Search results for: finite difference time domain (FDTD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23759

Search results for: finite difference time domain (FDTD)

23639 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation

Procedia PDF Downloads 409
23638 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds

Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff

Abstract:

A salinity gradient solar pond is a free energy source system for collecting, converting and storing solar energy as heat. In this paper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transfer behavior of salinity gradient solar pond. Matlab codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results are found to be in good agreement.

Keywords: finite difference method, salt-gradient solar-pond, solar energy, transient heat and mass transfer

Procedia PDF Downloads 341
23637 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death

Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar

Abstract:

In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.

Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death

Procedia PDF Downloads 321
23636 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever

Authors: Khalil Khanafer

Abstract:

This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.

Keywords: fluidic cell, FSI, microcantilever, flow direction

Procedia PDF Downloads 353
23635 Quantification of Effects of Shape of Basement Topography below the Circular Basin on the Ground Motion Characteristics and Engineering Implications

Authors: Kamal, Dinesh Kumar, J. P. Narayan, Komal Rani

Abstract:

This paper presents the effects of shape of basement topography on the characteristics of the basin-generated surface (BGS) waves and associated average spectral amplification (ASA) in the 3D basins having circular surface area. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on parsimonious staggered-grid approximation of 3D viscoelastic wave equations. An increase of amplitude amplification and ASA towards the centre of different considered basins was obtained. Further, it may be concluded that ASA in basin very much depends on the impedance contrast, exposure area of basement to the incident wave front, edge-slope, focusing of the BGS-waves and sediment-damping. There is an urgent need of incorporation of a map of differential ground motion (DGM) caused by the BGS-waves as one of the output maps of the seismic microzonation.

Keywords: 3D viscoelastic simulation, basin-generated surface waves, maximum displacement, average spectral amplification

Procedia PDF Downloads 267
23634 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: experimentation, forging, process modeling, strain distribution

Procedia PDF Downloads 180
23633 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response

Procedia PDF Downloads 344
23632 Conformational Switch of hRAGE upon Self-Association

Authors: Ikhlas Ahmed, Jamillah Zamoon

Abstract:

The human receptor for advanced glycation end product is a plasma membrane receptor with an intrinsically disordered region. The protein consists of three extracellular domains, a single membrane spanning transmembrane domain, and a cytosolic domain which is intrinsically disordered and responsible for signaling. The disordered nature of the cytosolic domain allows it to be dynamic in solution. This receptor self-associates to higher forms. The association is triggered by ligand, metal or by the extracellular domain. Fluorescence spectroscopy technique is used to test the self-association of the different concentrations of the cytosolic domain. This work has concluded that the cytosolic domain of this receptor also self-associates. Moreover, the self-association does not require ligand or metal.

Keywords: fluorescence spectroscopy, hRAGE, IDP, Self-association

Procedia PDF Downloads 340
23631 Numerical Evolution Methods of Rational Form for Diffusion Equations

Authors: Said Algarni

Abstract:

The purpose of this study was to investigate selected numerical methods that demonstrate good performance in solving PDEs. We adapted alternative method that involve rational polynomials. Padé time stepping (PTS) method, which is highly stable for the purposes of the present application and is associated with lower computational costs, was applied. Furthermore, PTS was modified for our study which focused on diffusion equations. Numerical runs were conducted to obtain the optimal local error control threshold.

Keywords: Padé time stepping, finite difference, reaction diffusion equation, PDEs

Procedia PDF Downloads 276
23630 Finite Element Molecular Modeling: A Structural Method for Large Deformations

Authors: A. Rezaei, M. Huisman, W. Van Paepegem

Abstract:

Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.

Keywords: finite element, large deformation, molecular mechanics, structural method

Procedia PDF Downloads 131
23629 Business Domain Modelling Using an Integrated Framework

Authors: Mohammed Hasan Salahat, Stave Wade

Abstract:

This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modeling Language (UML), and an implementation pattern knows as ‘Naked Objects’. This framework have been used in action research projects that have involved the investigation and modeling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study ‘Information Retrieval System for Academic Research’ is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modeling. The framework is overviewed and justified as multi-methodology using Mingers Multi-Methodology ideas.

Keywords: SSM, UML, domain-driven design, soft domain-driven design, naked objects, soft language, information retrieval, multimethodology

Procedia PDF Downloads 533
23628 An Optimal Control Model to Determine Body Forces of Stokes Flow

Authors: Yuanhao Gao, Pin Lin, Kees Weijer

Abstract:

In this paper, we will determine the external body force distribution with analysis of stokes fluid motion using mathematical modelling and numerical approaching. The body force distribution is regarded as the unknown variable and could be determined by the idea of optimal control theory. The Stokes flow motion and its velocity are generated by given forces in a unit square domain. A regularized objective functional is built to match the numerical result of flow velocity with the generated velocity data. So that the force distribution could be determined by minimizing the value of objective functional, which is also the difference between the numerical and experimental velocity. Then after utilizing the Lagrange multiplier method, some partial differential equations are formulated consisting the optimal control system to solve. Finite element method and conjugate gradient method are used to discretize equations and deduce the iterative expression of target body force to compute the velocity numerically and body force distribution. Programming environment FreeFEM++ supports the implementation of this model.

Keywords: optimal control model, Stokes equation, finite element method, conjugate gradient method

Procedia PDF Downloads 372
23627 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method

Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay

Abstract:

Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.

Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method

Procedia PDF Downloads 442
23626 Application of Finite Volume Method for Numerical Simulation of Contaminant Transfer in a Two-Dimensional Reservoir

Authors: Atousa Ataieyan, Salvador A. Gomez-Lopera, Gennaro Sepede

Abstract:

Today, due to the growing urban population and consequently, the increasing water demand in cities, the amount of contaminants entering the water resources is increasing. This can impose harmful effects on the quality of the downstream water. Therefore, predicting the concentration of discharged pollutants at different times and distances of the interested area is of high importance in order to carry out preventative and controlling measures, as well as to avoid consuming the contaminated water. In this paper, the concentration distribution of an injected conservative pollutant in a square reservoir containing four symmetric blocks and three sources using Finite Volume Method (FVM) is simulated. For this purpose, after estimating the flow velocity, classical Advection-Diffusion Equation (ADE) has been discretized over the studying domain by Backward Time- Backward Space (BTBS) scheme. Then, the discretized equations for each node have been derived according to the initial condition, boundary conditions and point contaminant sources. Finally, taking into account the appropriate time step and space step, a computational code was set up in MATLAB. Contaminant concentration was then obtained at different times and distances. Simulation results show how using BTBS differentiating scheme and FVM as a numerical method for solving the partial differential equation of transport is an appropriate approach in the case of two-dimensional contaminant transfer in an advective-diffusive flow.

Keywords: BTBS differentiating scheme, contaminant concentration, finite volume, mass transfer, water pollution

Procedia PDF Downloads 114
23625 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities

Authors: Haowen Xi

Abstract:

We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical time is found and unexpected critical slowing down due to the coupling external noise is predicted; (2) numerical simulations of the nonlinear stochastic equation is presented, and the probability distribution of Prob(tc) is found to be the inverse gamma function.

Keywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations

Procedia PDF Downloads 106
23624 Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes

Authors: Suchi Barua, Narottam Das, Sven Nordholm, Mohammad Razaghi

Abstract:

This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA.

Keywords: finite-difference beam propagation method, pulse shape, pulse propagation, semiconductor optical amplifier

Procedia PDF Downloads 576
23623 Comparison of the Boundary Element Method and the Method of Fundamental Solutions for Analysis of Potential and Elasticity

Authors: S. Zenhari, M. R. Hematiyan, A. Khosravifard, M. R. Feizi

Abstract:

The boundary element method (BEM) and the method of fundamental solutions (MFS) are well-known fundamental solution-based methods for solving a variety of problems. Both methods are boundary-type techniques and can provide accurate results. In comparison to the finite element method (FEM), which is a domain-type method, the BEM and the MFS need less manual effort to solve a problem. The aim of this study is to compare the accuracy and reliability of the BEM and the MFS. This comparison is made for 2D potential and elasticity problems with different boundary and loading conditions. In the comparisons, both convex and concave domains are considered. Both linear and quadratic elements are employed for boundary element analysis of the examples. The discretization of the problem domain in the BEM, i.e., converting the boundary of the problem into boundary elements, is relatively simple; however, in the MFS, obtaining appropriate locations of collocation and source points needs more attention to obtain reliable solutions. The results obtained from the presented examples show that both methods lead to accurate solutions for convex domains, whereas the BEM is more suitable than the MFS for concave domains.

Keywords: boundary element method, method of fundamental solutions, elasticity, potential problem, convex domain, concave domain

Procedia PDF Downloads 66
23622 Tracking the Effect of Ibutilide on Amplitude and Frequency of Fibrillatory Intracardiac Electrograms Using the Regression Analysis

Authors: H. Hajimolahoseini, J. Hashemi, D. Redfearn

Abstract:

Background: Catheter ablation is an effective therapy for symptomatic atrial fibrillation (AF). The intracardiac electrocardiogram (IEGM) collected during this procedure contains precious information that has not been explored to its full capacity. Novel processing techniques allow looking at these recordings from different perspectives which can lead to improved therapeutic approaches. In our previous study, we showed that variation in amplitude measured through Shannon Entropy could be used as an AF recurrence risk stratification factor in patients who received Ibutilide before the electrograms were recorded. The aim of this study is to further investigate the effect of Ibutilide on characteristics of the recorded signals from the left atrium (LA) of a patient with persistent AF before and after administration of the drug. Methods: The IEGMs collected from different intra-atrial sites of 12 patients were studied and compared before and after Ibutilide administration. First, the before and after Ibutilide IEGMs that were recorded within a Euclidian distance of 3 mm in LA were selected as pairs for comparison. For every selected pair of IEGMs, the Probability Distribution Function (PDF) of the amplitude in time domain and magnitude in frequency domain was estimated using the regression analysis. The PDF represents the relative likelihood of a variable falling within a specific range of values. Results: Our observations showed that in time domain, the PDF of amplitudes was fitted to a Gaussian distribution while in frequency domain, it was fitted to a Rayleigh distribution. Our observations also revealed that after Ibutilide administration, the IEGMs would have significantly narrower short-tailed PDFs both in time and frequency domains. Conclusion: This study shows that the PDFs of the IEGMs before and after administration of Ibutilide represents significantly different properties, both in time and frequency domains. Hence, by fitting the PDF of IEGMs in time domain to a Gaussian distribution or in frequency domain to a Rayleigh distribution, the effect of Ibutilide can easily be tracked using the statistics of their PDF (e.g., standard deviation) while this is difficult through the waveform of IEGMs itself.

Keywords: atrial fibrillation, catheter ablation, probability distribution function, time-frequency characteristics

Procedia PDF Downloads 144
23621 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study

Authors: Emmanuel Omokhuale

Abstract:

A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.

Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium

Procedia PDF Downloads 110
23620 Dynamic Analysis of Transmission Line Towers

Authors: L. Srikanth, D. Neelima Satyam

Abstract:

The transmission line towers are one of the important life line structures in the distribution of power from the source to the various places for several purposes. The predominant external loads which act on these towers are wind and earthquake loads. In this present study tower is analyzed using Indian Standards IS: 875:1987 (Wind Load), IS: 802:1995 (Structural Steel), IS:1893:2002 (Earthquake) and dynamic analysis of tower has been performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis has been performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters includes acceleration, frequency, velocity which are important in designing the tower. The tower is analyzed using response spectrum analysis.

Keywords: response spectra, dynamic analysis, central difference method, transmission tower

Procedia PDF Downloads 373
23619 An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency

Authors: Shao-Ku Kao

Abstract:

This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 Ω ~ 1500 Ω for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage.

Keywords: wireless power transfer, active diode, delay compensation, time to voltage converter, PCE

Procedia PDF Downloads 249
23618 Determining Coordinates of Ultra-Light Drones Based on the Time Difference of Arrival (TDOA) Method

Authors: Nguyen Huy Hoang, Do Thanh Quan, Tran Vu Kien

Abstract:

The use of the active radar to measure the coordinates of ultra-light drones is frequently difficult due to long-distance, absolutely small radar cross-section (RCS) and obstacles. Since ultra-light drones are usually controlled by the Time Difference of Arrival (RF), the paper proposed a method to measure the coordinates of ultra-light drones in the space based on the arrival time of the signal at receiving antennas and the time difference of arrival (TDOA). The experimental results demonstrate that the proposed method is really potential and highly accurate.

Keywords: ultra-light drone, TDOA, radar cross-section (RCS), RF

Procedia PDF Downloads 169
23617 Domain Driven Design vs Soft Domain Driven Design Frameworks

Authors: Mohammed Salahat, Steve Wade

Abstract:

This paper presents and compares the SSDDD “Systematic Soft Domain Driven Design Framework” to DDD “Domain Driven Design Framework” as a soft system approach of information systems development. The framework use SSM as a guiding methodology within which we have embedded a sequence of design tasks based on the UML leading to the implementation of a software system using the Naked Objects framework. This framework has been used in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, a comparison between SSDDD and DDD is presented in this paper, to show how SSDDD improved DDD as an approach to modelling and implementing business domain perspectives for Information Systems Development. The comparison process, the results, and the improvements are presented in the following sections of this paper.

Keywords: domain-driven design, soft domain-driven design, naked objects, soft language

Procedia PDF Downloads 270
23616 Percentile Norms of Heart Rate Variability (HRV) of Indian Sportspersons Withdrawn from Competitive Games and Sports

Authors: Pawan Kumar, Dhananjoy Shaw

Abstract:

Heart rate variability (HRV) is the physiological phenomenon of variation in the time interval between heartbeats and is alterable with fitness, age and different medical conditions including withdrawal/retirement from games/sports. Objectives of the study were to develop (a) percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity (b) percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity. The study was conducted on 430 males. Ages of the sample ranged from 30 to 35 years of same socio-economic status. Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with percentile from one to hundred. The finding showed that the percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely, NN50 count (ranged from 1 to 189 score as percentile range). pNN50 count (ranged from .24 to 60.80 score as percentile range). SDNN (ranged from 17.34 to 167.29 score as percentile range). SDSD (ranged from 11.14 to 120.46 score as percentile range). RMMSD (ranged from 11.19 to 120.24 score as percentile range) and SDANN (ranged from 4.02 to 88.75 score as percentile range). The percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely Low Frequency (Normalized Power) ranged from 20.68 to 90.49 score as percentile range. High Frequency (Normalized Power) ranged from 14.37 to 81.60 score as percentile range. LF/ HF ratio(ranged from 0.26 to 9.52 score as percentile range). LF (Absolute Power) ranged from 146.79 to 5669.33 score as percentile range. HF (Absolute Power) ranged from 102.85 to 10735.71 score as percentile range and Total Power (Absolute Power) ranged from 471.45 to 25879.23 score as percentile range. Conclusion: The analysis documented percentile norms for time domain analysis and frequency domain analysis for versatile use and evaluation.

Keywords: RMSSD, Percentile, SDANN, HF, LF

Procedia PDF Downloads 392
23615 Design and Analysis of Metamaterial Based Vertical Cavity Surface Emitting Laser

Authors: Ishraq M. Anjum

Abstract:

Distributed Bragg reflectors are used in vertical-cavity surface-emitting lasers (VCSELs) in order to achieve very high reflectivity. Use of metamaterial in place of distributed Bragg reflector can reduce the device size significantly. A silicon-based metamaterial near perfect reflector is designed to be used in place of distributed Bragg reflectors in VCSELs. Mie resonance in dielectric microparticles is exploited in order to design the metamaterial. A reflectivity of 98.31% is achieved using finite-difference time-domain method. An 808nm double intra-cavity contacted VCSEL structure with 1.5 λ cavity is proposed using this metamaterial near perfect reflector. The active region is designed to be composed of seven GaAs/AlGaAs quantum wells. Upon numerical investigation of the designed VCSEL structure, the threshold current is found to be 2.96 mA at an aperture of 40 square micrometers and the maximum output power is found to be 71 mW at a current of 141 mA. Miniaturization of conventional VCSELs is possible using this design.

Keywords: GaAs, LASER, metamaterial, VCSEL, vertical cavity surface emitting laser

Procedia PDF Downloads 147
23614 An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor

Authors: Lee Feng Koo, Tze Jin Wong, Pang Hung Yiu, Nik Mohd Asri Nik Long

Abstract:

Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field.

Keywords: decryption, encryption, elliptic curve, greater common divisor

Procedia PDF Downloads 224
23613 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: chirp signals, image multiplexing, image transformation, linear canonical transform, polynomial approximation

Procedia PDF Downloads 394
23612 Study of Electron Cyclotron Resonance Acceleration by Cylindrical TE₀₁₁ Mode

Authors: Oswaldo Otero, Eduardo A. Orozco, Ana M. Herrera

Abstract:

In this work, we present results from analytical and numerical studies of the electron acceleration by a TE₀₁₁ cylindrical microwave mode in a static homogeneous magnetic field under electron cyclotron resonance (ECR) condition. The stability of the orbits is analyzed using the particle orbit theory. In order to get a better understanding of the interaction wave-particle, we decompose the azimuthally electric field component as the superposition of right and left-hand circular polarization standing waves. The trajectory, energy and phase-shift of the electron are found through a numerical solution of the relativistic Newton-Lorentz equation in a finite difference method by the Boris method. It is shown that an electron longitudinally injected with an energy of 7 keV in a radial position r=Rc/2, being Rc the cavity radius, is accelerated up to energy of 90 keV by an electric field strength of 14 kV/cm and frequency of 2.45 GHz. This energy can be used to produce X-ray for medical imaging. These results can be used as a starting point for study the acceleration of electrons in a magnetic field changing slowly in time (GYRAC), which has some important applications as the electron cyclotron resonance ion proton accelerator (ECR-IPAC) for cancer therapy and to control plasma bunches with relativistic electrons.

Keywords: Boris method, electron cyclotron resonance, finite difference method, particle orbit theory, X-ray

Procedia PDF Downloads 136
23611 Behaviour of an RC Circuit near Extreme Point

Authors: Tribhuvan N. Soorya

Abstract:

Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor.

Keywords: charging, discharging, RC Circuit, capacitor

Procedia PDF Downloads 420
23610 A Packet Loss Probability Estimation Filter Using Most Recent Finite Traffic Measurements

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

A packet loss probability (PLP) estimation filter with finite memory structure is proposed to estimate the packet rate mean and variance of the input traffic process in real-time while removing undesired system and measurement noises. The proposed PLP estimation filter is developed under a weighted least square criterion using only the finite traffic measurements on the most recent window. The proposed PLP estimation filter is shown to have several inherent properties such as unbiasedness, deadbeat, robustness. A guideline for choosing appropriate window length is described since it can affect significantly the estimation performance. Using computer simulations, the proposed PLP estimation filter is shown to be superior to the Kalman filter for the temporarily uncertain system. One possible explanation for this is that the proposed PLP estimation filter can have greater convergence time of a filtered estimate as the window length M decreases.

Keywords: packet loss probability estimation, finite memory filter, infinite memory filter, Kalman filter

Procedia PDF Downloads 640