestine State in Europe
Authors: Bilgehan Gultekin, Tuba Gultekin
Abstract:
Diplomatic public relations gives an ideal concept for recognition of palestine state in all over the europe. The first step of official recognition is approval of palestine state in international political organisations such as United Nations and Nato. So, diplomatic public relations provides a recognition process in communication scale. One of the aims of the study titled “Diplomatic Public Relations Techniques for Recognition of Palestine State in Europe” is to present some communication projects on diplomatic way. The study also aims at showing communication process at diplomatic level. The most important level of such kind of diplomacy is society based diplomacy. Moreover,The study provides a wider perspective that gives some creative diplomatic communication strategies for attracting society. To persuade the public for official recognition also is key element of this process. The study also finds new communication routes including persuasion techniques for society. All creative projects are supporting parts in original persuasive process of official recognition of Palestine.Keywords: diplomatic public relations, diplomatic communication strategies, diplomatic communication, public relations
Procedia PDF Downloads 4553849 Antibiotic Resistance of Enterococci Isolated from Raw Cow Milk
Authors: Margita Čanigová, Jana Račková, Miroslav Kročko, Viera Ducková, Vladimíra Kňazovická
Abstract:
The aim of the study was to test the milk samples in terms of enterococci presence and their counts. Tested samples were as follows: raw cow milk, raw cow milk stored at 10°C for 16 hours and milk pasteurised at 72°C for 15 seconds. The typical colonies were isolated randomly and identified by classical biochemical test - EN-COCCUS test (Lachema, CR) and by PCR. Isolated strains were tested in terms of antibiotic resistance by well diffusion method. Examined antibiotics were: vancomycin (30 μg/disc), gentamicin (120 μg/disc), erythromycin (15 μg/disc), teicoplanine (30 μg/disc), ampicillin (10 μg/disc) and tetracycline (30 μg/disc). Average value of enterococci counts in raw milk cistern samples (n=30) was 8.25 ± 1.37 ×103 CFU/cm3. Storage tank milk samples (n=30) showed an increase (P > 0.05) and average value was 9.16 ± 1.49 × 103 CFU/cm3. Occurrence of enterococci in pasteurized milk (n=30) was sporadic and their counts were mostly below 10 CFU/cm3. Overall, 96 enterococci strains were isolated. In samples of raw cow milk and stored raw cow milk, Enterococcus faecalis was a dominant species (58.1% and 71.7%, respectively), followed by E. faecium (16.3% and 0%, respectively). Enterococcus mundtii, E. casseliflavus, E. durans and E. gallinarum were isolated, too. Resistances to ampicillin, erythromycin, gentamicin, tetracycline and vancomycin were found in 7.29%, 3.13%, 4.00%, 13.54% and 10.42% of isolated enterococci strains, respectively. Resistance to teicoplanine was not found in any isolated strain. All Vancomycin-Resistant Enterococci (VRE) belonged to E. faecalis. Obtained results confirmed that raw milk is a potential risk of enterococci resistant to antibiotics transmission into the food chain.Keywords: antibiotic resistance, enterococci, milk, biosystems engineering
Procedia PDF Downloads 3813848 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 1283847 Successes on in vitro Isolated Microspores Embryogenesis
Authors: Zelikha Labbani
Abstract:
The In Vitro isolated micro spore culture is the most powerful androgenic pathway to produce doubled haploid plants in the short time. To deviate a micro spore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the micro spore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of micro spore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. As haploid single cells, micro spore became a strategy to achieve various objectives particularly in genetic engineering. In this study we would show the most recent advances in the producing haploid embryos via In Vitro isolated micro spore culture.Keywords: haploid cells, In Vitro isolated microspore culture, success
Procedia PDF Downloads 6153846 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy
Authors: Ingrid Argote, John Archila, Marcelo Becker
Abstract:
In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.
Procedia PDF Downloads 2293845 Pathogenic Bacteria Isolated from Diseased Giant Freshwater Prawn in Shrimp Culture Ponds
Authors: Kusumawadee Thancharoen, Rungrat Nontawong, Thanawat Junsom
Abstract:
Pathogenic bacterial flora was isolated from giant freshwater prawns, Macrobrachium rosenbergii. Infected shrimp samples were collected from BuaBan Aquafarm in Kalasin Province, Thailand, between June and September 2018. Bacterial species were isolated by serial dilution and plated on Thiosulfate Citrate Bile Salt Sucrose (TCBS) agar medium. A total 89 colonies were isolated and identified using the API 20E biochemical tests. Results showed the presence of genera Aeromonas, Citrobacter, Chromobacterium, Providencia, Pseudomonas, Stenotrophomonas and Vibrio. Maximum number of species was recorded in Pseudomonas (50.57%) with minimum observed in Chromobacterium and Providencia (1.12%).Keywords: biochemical test, giant freshwater prawn, isolation, salt tolerance, shrimp diseases
Procedia PDF Downloads 2383844 The Grammatical Dictionary Compiler: A System for Kartvelian Languages
Authors: Liana Lortkipanidze, Nino Amirezashvili, Nino Javashvili
Abstract:
The purpose of the grammatical dictionary is to provide information on the morphological and syntactic characteristics of the basic word in the dictionary entry. The electronic grammatical dictionaries are used as a tool of automated morphological analysis for texts processing. The Georgian Grammatical Dictionary should contain grammatical information for each word: part of speech, type of declension/conjugation, grammatical forms of the word (paradigm), alternative variants of basic word/lemma. In this paper, we present the system for compiling the Georgian Grammatical Dictionary automatically. We propose dictionary-based methods for extending grammatical lexicons. The input lexicon contains only a few number of words with identical grammatical features. The extension is based on similarity measures between features of words; more precisely, we add words to the extended lexicons, which are similar to those, which are already in the grammatical dictionary. Our dictionaries are corpora-based, and for the compiling, we introduce the method for lemmatization of unknown words, i.e., words of which neither full form nor lemma is in the grammatical dictionary.Keywords: acquisition of lexicon, Georgian grammatical dictionary, lemmatization rules, morphological processor
Procedia PDF Downloads 1463843 Digital Nudge, Social Proof Nudge and Trust on Brand loyalty
Authors: Mirza Amin Ul Haq
Abstract:
Purpose – the purpose of conducting this research is to check the impact of nudges constructs, whether they create an encouragement factor with consumer brand loyalty and relating of word-of-mouth power have some kind of effect with all independent variables. Desin/Methodology/Approach – this study adopted the four constructs (i.e., Digital Nudge, Social Proof Nudge, Trust, and the mediator Word of Mouth) and explore its effect and connection with Brand Loyalty. A total of 390 respondents were selected for self-administrated questionnaire to obtain the finding of the research. Findings – the impact and cause between the constructs were done through structural equation modeling. The findings show a positive impact of social proof nudge and word of mouth whereas, digital nudge and trust have the weaker influence on the consumer choices when talk about brand loyalty. Originality/Value – Further implication for research and its marketing strategies in the field of clothing industry creating brand loyalty with customer.Keywords: nudge, digital nudge, social proof, online buying, brand loyalty, trust, word of mouth
Procedia PDF Downloads 1113842 An Overview of the Moderating Effect of Overall Satisfaction on Hotel Image and Customer Loyalty
Authors: Nimit Soonsan
Abstract:
Hotel image is a key business issue in today’s hotel market. The current study points to develop and test a relationship of hotel image, overall satisfaction, and future behavior. This paper hypothesizes the correlations among four constructs, namely, hotel image, overall satisfaction, positive word-of-mouth, and intention to revisit. Moreover, this paper will test the mediating effect of overall satisfaction on hotel image and positive word-of-mouth and intention to revisit. These relationships are surveyed for a sample of 244 international customers staying budget hotel in Phuket, Thailand. The structural equation modeling indicates that hotel image directly affects overall satisfaction and indirectly affects future behavior that positive word-of-mouth and intention to revisit. In addition, overall satisfaction had significant influence on future behavior that positive word-of-mouth and intention to revisit, and the mediating role of overall satisfaction is also confirmed in this study. Managerial implications are provided, limitations noted, and future research directions suggested.Keywords: hotel image, satisfaction, loyalty, moderating
Procedia PDF Downloads 1653841 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text
Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman
Abstract:
The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks
Procedia PDF Downloads 2623840 Efficient Method for Inducing Embryos from Isolated Microspores of Durum Wheat
Authors: Zelikha Labbani
Abstract:
Durum wheat represents an attractive species to study androgenesis via isolated microspore culture in order to increase the efficiency of androgenic yield in recalcitrant species such as in induction embryogenesis. We describe here an efficient method for inducing embryos from isolated microspores of durum wheat. It is shown that this method, associated with cold alone or cold plus mannitol pretreatment, or mannitol alone of the spikes kept within their sheath leaves during different times, has significant positive effects on embryo production. The aim of this study was, therefore, to test the effect of mannitol 0,3M and cold pretreatment on the quality and quantity of embryos produced from microspore culture from wheat cultivars.Keywords: in vitro embryogenesis, isolated microspores culture, durum wheat, pretreatments, mannitol 0.3m, cold pretreatment
Procedia PDF Downloads 573839 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 1613838 Specified Human Motion Recognition and Unknown Hand-Held Object Tracking
Authors: Jinsiang Shaw, Pik-Hoe Chen
Abstract:
This paper aims to integrate human recognition, motion recognition, and object tracking technologies without requiring a pre-training database model for motion recognition or the unknown object itself. Furthermore, it can simultaneously track multiple users and multiple objects. Unlike other existing human motion recognition methods, our approach employs a rule-based condition method to determine if a user hand is approaching or departing an object. It uses a background subtraction method to separate the human and object from the background, and employs behavior features to effectively interpret human object-grabbing actions. With an object’s histogram characteristics, we are able to isolate and track it using back projection. Hence, a moving object trajectory can be recorded and the object itself can be located. This particular technique can be used in a camera surveillance system in a shopping area to perform real-time intelligent surveillance, thus preventing theft. Experimental results verify the validity of the developed surveillance algorithm with an accuracy of 83% for shoplifting detection.Keywords: Automatic Tracking, Back Projection, Motion Recognition, Shoplifting
Procedia PDF Downloads 3333837 The Role of Brand Loyalty in Generating Positive Word of Mouth among Malaysian Hypermarket Customers
Authors: S. R. Nikhashemi, Laily Haj Paim, Ali Khatibi
Abstract:
Structural Equation Modeling (SEM) was used to test a hypothesized model explaining Malaysian hypermarket customers’ perceptions of brand trust (BT), customer perceived value (CPV) and perceived service quality (PSQ) on building their brand loyalty (CBL) and generating positive word-of-mouth communication (WOM). Self-administered questionnaires were used to collect data from 374 Malaysian hypermarket customers from Mydin, Tesco, Aeon Big and Giant in Kuala Lumpur, a metropolitan city of Malaysia. The data strongly supported the model exhibiting that BT, CPV and PSQ are prerequisite factors in building customer brand loyalty, while PSQ has the strongest effect on prediction of customer brand loyalty compared to other factors. Besides, the present study suggests the effect of the aforementioned factors via customer brand loyalty strongly contributes to generate positive word of mouth communication.Keywords: brand trust, perceived value, Perceived Service Quality, Brand loyalty, positive word of mouth communication
Procedia PDF Downloads 4823836 Syntax-Related Problems of Translation
Authors: Anna Kesoyan
Abstract:
The present paper deals with the syntax-related problems of translation from English into Armenian. Although Syntax is a part of grammar, syntax-related problems of translation are studied separately during the process of translation. Translation from one language to another is widely accepted as a challenging problem. This becomes even more challenging when the source and target languages are widely different in structure and style, as is the case with English and Armenian. Syntax-related problems of translation from English into Armenian are mainly connected with the syntactical structures of these languages, and particularly, with the word order of the sentence. The word order of the sentence of the Armenian language, which is a synthetic language, is usually characterized as “rather free”, and the word order of the English language, which is an analytical language, is characterized “fixed”. The following research examines the main translation means, particularly, syntactical transformations as the translator has to take real steps while trying to solve certain syntax-related problems. Most of the means of translation are based on the transformation of grammatical components of the sentence, without changing the main information of the text. There are several transformations that occur during translation such as word order of the sentence, transformations of certain grammatical constructions like Infinitive participial construction, Nominative with the Infinitive and Elliptical constructions which have been covered in the following research.Keywords: elliptical constructions, nominative with the infinitive constructions, fixed and free word order, syntactic structures
Procedia PDF Downloads 4533835 Application of Signature Verification Models for Document Recognition
Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova
Abstract:
In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.Keywords: signature recognition, biometric data, artificial intelligence, neural networks
Procedia PDF Downloads 1483834 The Influence of Negative Online Word of Mouth on Consumer's Online Purchasing Intention in Sri Lanka through Virtual Snowball Sampling Method: A Special Reference from Northern Province
Authors: Sutharsini Jesuthasan, N. Umakanth
Abstract:
Presently the impact of electronic word of mouth on consumer’s purchasing intentions very popular one for a long time period. Even though now this E-WOM got a new evolution through social media. Before this new concept, general people were able to speak with any people on the internet. But likely social media enable people to talk with colleagues, friends and other people on the internet. Meanwhile, this new path way of E-WOM might be more powerful in terms of confusing purchase intention. And negative side of E-WOM very important in this competitive era. So, this study elaborates the negative E-WOM within the context of social media such as face book. And especially this study identifies the influence of negative E-WOM in social media on consumer’s purchase intention. Virtual snowball sampling method was used by researcher to identify the hidden population. Finally, spss 20.0 also used for data analysis purpose. And conclusion and recommendations are given based on the findings. And this research also will support to both parties such as researcher and participants.Keywords: word of mouth, social media, purchase intention, electronic word of mouth
Procedia PDF Downloads 1443833 Frequency of the English Phrasal Verbs Used by Iranian Learners as a Reference to the Style of Writing Adopted by the Learners
Authors: Hamzeh Mazaherylaghab, Mehrangiz Vahabian, Seyyedeh Zahra Asghari
Abstract:
The present study initially focused on the frequency of phrasal verbs used by Iranian learners of English. The results then needed to be compared to the findings from native speaker corpora. After the extraction of phrasal verbs from learner and native-speaker corpora the findings were analysed. The results showed that Iranian learners avoided using phrasal verbs in many cases. Some of the findings proved to be significant. It was also found that the learners used the single-word counterparts of the avoided phrasal verbs to compensate for their lack of knowledge in many cases. Semantic complexity and Lack of L1 counterpart may have been the main reasons for avoidance, but despite the avoidance phenomenon, the learners displayed a tendency to use many other phrasal verbs which may have been due to the increase in the number of multi-word verbs in Persian. The overall scores confirmed the fact that the language produced by the learners illustrates signs of more formal style in comparison with the native speakers of English by using less phrasal verbs and more formal single word verbs instead.Keywords: corpus, corpora, LOCNESS, phrasal verbs, single-word verb
Procedia PDF Downloads 2013832 Discovering Word-Class Deficits in Persons with Aphasia
Authors: Yashaswini Channabasavegowda, Hema Nagaraj
Abstract:
Aim: The current study aims at discovering word-class deficits concerning the noun-verb ratio in confrontation naming, picture description, and picture-word matching tasks. A total of ten persons with aphasia (PWA) and ten age-matched neurotypical individuals (NTI) were recruited for the study. The research includes both behavioural and objective measures to assess the word class deficits in PWA. Objective: The main objective of the research is to identify word class deficits seen in persons with aphasia, using various speech eliciting tasks. Method: The study was conducted in the L1 of the participants, considered to be Kannada. Action naming test and Boston naming test adapted to the Kannada version are administered to the participants; also, a picture description task is carried out. Picture-word matching task was carried out using e-prime software (version 2) to measure the accuracy and reaction time with respect to identification verbs and nouns. The stimulus was presented through auditory and visual modes. Data were analysed to identify errors noticed in the naming of nouns versus verbs, with respect to the Boston naming test and action naming test and also usage of nouns and verbs in the picture description task. Reaction time and accuracy for picture-word matching were extracted from the software. Results: PWA showed a significant difference in sentence structure compared to age-matched NTI. Also, PWA showed impairment in syntactic measures in the picture description task, with fewer correct grammatical sentences and fewer correct usage of verbs and nouns, and they produced a greater proportion of nouns compared to verbs. PWA had poorer accuracy and lesser reaction time in the picture-word matching task compared to NTI, and accuracy was higher for nouns compared to verbs in PWA. The deficits were noticed irrespective of the cause leading to aphasia.Keywords: nouns, verbs, aphasia, naming, description
Procedia PDF Downloads 1023831 Automatic Music Score Recognition System Using Digital Image Processing
Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng
Abstract:
Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.Keywords: connected component labeling, image processing, morphological processing, optical musical recognition
Procedia PDF Downloads 4193830 A Recognition Method of Ancient Yi Script Based on Deep Learning
Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma
Abstract:
Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.Keywords: recognition, CNN, Yi character, divergence
Procedia PDF Downloads 1643829 The Patterns of Cross-Sentence: An Event-Related Potential Study of Mathematical Word Problem
Authors: Tien-Ching Yao, Ching-Ching Lu
Abstract:
Understanding human language processing is one of the main challenges of current cognitive neuroscience. The aims of the present study were to use a sentence decision task combined with event-related potentials to investigate the psychological reality of "cross-sentence patterns." Therefore, we take the math word problems the experimental materials and use the ERPs' P600 component to verify. In this study, the experimental material consisted of 200 math word problems with three different conditions were used ( multiplication word problems、division word problems type 1、division word problems type 2 ). Eighteen Mandarin native speakers participated in the ERPs study (14 of whom were female). The result of the grand average waveforms suggests a later posterior positivity at around 500ms - 900ms. These findings were tested statistically using repeated measures ANOVAs at the component caused by the stimulus type of different questions. Results suggest that three conditions present significant (P < 0.05) on the Mean Amplitude, Latency, and Peak Amplitude. The result showed the characteristic timing and posterior scalp distribution of a P600 effect. We interpreted these characteristic responses as the psychological reality of "cross-sentence patterns." These results provide insights into the sentence processing issues in linguistic theory and psycholinguistic models of language processing and advance our understanding of how people make sense of information during language comprehension.Keywords: language processing, sentence comprehension, event-related potentials, cross-sentence patterns
Procedia PDF Downloads 1483828 Characterising the Processes Underlying Emotion Recognition Deficits in Adolescents with Conduct Disorder
Authors: Nayra Martin-Key, Erich Graf, Wendy Adams, Graeme Fairchild
Abstract:
Children and adolescents with Conduct Disorder (CD) have been shown to demonstrate impairments in emotion recognition, but it is currently unclear whether this deficit is related to specific emotions or whether it represents a global deficit in emotion recognition. An emotion recognition task with concurrent eye-tracking was employed to further explore this relationship in a sample of male and female adolescents with CD. Participants made emotion categorization judgements for presented dynamic and morphed static facial expressions. The results demonstrated that males with CD, and to a lesser extent, females with CD, displayed impaired facial expression recognition in general, whereas callous-unemotional (CU) traits were linked to specific problems in sadness recognition in females with CD. A region-of-interest analysis of the eye-tracking data indicated that males with CD exhibited reduced fixation times for the eye-region of the face compared to typically-developing (TD) females, but not TD males. Females with CD did not show reduced fixation to the eye-region of the face relative to TD females. In addition, CU traits did not influence CD subjects’ attention to the eye-region of the face. These findings suggest that the emotion recognition deficits found in CD males, the worst performing group in the behavioural tasks, are partly driven by reduced attention to the eyes.Keywords: attention, callous-unemotional traits, conduct disorder, emotion recognition, eye-region, eye-tracking, sex differences
Procedia PDF Downloads 3213827 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition
Procedia PDF Downloads 217