Search results for: integral equation
2636 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance
Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang
Abstract:
In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.Keywords: non-minimum phase system, optimal linear quadratic tracker, proportional plus integral observer, state and disturbance estimator
Procedia PDF Downloads 5042635 On CR-Structure and F-Structure Satisfying Polynomial Equation
Authors: Manisha Kankarej
Abstract:
The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.Keywords: CR-submainfolds, CR-structure, integrability condition, Nijenhuis tensor
Procedia PDF Downloads 5272634 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions
Authors: Matheus Fernando Pereira, Varese Salvador Timoteo
Abstract:
In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source
Procedia PDF Downloads 2402633 Equation to an Unknown (1980): Visibility, Community, and Rendering Queer Utopia
Authors: Ted Silva
Abstract:
Dietrich de Velsa's Équation à un inconnu / Equation to an Unknown hybridizes art cinema style with the sexually explicit aesthetics of pornography to envision a uniquely queer world unmoored by heteronormative influence. This stylization evokes the memory of a queer history that once approximated such a prospect. With this historical and political context in mind, this paper utilizes formal analysis to assess how the film frames queer sexual encounters as tender acts of care, sometimes literally mending physical wounds. However, Equation to Unknown also highlights the transience of these sexual exchanges. By emphasizing the homogeneity of the protagonist’s sexual conquests, the film reveals that these practices have a darker meaning when the men reject the individualized connection to pursue purely visceral gratification. Given the lack of diversity or even recognizable identifying factors, the men become more anonymous to each other the more they pair up. Ultimately, Equation to an Unknown both celebrates and problematizes its vision of a queer utopia, highlighting areas in the community wherein intimacy and care flourish and locating those spots in which they are neglected.Keywords: pornography studies, queer cinema, French cinema, history
Procedia PDF Downloads 1452632 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation
Authors: Tomoaki Hashimoto
Abstract:
Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.Keywords: optimal control, stochastic systems, quantum systems, stabilization
Procedia PDF Downloads 4632631 Timing Equation for Capturing Satellite Thermal Images
Authors: Toufic Abd El-Latif Sadek
Abstract:
The Asphalt object represents the asphalted areas, like roads. The best original data of thermal images occurred at a specific time during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects, using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found in this study a general timing equation for capturing satellite thermal images at different locations, depends on a fixed time the sunrise and sunset; Capture Time= Tcap =(TM*TSR) ±TS.Keywords: asphalt, satellite, thermal images, timing equation
Procedia PDF Downloads 3502630 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories
Authors: Ranajay Bhowmick
Abstract:
Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.Keywords: cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion
Procedia PDF Downloads 1372629 On the Hirota Bilinearization of Fokas-Lenells Equation to Obtain Bright N-Soliton Solution
Authors: Sagardeep Talukdar, Gautam Kumar Saharia, Riki Dutta, Sudipta Nandy
Abstract:
In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain bright soliton. We have obtained bright 1-soliton, 2-soliton solutions and propose the scheme for obtaining N-soliton solution. We have used an additional parameter which is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton
Procedia PDF Downloads 1232628 Complex Fuzzy Evolution Equation with Nonlocal Conditions
Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli
Abstract:
The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups
Procedia PDF Downloads 2832627 Cubic Trigonometric B-Spline Approach to Numerical Solution of Wave Equation
Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas
Abstract:
The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.Keywords: collocation method, cubic trigonometric B-spline, finite difference, wave equation
Procedia PDF Downloads 5432626 Concrete Cracking Simulation Using Vector Form Intrinsic Finite Element Method
Authors: R. Z. Wang, B. C. Lin, C. H. Huang
Abstract:
This study proposes a new method to simulate the crack propagation under mode-I loading using Vector Form Intrinsic Finite Element (VFIFE) method. A new idea which is expected to combine both VFIFE and J-integral is proposed to calculate the stress density factor as the crack critical in elastic crack. The procedure of implement the cohesive crack propagation in VFIFE based on the fictitious crack model is also proposed. In VFIFIE, the structure deformation is described by numbers of particles instead of elements. The strain energy density and the derivatives of the displacement vector of every particle is introduced to calculate the J-integral as the integral path is discrete by particles. The particle on the crack tip separated into two particles once the stress on the crack tip satisfied with the crack critical and then the crack tip propagates to the next particle. The internal force and the cohesive force is applied to the particles.Keywords: VFIFE, crack propagation, fictitious crack model, crack critical
Procedia PDF Downloads 3352625 Differential Transform Method: Some Important Examples
Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen
Abstract:
In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions
Procedia PDF Downloads 5392624 Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation
Authors: Yanpei Zhen
Abstract:
The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background.Keywords: Darboux transformation, periodic wave, Rogue wave, separating the variables
Procedia PDF Downloads 1832623 Nanofocusing of Surface Plasmon Polaritons by Partially Metal- Coated Dielectric Conical Probe: Optimal Asymmetric Distance
Authors: Ngo Thi Thu, Kazuo Tanaka, Masahiro Tanaka, Dao Ngoc Chien
Abstract:
Nanometric superfocusing of optical intensity near the tip of partially metal- coated dielectric conical probe of the convergent surface plasmon polariton wave is investigated by the volume integral equation method. It is possible to perform nanofocusing using this probe by using both linearly and radially polarized Gaussian beams as the incident waves. Strongly localized and enhanced optical near-fields can be created on the tip of this probe for the cases of both incident Gaussian beams. However the intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip.Keywords: waveguide, surface plasmons, electromagnetic theory
Procedia PDF Downloads 4782622 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation
Authors: Sarun Phibanchon, Yuttakarn Rattanachai
Abstract:
The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.Keywords: soliton, ion-acoustic waves, plasma, spectral method
Procedia PDF Downloads 4122621 A Fundamental Functional Equation for Lie Algebras
Authors: Ih-Ching Hsu
Abstract:
Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?Keywords: fundamental functional equation, generalized functional equations, Lie algebras, quaternions
Procedia PDF Downloads 2252620 Modeling Thermionic Emission from Carbon Nanotubes with Modified Richardson-Dushman Equation
Authors: Olukunle C. Olawole, Dilip Kumar De
Abstract:
We have modified Richardson-Dushman equation considering thermal expansion of lattice and change of chemical potential with temperature in material. The corresponding modified Richardson-Dushman (MRDE) equation fits quite well the experimental data of thermoelectronic current density (J) vs T from carbon nanotubes. It provides a unique technique for accurate determination of W0 Fermi energy, EF0 at 0 K and linear thermal expansion coefficient of carbon nano-tube in good agreement with experiment. From the value of EF0 we obtain the charge carrier density in excellent agreement with experiment. We describe application of the equations for the evaluation of performance of concentrated solar thermionic energy converter (STEC) with emitter made of carbon nanotube for future applications.Keywords: carbon nanotube, modified Richardson-Dushman equation, fermi energy at 0 K, charge carrier density
Procedia PDF Downloads 3782619 Prediction of Thermodynamic Properties of N-Heptane in the Critical Region
Authors: Sabrina Ladjama, Aicha Rizi, Azzedine Abbaci
Abstract:
In this work, we use the crossover model to formulate a comprehensive fundamental equation of state for the thermodynamic properties for several n-alkanes in the critical region that extends to the classical region. This equation of state is constructed on the basis of comparison of selected measurements of pressure-density-temperature data, isochoric and isobaric heat capacity. The model can be applied in a wide range of temperatures and densities around the critical point for n-heptane. It is found that the developed model represents most of the reliable experimental data accurately.Keywords: crossover model, critical region, fundamental equation, n-heptane
Procedia PDF Downloads 4762618 New High Order Group Iterative Schemes in the Solution of Poisson Equation
Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali
Abstract:
We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.Keywords: explicit group iterative method, finite difference, fourth order compact, Poisson equation
Procedia PDF Downloads 4322617 Calculate Consumer Surplus and Producer Surplus Using Integration
Authors: Bojan Radisic, Katarina Stavlic
Abstract:
The paper describes two economics terms consumer surplus and producer surplus using the definite integrals (the Riemann integral). The consumer surplus is the difference between what consumers are willing to pay and actual price. The producer surplus is the difference between what producers selling at the current price, rather than at the price they would have been are willing to accept. Using the definite integrals describe terms and mathematical formulas of the consumer surplus and the producer surplus and will be applied to the numerical examples.Keywords: consumer surplus, producer surplus, definite integral, integration
Procedia PDF Downloads 5922616 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data
Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif
Abstract:
Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.Keywords: field data, local scour, scour equation, wide piers
Procedia PDF Downloads 4152615 Collocation Method Using Quartic B-Splines for Solving the Modified RLW Equation
Authors: A. A. Soliman
Abstract:
The Modified Regularized Long Wave (MRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then studied.Keywords: collocation method, MRLW equation, Quartic B-splines, solitons
Procedia PDF Downloads 3052614 Symbolic Partial Differential Equations Analysis Using Mathematica
Authors: Davit Shahnazaryan, Diogo Gomes, Mher Safaryan
Abstract:
Many symbolic computations and manipulations required in the analysis of partial differential equations (PDE) or systems of PDEs are tedious and error-prone. These computations arise when determining conservation laws, entropies or integral identities, which are essential tools for the study of PDEs. Here, we discuss a new Mathematica package for the symbolic analysis of PDEs that automate multiple tasks, saving time and effort. Methodologies: During the research, we have used concepts of linear algebra and partial differential equations. We have been working on creating algorithms based on theoretical mathematics to find results mentioned below. Major Findings: Our package provides the following functionalities; finding symmetry group of different PDE systems, generation of polynomials invariant with respect to different symmetry groups; simplification of integral quantities by integration by parts and null Lagrangian cleaning, computing general forms of expressions by integration by parts; finding equivalent forms of an integral expression that are simpler or more symmetric form; determining necessary and sufficient conditions on the coefficients for the positivity of a given symbolic expression. Conclusion: Using this package, we can simplify integral identities, find conserved and dissipated quantities of time-dependent PDE or system of PDEs. Some examples in the theory of mean-field games and semiconductor equations are discussed.Keywords: partial differential equations, symbolic computation, conserved and dissipated quantities, mathematica
Procedia PDF Downloads 1642613 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles
Authors: Jafar Razmi
Abstract:
Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains
Procedia PDF Downloads 2402612 Study of Composite Beam under the Effect of Shear Deformation
Authors: Hamid Hamli Benzahar
Abstract:
The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically.Keywords: composite beam, shear deformation, moments, finites elements
Procedia PDF Downloads 762611 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System
Authors: N. Chayaopas, W. Assawinchaichote
Abstract:
In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system
Procedia PDF Downloads 3492610 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions
Authors: Khaled Moaddy
Abstract:
In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.Keywords: standard finite difference schemes, non-standard schemes, Laplace equation, Dirichlet boundary conditions
Procedia PDF Downloads 1352609 The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)
Authors: Jiya Mohammed, Ibrahim Ismail Giwa
Abstract:
Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables.Keywords: coupled differential equation, Homotopy Perturbation Method, plates, squeezing flow
Procedia PDF Downloads 4752608 Sharp Estimates of Oscillatory Singular Integrals with Rough Kernels
Authors: H. Al-Qassem, L. Cheng, Y. Pan
Abstract:
In this paper, we establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase P. Our kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than log (deg(P)), which is optimal and was first obtained by Parissis and Papadimitrakis for kernels without any radial roughness. Our results substantially improve many previously known results. Among key ingredients of our methods are an L¹→L² sharp estimate and using extrapolation.Keywords: oscillatory singular integral, rough kernel, singular integral, orlicz spaces, block spaces, extrapolation, L^{p} boundedness
Procedia PDF Downloads 4592607 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media
Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility
Procedia PDF Downloads 219